首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The Southern Yenisey Range (Eastern Siberia) consists of thegranulite-facies Kanskiy complex bordered by the lower-gradeYeniseyskiy and Yukseevskiy complexes. Samples of metapeliteof the Kanskiy complex typically show characteristic garnet-formingreaction textures and near-isobaric cooling PT paths.An important new result of this study concerns the differencein shape of the PT paths from different parts of theKanskiy granulite complex: metapelites collected 8 km from theboundary with the Yeniseyskiy complex followed a linear pathwith dP/dT 0·006 kbar/°C; metapelites collected3 km from this boundary reveal a kinked PT path withan interval of burial cooling (dP/dT –0·006 kbar/°C).The difference in the shape of the PT paths is supportedby the chemical zoning of garnet studied in the second groupof samples. A mechanism of buoyant exhumation of granulite issuggested by comparison with the results of numerical modelling,which indicate that such a diversity of PT paths mayresult from a transient disturbance of the thermal structureby rapid differential movement of material from different crustallevels. To arrive at a correct tectonic interpretation, thewhole assemblage of interrelated PT paths of metamorphicrocks collected from different localities within the same complexmust be studied. KEY WORDS: crustal diapirism; exhumation; granulites; numerical modelling; PT path  相似文献   

3.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   

4.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   

5.
The PT gradient in a Late Eocene low-T high-P metamorphicbelt in northern New Caledonia increases from SW to NE. Metapelitesin the pumpellyite–prehnite and blueschist zones containlawsonite, Mg-carpholite, Fe-stilpnomelane and Fe-glaucophane.Thermodynamic calculations indicate a progression of metamorphicconditions from less than 0·3 GPa and 250°C in akaolinite-bearing rock in the SW, up to 1·5 GPa and 410°Cin a lawsonite–glaucophane-bearing sample in the NE ofthe Diahot terrane. Through a multi-method investigation ofphyllosilicates, organic matter and fluid inclusions, we demonstratethat the evolution of organic matter and illite crystallinitydepends strongly on the evolution of the PT path withtime. In addition, we show that the illite–muscovite bcell dimension provides a robust estimate of maximum pressurereached in low-temperature domains with polyphase metamorphichistories, despite subsequent high-temperature–low-pressureevents. Fluid inclusion study reveals an isothermal decompressionin the Diahot terrane. KEY WORDS: low-temperature/high-pressure metapelites; illite crystallinity; coal rank; illite–muscovite b cell dimension; New Caledonia  相似文献   

6.
Migmatitic granulites and arc-related felsic intrusives of Pan-Africanage form the bedrock in the Rio de Janeiro area, SE Brazil.These rocks preserve a partial record of three parageneses.The earliest assemblage (M1) grew during fabric formation inthe rocks (D1) and is characterized by the mineral assemblagePl + Bt + Sil + Kfs + Qtz. Peak metamorphic conditions (M2)are characterized by the assemblage Bt + Crd + Kfs + Pl + Grt+ liq + Qtz and are inferred to have developed during D2 foldingof the rocks at T = 750–800°C and P = 7 kbar. M3 reactiontextures overprint the M2 assemblage and comprise symplectiticintergrowth of cordierite(II) and quartz that formed after garnet,whereas secondary biotite formed as a result of reactions betweengarnet and K-feldspar. By comparing the observed modal abundanceswith modal contours of garnet, cordierite and quartz on therelevant pseudosection a post M2 PT vector indicatingcontemporaneous cooling and decompression can be deduced. Theinferred equilibrium assemblage and reaction textures are interpretedto reflect a clockwise PT path involving heating followedby post-peak decompression and associated cooling. We inferthat metamorphism occurred in response to advective heatingby the abundant syn-collisional (arc-related) I-type granitoidsin the region, consistent with the unusually high peak T/P ratio. KEY WORDS: advective heating; Ribeira belt; granulite; partial melting; PT pseudosection  相似文献   

7.
Magmatic accretion is potentially an important mechanism inthe growth of the continental crust and the formation of granulites.In this study, the thermal evolution of a magmatic arc in responseto magmatic accretion is modeled using numerical solutions ofthe one-dimensional heat conduction equation. The initial andboundary conditions used in the model are constrained by geologicalobservations made in the Kohistan area, NW Himalayas. Takingconsideration of the preferred intrusion locations for basalticmagmas, we consider two plausible modes of magmatic accretion:the first involves the repeated intrusion of basalt at mid-crustaldepths (‘intraplate model’), and the second evaluatesthe simultaneous intrusion of basalt and picrite at mid-crustaldepths and the base of the crust respectively (‘double-platemodel’). The results of the double-plate model accountfor both the inferred metamorphic PT paths of the Kohistanmafic granulites and the continental geotherm determined frompeak PT conditions observed for granulite terranes. Thedouble-plate model may be applicable as a key growth processfor the production of thick mafic lower crust in magmatic arcs. KEY WORDS: thermal model; magmatic underplating; PT path; granulite; lower crust  相似文献   

8.
A combined petrological and geochronological study was carriedout on mafic granulites and associated felsic gneisses fromthe McKaskle Hills, eastern Amery Ice Shelf, East Antarctica.Garnet-bearing mafic granulites exhibit reaction textures andexsolution textures that indicate two-stage metamorphic evolution.Thermobarometric estimates from matrix and symplectite assemblagesyield peak and retrograde PT conditions of 9·0–9·5kbar and 880–950°C and 6·6–7·2kbar and 700–750°C, respectively. Similar but slightlyscattered peak PT estimates of 7·9–10·1kbar and 820–980°C are obtained from the core compositionsof minerals from felsic para- and orthogneisses. Evidence forthe prograde history is provided by muscovite inclusions ingarnet from a paragneiss. Sensitive high-resolution ion microprobeU–Pb zircon dating reveals an evolutionary history forthe granulites, including a mafic and felsic igneous intrusionat 1174–1019 Ma, sedimentation after 932–916 Ma,and a high-grade metamorphism at 533–529 Ma. In contrast,Sm–Nd mineral–whole-rock dating mainly yields asingle age population at 500 Ma. This suggests that the McKaskleHills form part of the Prydz Belt, and that the relatively highpeak PT conditions and a decompression-dominated PTpath for the rocks resulted from a single Cambrian metamorphiccycle, rather than two distinct metamorphic events as formerlyinferred for the granulites from Prydz Bay. The age data alsoindicate that the Precambrian history of the McKaskle Hillsis not only distinct from that of the early Neoproterozoic terranein the northern Prince Charles Mountains, but also differentfrom that of other parts of the Prydz Belt. The existence ofmultiple basement terranes, together with considerable crustalthickening followed by tectonic uplift and unroofing indicatedby the clockwise PTt evolution, suggests thatthe Prydz Belt may represent a collisional orogen that resultedin the assembly of Gondwana during the Cambrian period. KEY WORDS: Mesoproterozoic basement; Cambrian metamorphism; P–T path; Prydz Belt; East Antarctica  相似文献   

9.
High-Mg chloritoid (XMg = 0·40–0·47) andrelatively high-Mg staurolite (XMg = 0·25–0·28)coexisting with kyanite and garnet were identified in a mica–garnet-richrock associated with very high-pressure eclogites in the BugheaComplex of the Leaota Massif (South Carpathians). Major andtrace element geochemical data for both fresh eclogites andassociated rocks which represent a metasomatic or retrogradealteration rind of the eclogites, indicate a pelitic precursor.Magnesian chloritoid was found as inclusions in garnet as partof a chloritoid–kyanite–garnet assemblage whichis indicative of high-pressure conditions. The host garnet showsa typically prograde chemical zoning pattern. The chloritoid-bearingassemblage is confined to the inner part of the garnet porphyroblasts,whereas the matrix assemblage in equilibrium with Mg-rich garnetrims has exceeded the thermal stability limit of chloritoid.Pressure–temperature pseudosections for simplified compositionsapproaching the rock bulk-chemistry show a high-pressure fieldfor the identified chloritoid-bearing assemblage in good agreementwith pressure–temperature estimates in the CFMASH andKCFMASH chemical subsystems using analysed mineral compositions.The derived pressure–temperature path is clockwise, indicatingoverprinting during exhumation from 1·8 GPa and 580°Cto 1·15 GPa and 620°C, at a water activity approachingaH2O = 1. These conditions were attained in a subduction mélangeindicating transient thermal perturbations of a subduction channel. KEY WORDS: high-pressure metapelite; Mg-rich chloritoid; PT path; PT pseudosection; very high-pressure eclogite  相似文献   

10.
Mineral assemblages in the blueschist-facies metapelites fromthe Ile de Groix (Armorican Massif, France) permit the distinctionof two main units. The Upper Unit is characterized by: (1) highmodal proportions of garnet; (2) larger grain size; (3) therarity of graphite-bearing layers; (4) a single, although composite,foliation S1. A Lower Unit is defined by: (1) low modal proportionsof garnet; (2) smaller grain size; (3) an abundance of graphite-bearinglayers; (4) a pervasive crenulation cleavage S2. In the UpperUnit, coexisting garnet and chloritoid are more magnesian andless manganiferous than in the Lower Unit. The differences inmodal proportions and chemistry of coexisting minerals reflectdifferent P–T conditions. The P–T history of theblueschist-facies metapelites is estimated using a simplifiedpetrogenetic grid in the NFMASH system and thermodynamic calculations,which suggest peak P–T conditions at about P = 16–18kbar, T = 450–500°C and P = 14–16 kbar, T =400–450°C in the Upper and Lower Units, respectively.Peak P–T conditions were followed by a nearly isothermaldecompression for both units at slightly different temperatures(of the order of 50°C). The contact between the two units,i.e. the garnet isograd, is interpreted as a greenschist-faciesductile thrust. Thrusting of the higher-grade unit, i.e. theUpper Unit, over the Lower Unit occurred after the high-pressureevent, i.e. during the exhumation of both units. The observedsuperposition of higher-grade rocks over lower-grade rocks arguesagainst models where the exhumation history is entirely controlledby crustal-scale vertical shortening (i.e. extension). KEY WORDS: Armorican Massif; blueschist facies; Ile de Groix; metapelites; PT path; garnet isograd  相似文献   

11.
Extensive high-grade polydeformed metamorphic provinces surroundingArchaean cratonic nuclei in the East Antarctic Shield recordtwo tectono-thermal episodes in late Mesoproterozoic and lateNeoproterozoic–Cambrian times. In Western Dronning MaudLand, the high-grade Mesoproterozoic Maud Belt is juxtaposedagainst the Archaean Grunehogna Province and has traditionallybeen interpreted as a Grenvillian mobile belt that was thermallyoverprinted during the Early Palaeozoic. Integration of newU–Pb sensitive high-resolution ion microprobe and conventionalsingle zircon and monazite age data, and Ar–Ar data onhornblende and biotite, with thermobarometric calculations onrocks from the H.U. Sverdrupfjella, northern Maud Belt, resultedin a more complex PTt evolution than previouslyassumed. A c. 540 Ma monazite, hosted by an upper ampibolite-faciesmineral assemblage defining a regionally dominant top-to-NWshear fabric, provides strong evidence for the penetrative deformationin the area being of Pan-African age and not of Grenvillianage as previously reported. Relics of an eclogite-facies garnet–omphaciteassemblage within strain-protected mafic boudins indicate thatthe peak metamorphic conditions recorded by most rocks in thearea (T = 687–758°C, P = 9·4–11·3kbar) were attained subsequent to decompression from P >12·9 kbar. By analogy with limited U–Pb singlezircon age data and on circumstantial textural grounds, thisearlier eclogite-facies metamorphism is ascribed to subductionand accretion around 565 Ma. Post-peak metamorphic K-metasomatismunder amphibolite-facies conditions is ascribed to the intrusionof post-orogenic granite at c. 480 Ma. The recognition of extensivePan-African tectonism in the Maud Belt casts doubts on previousRodinia reconstructions, in which this belt takes a pivotalposition between East Antarctica, the Kalahari Craton and Laurentia.Evidence of late Mesoproterozoic high-grade metamorphism duringthe formation of the Maud Belt exists in the form of c. 1035Ma zircon overgrowths that are probably related to relics ofgranulite-facies metamorphism recorded from other parts of theMaud Belt. The polymetamorphic rocks are largely derived froma c. 1140 Ma volcanic arc and 1072 ± 10 Ma granite. KEY WORDS: Maud Belt; Pan-African orogeny; geochronology; PTt path, East Antarctica  相似文献   

12.
A light-coloured, fine-grained eclogite sample from near thevillage of Hammerunterwiesenthal in the Erzgebirge (NW BohemianMassif) preserves the low-variance mineral assemblage of garnet,omphacite, phengite, talc, amphibole, clinozoisite, quartz,rutile, and accessory phases. Porphyroblasts of amphibole, clinozoisite,and phengite formed during a late stage (III) of metamorphism.Paragonite joined the assemblage late in this stage (IIIb).The chemical zonation of the minerals was carefully studied.Various geothermobarometric methods were applied, especiallyinvolving phengite and talc. The constrained PT pathfor the eclogite starts at about 480°C and 25 kbar (stageIb), followed by a significant temperature rise (stage II) atslightly increasing pressure. At the peak PT conditionsof 720°C and 27 kbar, blastesis of amphibole, clinozoisite,and phengite was caused by infiltrating hydrous fluids. Theresulting density reduction may have allowed buoyant upliftof the eclogite. Subsequently, significant cooling occurredat high pressures. Stage IIIb is characterized by PTconditions around 520°C and 18 kbar at reduced water activities.This unusual late PT evolution might explain the freshnessof the eclogite, including the preservation of chemical zonationon the micrometre scale. KEY WORDS: eclogite; Saxonian Erzgebirge; PT evolution; talc; phengite  相似文献   

13.
We report experimental results and whole-rock trace-elementcharacteristics of a corundum-bearing mafic rock from the Horomanperidotite complex, Japan. Coronitic textures around corundumin the sample suggest that corundum was not stable in maficrock compositions during the late-stage PT conditionsrecorded in the complex (P < 1 GPa, T < 800°C). Basedon the experimental results, corundum is stable in aluminousmafic compositions at pressures of 2–3 GPa under dry conditions,suggesting that the corundum-bearing mineral assemblages developedunder upper-mantle conditions, probably within the surroundingperidotite. Variations in the trace-element compositions ofthe corundum-bearing mafic rock and related rocks can be controlledby modal variations of plagioclase, clinopyroxene and olivine,suggesting that they formed as gabbroic rocks at low-pressureconditions, and that the corundum-bearing mafic rock was derivedfrom a plagioclase-rich protolith. A complex PT trajectory,involving metamorphism of the plagioclase-rich protolith ata pressure higher than that at which it was first formed, isneeded to explain the origin of the corundum-bearing mafic rocks.They show no evidence for partial melting after their formationas low-pressure cumulates. The Horoman complex is an exampleof a large peridotite body containing possible remnants of subductedoceanic lithosphere still retaining their original geochemicalsignatures without chemical modification during subduction andexhumation. KEY WORDS: Horoman; mafic rock; corundum; experiment; PT history; recycling  相似文献   

14.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

15.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

16.
The Diahot terrane of NE New Caledonia contains an interbeddedsequence of Cretaceous to Eocene metasediments, felsic and maficmetavolcanics that experienced c. 40 Ma high-P/T metamorphism.Metabasaltic assemblages define two prograde events (M1 andM2) and a tectonically disrupted crustal profile that extendsfrom lawsonite–blueschist conditions in the SW to paragonite–eclogiteconditions in the NE. Weakly deformed metabasalts from lowest-gradeparts of the Diahot terrane contain M1 omphacite, chlorite,lawsonite and glaucophane-bearing assemblages that partiallypseudomorph igneous plagioclase and augite, and reflect P =0·7–1·0 GPa and T = 350–400°C.M1 assemblages are enveloped by a steeply SW-dipping S2 foliationthat becomes progressively more intense towards the NE overa distance of c. 15 km. S2 assemblages are divided into fourzones: (1) lawsonite–omphacite; (2) lawsonite–clinozoisite–spessartine;(3) clinozoisite–hornblende–almandine; (4) almandine–omphacite.S2 assemblages reflect a PT gradient that spans the exposed15 km of the Diahot terrane from P = 0·8–1·0GPa and T = 350–400°C (Zone 1) to P = 1·6–1·7GPa and T = 550–600°C (Zone 4). The systematic mineralogicalchanges reflect parts of a PT array between 1·0and 1·7 GPa that was extensively disrupted by tectonicthinning during exhumation. KEY WORDS: blueschist; eclogite; New Caledonia; CNFMASH; pseudosection  相似文献   

17.
SAJEEV  K.; OSANAI  Y. 《Journal of Petrology》2004,45(9):1821-1844
Mg- and Al-rich granulites of the central Highland Complex,Sri Lanka preserve a range of reaction textures indicative ofa multistage PT history following an ultrahigh-temperaturemetamorphic peak. The granulites contain a near-peak assemblageof sapphirine–garnet–orthopyroxene–sillimanite–quartz–K-feldspar,which was later overprinted by intergrowth, symplectite andcorona textures involving orthopyroxene, sapphirine, cordieriteand spinel. Biotite-rims, kornerupine and orthopyroxene-rimson biotite are considered to be late assemblages. Thermobarometriccalculations yield an estimated PT of at least 1100°Cand 12 kbar for the near-peak metamorphism. Isopleths of Al2O3in orthopyroxene are consistent with a peak temperature above1150°C. The PT path consists of four segments. Initialisobaric cooling after peak metamorphism (Segment A), whichproduced the garnet–sapphirine–quartz assemblage,was followed by near-isothermal decompression at ultrahigh temperature(Segment B), which produced the multiphase symplectites. Furtherisobaric cooling (Segment C) resulted in the formation of biotiteand kornerupine, and late isothermal decompression (SegmentD) formed orthopyroxene rims on biotite. This evolution canbe correlated with similar PT paths elsewhere, but thereare not yet sufficient geochronological and structural dataavailable from the Highland Complex to allow the tectonic implicationsto be fully assessed. KEY WORDS: central Highland Complex; granulites; multistage evolution; Sri Lanka; UHT metamorphism  相似文献   

18.
INUI  M.; TORIUMI  M. 《Journal of Petrology》2004,45(7):1369-1392
Chemical zoning of garnet is often used to deduce PTpaths of rocks by inverse calculation. To validate the derivedPT paths, it is desired to establish a method to predictthe chemical compositions of garnet theoretically. This studyproposes a new forward calculation of the formation of Mg–Fe–Mngarnet from chlorite, which solves the non-linear simultaneousequations using nested iterative calculations. Growth of garnetconsuming chlorite and quartz was modelled in a MnO–FeO–MgO–Al2O3–SiO2–H2Osystem, using the most recent thermodynamic data for the minerals.The prograde PT history of the Sambagawa metamorphicbelt, SW Japan, was modelled. To reproduce growth zoning, crystallizedgarnet was removed step by step from the system; perfect diffusionwas assumed for chlorite. The proposed model derived the evolutionof molar amounts and chemical compositions of Mg–Fe–Mnchlorite and garnet. It successfully reproduced the shape ofthe observed chemical profile of garnet, although the temperaturecondition was higher than general observations. The Mn contentof the garnet core was generally high, and Mg/Fe ratio alwaysstarted rising rapidly after Mn was depleted. Thermodynamicproperties of minerals, initial chlorite composition, PTpath, H2O partial pressure, and Ca content in garnet were variedto test the behaviour of the system. The properties of Mn phasesinfluenced only the chemical composition of the garnet core.The temperature range in which garnet grew depended on the H2Opartial pressure or the Ca content in garnet. KEY WORDS: chemical equilibrium; chemical zoning; garnet; forward modelling; Sambagawa metamorphic belt  相似文献   

19.
Layers of Ca-rich garnet–clinopyroxene rocks enclosedin a serpentinite body at Hujialin, in the Su–Lu terraneof eastern China, preserve igneous textures, relict spinel ingarnet, and exsolution lamellae of Ca-rich garnet, ilmenite/magnetite,Fe-rich spinel, and also amphibole in clinopyroxene. In termsof their major and trace element compositions, the studied samplesform a trend from arc cumulates towards Fe–Ti gabbros.Reconstructed augite compositions plot on the trend for clinopyroxenein arc cumulates. These data suggest that the rocks crystallizedfrom mantle-derived magmas differentiated to various extentsbeneath an arc. The Ca-rich garnet + diopside assemblage isinferred to have formed by compressing Ca-rich augite, whereasthe relatively Mg-rich cores of garnet porphyroblasts may haveformed at the expense of spinel. The protolith cumulates weresubducted from near the crust–mantle boundary (c. 1 GPa)deep into the upper mantle (4·8 ± 0·6 GPaand 750 ± 50°C). Negatively sloped P–T pathsfor the garnet–clinopyroxene rocks and the corollary ofcorner flow induced subduction of mantle wedge peridotite arenot supported by the available data. Cooling with, or without,decompression of the cumulates after the igneous stage probablyoccurred prior to deep subduction. KEY WORDS: arc cumulates; Ca-rich garnet; garnet–clinopyroxene rocks; Su–Lu terrane; UHP metamorphism  相似文献   

20.
《Geodinamica Acta》1999,12(1):25-42
The Early Eocene to Early Oligocene tectonic history of the Menderes Massif involves a major regional Barrovian-type metamorphism (M1, Main Menderes Metamorphism, MMM), present only in the Palaeozoic-Cenozoic metasediments (the so-called “cover” of the massif), which reached upper amphibolite faciès with local anatectic melting at structurally lower levels of the cover rocks and gradually decreased southwards to greenschist facies at structurally higher levels. It is not present in the augen gneisses (the so called “core” of the massif), which are interpreted as a peraluminous granite deformed within a Tertiary extensional shear zone, and lie structurally below the metasediments. A pronounced regional (S1) foliation and approximately N-S trending mineral lineation (L1) associated with first-order folding (F1) were produced during D1 deformation coeval with the MMM. The S1 foliation was later refolded during D2 by approximately WNW-ESE trending F2 folds associated with S2 crenulation cleavage. It is now commonly believed that the MMM is the product of latest Palaeogene collision across Neo-Tethys and the consequent internal imbrication of the Menderes Massif area within a broad zone along the base of the Lycian Nappes during the Early Eocene-Early Oligocene time interval. However, the meso- and micro-structures produced during D1 deformation, the asymmetry and change in the intensity and geometry of the F2 folds towards the Lycian thrust front all indicate an unambiguous non-coaxial deformation and a shear sense of upper levels moving north. This shear sense is incompatible with a long-standing assumption that the Lycian Nappes were transported southwards over the massif causing its metamorphism. It is suggested here that the MMM results from burial related to the initial collision across the Neo-Tethys and Tefenni nappe emplacement, whereas associated D1 deformation and later D2 deformation are probably related to the northward backthrusting of the Lycian nappes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号