首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A very bright and long bolide was observed over the eastern part of the Czech Republic during late local evening on December 9, 2014. This bolide was recorded by professional instruments in the Czech part of the European Fireball Network. Three meteorites weighing in total 87 g were found in the predicted area and were named ??ár nad Sázavou. The complete material composition of the meteorite was obtained from one cut‐off piece using petrography, mineralogy, and scanning electron microscopy (together with X‐ray energy dispersive spectroscopy and wavelength dispersive spectroscopy). X‐ray computed tomography (CT) was applied on all pieces for the determination of their grain and bulk density, digitization of shape, and examination of the structural homogeneity. CT has proved its important role for nondestructive exploration of brecciated meteorites formed by distinct lithologies or petrological types. In this article, we discuss its limits in terms of structural and material resolution based on the correlation of state‐of‐the‐art CT data and SEM images. Furthermore, we introduce a new way of air cavity quantification, which distinguishes the natural porosity of meteorite and cracks related to erosion processes. This helps to discuss the presence of weathering products based on comparison of the meteorite pieces found at different times after impact.  相似文献   

2.
Abstract– We report an analysis of instrumental observations of a very bright fireball which terminated with a meteorite fall near the town of Jesenice in Slovenia on April 9, 2009, at 0h59m46s UT. The fireball designated EN090409 was recorded photographically and photoelectrically by two southern stations of the Czech part of the European Fireball Network (EN). Simultaneously, a part of the luminous trajectory was also captured by two all‐sky CCD systems and one video camera of the Slovenian meteor network. In addition to these optical recordings, the sonic booms produced by the Jesenice fireball were detected at 16 seismic stations located within 150 km of the trajectory. From all these records, we reconstructed the fireball’s atmospheric trajectory, basic geophysical data, the possible impact area, and the original heliocentric orbit of the meteoroid. Using a detailed fireball light curve, we modeled the atmospheric fragmentation of the meteoroid. Both the atmospheric behavior and the heliocentric orbit proved to be quite normal in comparison with other observed meteorite falls. The Jesenice orbit is markedly different from the P?íbram and Neuschwanstein orbital meteorite pair, which fell on similar dates (April 7, 1959, and April 6, 2002, respectively). Three meteorites with a total weight of 3.6 kg (until April 2010) were found in a high mountain area near the town of Jesenice. They are classified as L6 ordinary chondrites ( Bischoff et al. 2010 ).  相似文献   

3.
Abstract— The L6 ordinary chondrite Villalbeto de la Peña fall occurred on January 4, 2004, at 16: 46: 45 ± 2 s UTC. The related daylight fireball was witnessed by thousands of people from Spain, Portugal, and southern France, and was also photographed and videotaped from different locations of León and Palencia provinces in Spain. From accurate astrometric calibrations of these records, we have determined the atmospheric trajectory of the meteoroid. The initial fireball velocity, calculated from measurements of 86 video frames, was 16.9 ± 0.4 km/s. The slope of the trajectory was 29.0 ± 0.6° to the horizontal, the recorded velocity during the main fragmentation at a height of 27.9 ± 0.4 km was 14.2 ± 0.2 km/s, and the fireball terminal height was 22.2 ± 0.2 km. The heliocentric orbit of the meteoroid resided in the ecliptic plane (i = 0.0 ± 0.2°), having a perihelion distance of 0.860 ± 0.007 AU and a semimajor axis of 2.3 ± 0.2 AU. Therefore, the meteorite progenitor body came from the Main Belt, like all previous determined meteorite orbits. The Villalbeto de la Peña fireball analysis has provided the ninth known orbit of a meteorite in the solar system.  相似文献   

4.
Abstract— The Morávka (Czech Republic) meteorite fall occurred on May 6, 2000, 11:52 UT, during the daytime. Six H5–6 ordinary chondrites with a total mass of 1.4 kg were recovered. The corresponding fireball was witnessed by thousands of people and also videotaped by 3 casual witnesses. Sonic booms were recorded by 16 seismic stations in the Czech Republic and Poland and by one infrasonic station in Germany. A total of 2.5% of the fireball eyewitnesses reported electrophonic sounds. Satellites in Earth orbit detected part of the fireball light curve. In this first paper from a series of 4 papers devoted to the Morávka meteorite fall, we describe the circumstances of the fall and determine the fireball trajectory and orbit from calibrated video records. Morávka becomes one of only 6 meteorites with a known orbit. The slope of the trajectory was 20.4° to the horizontal, the initial velocity was 22.5 km/s, and the terminal height of the fireball was 21 km. The semimajor axis of the orbit was 1.85 AU, the perihelion distance was 0.982 AU, and the inclination was 32.2°. The fireball reached an absolute visual magnitude of ?20 at a height of 33 km.  相似文献   

5.
The Ko?ice meteorite fall occurred in eastern Slovakia on February 28, 2010, 22:25 UT. The very bright bolide was imaged by three security video cameras from Hungary. Detailed bolide light curves were obtained through clouds by radiometers on seven cameras of the European Fireball Network. Records of sonic waves were found on six seismic and four infrasonic stations. An atmospheric dust cloud was observed the next morning before sunrise. After careful calibration, the video records were used to compute the bolide trajectory and velocity. The meteoroid, of estimated mass of 3500 kg, entered the atmosphere with a velocity of 15 km s?1 on a trajectory with a slope of 60° to the horizontal. The largest fragment ceased to be visible at a height of 17 km, where it was decelerated to 4.5 km s?1. A maximum brightness of absolute stellar magnitude about ?18 was reached at a height of 36 km. We developed a detailed model of meteoroid atmospheric fragmentation to fit the observed light curve and deceleration. We found that Ko?ice was a weak meteoroid, which started to fragment under the dynamic pressure of only 0.1 MPa and fragmented heavily under 1 MPa. In total, 78 meteorites were recovered in the predicted fall area during official searches. Other meteorites were found by private collectors. Known meteorite masses ranged from 0.56 g to 2.37 kg. The meteorites were classified as ordinary chondrites of type H5 and shock stage S3. The heliocentric orbit had a relatively large semimajor axis of 2.7 AU and aphelion distance of 4.5 ± 0.5 AU. Backward numerical integration of the preimpact orbit indicates possible large variations of the orbital elements in the past due to resonances with Jupiter.  相似文献   

6.
High entry speed (>25 km s?1) and low density (<2500 kg m?3) are the two factors that lower the chance of a meteoroid to drop meteorites. The 26 g carbonaceous (CM2) meteorite Maribo recovered in Denmark in 2009 was delivered by a bright bolide observed by several instruments across northern and central Europe. By reanalyzing the available data, we confirmed the previously reported high entry speed of (28.3 ± 0.3) km s?1 and trajectory with slope of 31° to the horizontal. In order to understand how such a fragile material survived, we applied three different models of meteoroid atmospheric fragmentation to the detailed bolide light curve obtained by radiometers located in Czech Republic. The Maribo meteoroid was found to be quite inhomogeneous with different parts fragmenting at different dynamic pressures. While 30–40% of the (2000 ± 1000) kg entry mass was destroyed already at 0.02 MPa, another 25–40%, according to different models, survived without fragmentation up to the relatively large dynamic pressures of 3–5 MPa. These pressures are only slightly lower than the measured tensile strengths of hydrated carbonaceous chondrite (CC) meteorites and are comparable with usual atmospheric fragmentation pressures of ordinary chondritic (OC) meteoroids. While internal cracks weaken OC meteoroids in comparison with meteorites, this effect seems to be absent in CC, enabling meteorite delivery even at high speeds, though in the form of only small fragments.  相似文献   

7.
Abstract– We report an analysis of the first instrumentally observed meteorite fall in Australia, which was recorded photographically and photoelectrically by two eastern stations of the Desert Fireball Network (DFN) on July 20, 2007. The meteoroid with an initial mass of 22 kg entered the atmosphere with a low speed of 13.36 km s?1 and began a luminous trajectory at an altitude of 62.83 km. In maximum, it reached ?9.6 absolute magnitude and terminated after a 5.7 s and 64.7 km long flight at an altitude of 29.59 km with a speed of 5.8 km s?1. The angle of the atmospheric trajectory to the Earth’s surface was 30.9°. The first organized search took place in October 2008 and the first meteorite (150 g) was found 97 m southward from the predicted central line at the end of the first day of searching (October 3, 2008). The second stone (174 g) was recovered 39 m northward from the central line, both exactly in the predicted mass limits. During the second expedition in February 2009, a third fragment of 14.9 g was found again very close (~100 m) from the predicted position. Total recovered mass is 339 g. The meteorite was designated Bunburra Rockhole (BR) after a nearby landscape structure. This first DFN sample is an igneous achondrite. Initial petrography indicated that BR was a brecciated eucrite but detailed analyses proved that BR is not a typical eucrite, but an anomalous basaltic meteorite ( Bland et al. 2009 ). BR was delivered from an unusual, Aten type orbit (a < 1 AU) where virtually the entire orbit was contained within Earth’s orbit. BR is the first achondrite fall with a known orbit and it is one of the most precise orbits ever calculated for a meteorite dropping fireball.  相似文献   

8.
Abstract— Using visual observations that were reported 140 years ago in the Comptes Rendus de l'Académie des Sciences de Paris, we have determined the atmospheric trajectory and the orbit of the Orgueil meteorite, which fell May 14, 1864, near Montauban, France. Despite the intrinsic uncertainty of visual observations, we were able to calculate a reasonably precise atmospheric trajectory and a moderately precise orbit for the Orgueil meteoroid. The atmosphere entry point was ?70 km high and the meteoroid terminal point was ?20 km high. The calculated luminous path was ?150 km with an entry angle of 20°. These characteristics are broadly similar to that of other meteorites for which the trajectory is known. Five out of six orbital parameters for the Orgueil orbit are well constrained. In particular, the perihelion lies inside the Earth's orbit (q ?0.87 AU), as is expected for an Earth‐crossing meteorite, and the orbital plane is close to the ecliptic (i ?0°). The aphelion distance (Q) depends critically on the pre‐atmospheric velocity. From the calculated atmospheric path and the fireball duration, which was reported by seven witnesses, we have estimated the pre‐atmospheric velocity to be larger than 17.8 km/sec, which corresponds to an aphelion distance Q larger than 5.2 AU, the semi‐major axis of Jupiter orbit. These results suggest that Orgueil has an orbit similar to that of Jupiter‐family comets (JFCs), although an Halley‐type comet cannot be excluded. This is at odds with other meteorites that have an asteroidal origin, but it is compatible with 140 years of data‐gathering that has established the very special nature of Orgueil compared to other meteorites. A cometary origin of the Orgueil meteorite does not contradict cosmochemistry data on CI1 chondrites. If CI1 chondrites originate from comets, it implies that comets are much more processed than previously thought and should contain secondary minerals. The forthcoming return of cometary samples by the Stardust mission will provide a unique opportunity to corroborate (or contradict) our hypothesis.  相似文献   

9.
The Hamburg (H4) meteorite fell on 17 January 2018 at 01:08 UT approximately 10 km north of Ann Arbor, Michigan. More than two dozen fragments totaling under 1 kg were recovered, primarily from frozen lake surfaces. The fireball initial velocity was 15.83 ± 0.05 km s?1, based on four independent records showing the fireball above 50 km altitude. The radiant had a zenith angle of 66.14 ± 0.29° and an azimuth of 121.56 ± 1.2°. The resulting low inclination (<1°) Apollo‐type orbit has a large aphelion distance and Tisserand value relative to Jupiter (Tj) of ~3. Two major flares dominate the energy deposition profile, centered at 24.1 and 21.7 km altitude, respectively, under dynamic pressures of 5–7 MPa. The Geostationary Lightning Mapper on the Geostationary Operational Environmental Satellite‐16 also detected the two main flares and their relative timing and peak flux agree with the video‐derived brightness profile. Our preferred total energy for the Hamburg fireball is 2–7 T TNT (8.4–28 × 109 J), which corresponds to a likely initial mass in the range of 60–225 kg or diameter between 0.3 and 0.5 m. Based on the model of Granvik et al. (2018), the meteorite originated in an escape route from the mid to outer asteroid belt. Hamburg is the 14th known H chondrite with an instrumentally derived preatmospheric orbit, half of which have small (<5°) inclinations making connection with (6) Hebe problematic. A definitive parent body consistent with all 14 known H chondrite orbits remains elusive.  相似文献   

10.
Abstract— The fireball accompanying the Park Forest meteorite fall (L5) was recorded by ground‐based videographers, satellite systems, infrasound, seismic, and acoustic instruments. This meteorite shower produced at least 18 kg of recovered fragments on the ground (Simon et al. 2004). By combining the satellite trajectory solution with precise ground‐based video recording from a single site, we have measured the original entry velocity for the meteoroid to be 19.5 ± 0.3 km/s. The earliest video recording of the fireball was made near the altitude of 82 km. The slope of the trajectory was 29° from the vertical, with a radiant azimuth (astronomical) of 21° and a terminal height measured by infrared satellite systems of 18 km. The meteoroid's orbit has a relatively large semi‐major axis of 2.53 ± 0.19 AU, large aphelion of 4.26 ± 0.38 AU, and low inclination. The fireball reached a peak absolute visual magnitude of ?22, with three major framentation episodes at the altitudes of 37, 29, and 22 km. Acoustic recordings of the fireball airwave suggest that fragmentation was a dominant process in production of sound and that some major fragments from the fireball remained supersonic to heights as low as ?10 km. Seismic and acoustic recordings show evidence of fragmentation at 42, 36, 29, and 17 km. Examination of implied energies/initial masses from all techniques (satellite optical, infrasound, seismic, modeling) leads us to conclude that the most probable initial mass was (11 ± 3) × 103 kg, corresponding to an original energy of ?0.5 kt TNT (2.1 times 1012 J) and a diameter of 1.8 m. These values correspond to an integral bolometric efficiency of 7 ± 2%. Early fragmentation ram pressures of <1 MPa and major fragmentations occurring with ram pressures of 2–5 MPa suggest that meter‐class stony near‐Earth asteroids (NEAs) have tensile strengths more than an order of magnitude lower than have been measured for ordinary chondrites. One implication of this observation is that the rotation period for small, fast‐rotating NEAs is likely to be >30 seconds.  相似文献   

11.
Abstract— The properties and history of the parent meteoroid of the Morávka H5–6 ordinary chondrites have been studied by a combination of various methods. The pre‐atmospheric mass of the meteoroid was computed from fireball radiation, infrasound, seismic signal, and the content of noble gases in the meteorites. All methods gave consistent results. The best estimate of the pre‐atmospheric mass is 1500 ± 500 kg. The fireball integral bolometric luminous efficiency was 9%, and the acoustic efficiency was 0.14%. The meteoroid cosmic ray exposure age was determined to be (6.7 ± 1.0) × 106 yr. The meteorite shows a clear deficit of helium, both 3He and 4He. This deficit can be explained by solar heating. Numerical backward integration of the meteoroid orbit (determined in a previous paper from video records of the fireball) shows that the perihelion distance was probably lower than 0.5 AU and possibly as low as 0.1 AU 5 Ma ago. The collision which excavated Morávka probably occurred while the parent body was on a near‐Earth orbit, as opposed to being confined entirely to the main asteroid belt. An overview of meteorite macroscopic properties, petrology, mineralogy, and chemical composition is given. The meteorites show all mineralogical features of H chondrites. The shock level is S2. Minor deviations from other H chondrites in abundances of trace elements La, Ce, Cs, and Rb were found. The ablation crust is enriched with siderophile elements.  相似文献   

12.
The Kri?evci H6 meteorite was recovered on the basis of fireball data obtained by the cameras of the Croatian Meteor Network. The fireball, which occurred on February 4, 2011, 23:20:40 UT, was also observed by meteor cameras in Slovenia and by the Autonomous Fireball Observatory in Martinsberg, Austria, which belongs to the European Fireball Network. Here, we present detailed data on fireball trajectory, velocity, deceleration, light curve, and orbit. We also modeled the atmospheric fragmentation of the meteoroid on the basis of the light curve and deceleration. The initial mass of the meteoroid was between 25–100 kg, most probably about 50 kg. Severe fragmentation occurred at heights of approximately 60 and 31 km, under dynamic pressures of 0.1 and 3 MPa, respectively. The peak absolute magnitude of ?13.7 was reached during the second severe fragmentation event. The recovered 291 g meteorite was probably the only fragment with a terminal mass exceeding 100 g. The orbit had a low inclination of 0.6 degrees, perihelion distance 0.74 AU, and semimajor axis 1.54 AU. Kri?evci can be ranked among the 10 best documented meteorite falls.  相似文献   

13.
A daylight bolide was observed over Galicia (NW Spain) and Minho (N. Portugal) on March 1, 2005 at 15 h10 min ± 3 min UTC. We interviewed 23 eyewitnesses of the event in order to obtain the azimuth, altitude, and slope of the fireball’s trajectory. Reports suggest an atmospheric ending height below 20 km, indicating that meteorite survival was likely. From the reconstructed trajectory and the fireball’s duration, we obtained the approximate heliocentric orbits for the meteoroid. Assuming an entry velocity higher than 20 km s−1 which is consistent with its estimated duration, the meteoroid originated in the asteroid belt.  相似文献   

14.
Abstract— An impressive daylight fireball was observed from Spain, Portugal, and the south of France at 16h46m45s UTC on January 4, 2004. The meteoroid penetrated into the atmosphere, generating shock waves that reached the ground and produced audible booms. The associated airwave was recorded at a seismic station located 90 km north of the fireball trajectory in Spain, and at an infrasound station in France located 750 km north‐east of the fireball. The absolute magnitude of the bolide has been determined to be ?18 ± 1 from a casual video record. The energy released in the atmosphere determined from photometric, seismic, and infrasound data was about 0.02 kilotons (kt). A massive fragmentation occurred at a height of 28 ± 0.2 km, resulting in a meteorite strewn field of 20 × 6 km. The first meteorite specimen was found on January 11, 2004, near the village of Villalbeto de la Peña, in northern Palencia (Spain). To date, about 4.6 kg of meteorite mass have been recovered during several recovery campaigns. The meteorite is a moderately shocked (S4) L6 ordinary chondrite with a cosmic‐ray‐exposure age of 48 ± 5 Ma. Radioisotope analysis shows that the original body had a mass of 760 ± 150 kg, which is in agreement with the estimated mass obtained from photometric and seismic measurements.  相似文献   

15.
Observations of the trail caused by the meteorite which fell around Dhajala, Gujarat (India), on 28 January 1976 have been used to compute the probable orbit of the meteoroid in space. The cosmic ray effects in the meteorite fragments indicate high mass ablation (?90%), suggesting a high velocity (?20 km/sec) of entry into the Earth's atmosphere. The atmospheric trajectory is reasonably well documented and its deviation from the projected ground fallout can be understood in terms of the ambient wind pattern. The apparent radiant of the trail was at a point in the sky with right ascension 165°, declination +60°. Considering the errors in estimating the radiant, we get a range of orbits with a = 2.3 ± 0.8 AU, e = 0.6 ± 0.1, and i = 28 ± 4° with the constraints of a ? 1.5 AU and V < 25 km/sec (which causes nearly complete evaporation of the meteoroid). Taking V = 21.5 lm/sec as indicated by the measured mass ablation of the meteorite, the orbital elements are deduced to be a = 1.8 AU, e = 0.59, i = 27°.6, ω = 109°.1, Ω = 307°.8, and q = 0.74.  相似文献   

16.
We describe the fall of the Dingle Dell (L/LL 5) meteorite near Morawa in Western Australia on October 31, 2016. The fireball was observed by six observatories of the Desert Fireball Network (DFN), a continental-scale facility optimized to recover meteorites and calculate their pre-entry orbits. The 30 cm meteoroid entered at 15.44 km s−1, followed a moderately steep trajectory of 51° to the horizon from 81 km down to 19 km altitude, where the luminous flight ended at a speed of 3.2 km s−1. Deceleration data indicated one large fragment had made it to the ground. The four person search team recovered a 1.15 kg meteorite within 130 m of the predicted fall line, after 8 h of searching, 6 days after the fall. Dingle Dell is the fourth meteorite recovered by the DFN in Australia, but the first before any rain had contaminated the sample. By numerical integration over 1 Ma, we show that Dingle Dell was most likely ejected from the Main Belt by the 3:1 mean motion resonance with Jupiter, with only a marginal chance that it came from the ν6 resonance. This makes the connection of Dingle Dell to the Flora family (currently thought to be the origin of LL chondrites) unlikely.  相似文献   

17.
Abstract– The Grimsby meteorite (H4–6) fell on September 25, 2009. As of mid‐2010, 13 fragments totaling 215 g have been recovered. Records of the accompanying fireball from the Southern Ontario Meteor Network, including six all‐sky video cameras, a large format CCD, infrasound and radar records, have been used to characterize the trajectory, speed, orbit, and initial mass of the meteoroid. From the four highest quality all‐sky video records, the initial entry velocity was 20.91 ± 0.19 km s?1 while the derived radiant has a local azimuth of 309.40° ± 0.19° and entry angle of 55.20° ± 0.13°. Three major fragmentation episodes are identified at 39, 33, and 30 km height, with corresponding uncertainties of approximately 2 km. Evidence for early fragmentation at heights of approximately 70 km is found in radar data; dynamic pressure of this earliest fragmentation is near 0.1 MPa while the main flare at 39 km occurred under ram pressures of 1.5 MPa. The fireball was luminous to at least 19.7 km altitude and the dynamic mass estimate of the largest remaining fragment at this height is approximately several kilograms. The initial mass is constrained to be <100 kg from infrasound data and ablation modeling, with a most probable mass of 20–50 kg. The preatmospheric orbit is typical of an Apollo asteroid with a likely immediate origin in either the 3:1 or ν6 resonances.  相似文献   

18.
Abstract— Detailed analysis of the fragmentation of the Morávka meteoroid during the atmospheric entry is presented. The analysis is based on the measurement of trajectories and decelerations of fragments seen in a video and at the locations of energetic fragmentation events from seismic data obtained at several stations in the vicinity of the fireball trajectory. About 100 individual fragments are seen on video frames. Significant deceleration of the fireball at heights of ?45 km revealed that the meteoroid had already fragmented into ?10 pieces with masses of 100–200 kg, though the fireball still appeared as a single object. At heights of 37–29 km, all primary fragments broke‐up again under dynamic pressures up to 5 MPa. The cascade fragmentation then continued, even though smaller pieces breaking off from the larger masses were increasingly decelerated and the dynamic pressure acting upon them decreased. At each fragmentation, a significant part of the mass was lost in the form of dust or tiny particles. This was the dominant process of mass loss. The continuous ablation due to melting and evaporation of the meteoroid surface was less efficient with a corresponding ablation coefficient of only 0.003 s2 km‐2. During fragmentation, some pieces achieved lateral velocities up to 300 m/s, about an order of magnitude more than can be explained by aerodynamic loading. The fragmentation continued even after ablation ceased, as demonstrated by the incomplete fusion crust covering all recovered fragments. We estimate that several hundreds of meteorites of a total mass of ?100 kg landed, mostly in a mountainous area not suitable for systematic meteorite searches. Six meteorites with a total mass of 1.4 kg were recovered up to the end of May 2003. Their positions are consistent with the calculated strewn field.  相似文献   

19.
The results of the atmospheric trajectory, radiant, heliocentric orbit, and preliminary strewn field calculations for an extremely bright slow‐moving fireball are presented. In the evening hours of July 23, 2008, a bright object entered Earth's atmosphere over Tajikistan. The fireball had a ?20.3 maximum absolute magnitude and a spectacularly long persistent dust trail remained visible over a widespread region of Tajikistan for about 28 minutes after sunset. The fireball was also recorded by a visible‐light satellite system at 14 h 45 min 25 s UT, and the dust trail was imaged by video and photocameras. A unique aspect of this event is that it was detected by two infrasound and five seismic stations too. The bolide was first recorded at a height of 38.2 km, reached its maximum brightness at a height of 35.0 km, and finished at a height of 19.6 km. The first breakup occurred under an aerodynamic pressure of approximately 1.6 MPa, similar to the values derived for breakups of the scarcely reported meteorite‐dropping bolides. The fireball's trajectory and dynamic results suggest that meteorite survival is likely. The meteoroid followed an Apollo‐like asteroid orbit comparable to those derived for previously recovered meteorites with accurately known orbits.  相似文献   

20.
A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE–NW‐oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3–4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10–30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号