首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
Determining the taxonomic status of the red algal genus Chondracanthus based on morphological characters is challenging due to the similarity and high degree of plasticity of the thallus. Since the taxonomic history of several Chondracanthus species remains unclear, we analyzed the plastid rbcL and mitochondrial COI genes of the specimens from Korea and Japan, in combination with morphological observations, to examine their phylogenetic relationships. Our results confirmed the distinction of C. okamurae, which is separated from C. intermedius, and identified a novel species, C. cincinnus sp. nov. Three species (C. okamurae, C. intermedius and C. cincinnus) formed a monophyletic clade with C. tenellus. C. okamurae is distinguished by linear, narrow, cylindrical to compressed, slightly recurved axes, and a high-intertidal to subtidal distribution. It was collected from Korea and Japan, while C. intermedius was identified from Japan only. A new species, Chondracanthus cincinnus sp. nov., is characterized by linear, compressed, strongly recurved axes, and a low-intertidal to subtidal distiribution. Based on the molecular phylogeny using rbcL and COI data, we herein resurrect C. okamurae as a distinct species and identify C. cincinnus as a new species.  相似文献   

5.
The chlorophyll a concentration (Cchl a) in the Sea of Azov is estimated by the two-band NIR-red algorithm [34] from MERIS images for 2002–2012. The sea-truth spectrophotometric measurements and MERIS remote estimates of Cchl a are compared. The monthly average Cchl a values are mapped from MERIS data for its lifetime for the first time. The features of the spatiotemporal distribution of Cchl a are ascertained. Differences between the seasonal dynamics of Cchl a in the Sea of Azov according to the literature data and the dynamics derived from MERIS data are found, namely: the summer–autumn phytoplankton growth period is longer than the spring period and is characterized by higher Cchl a values throughout the water area.  相似文献   

6.
The MITAS (Methane in the Arctic Shelf/Slope) expedition was conducted during September, 2009 onboard the U.S. Coast Guard Cutter (USCGC) Polar Sea (WAGB-11), on the Alaskan Shelf/Slope of the Beaufort Sea. Expedition goals were to investigate spatial variations in methane source(s), vertical methane flux in shallow sediments (<10 mbsf), and methane contributions to shallow sediment carbon cycling. Three nearshore to offshore transects were conducted across the slope at locations approximately 200 km apart in water column depths from 20 to 2100 m. Shallow sediments were collected by piston cores and vibracores and samples were analyzed for sediment headspace methane (CH4), porewater sulfate (SO42−), chloride (Cl), and dissolved inorganic carbon (DIC) concentrations, and CH4 and DIC stable carbon isotope ratios (δ13C). Downward SO42− diffusion rates estimated from sediment porewater SO42− profiles were between −15.4 and −154.8 mmol m−2 a−1 and imply a large spatial variation in vertical CH4 flux between transects in the study region. Lowest inferred CH4 fluxes were estimated along the easternmost transect. Higher inferred CH4 flux rates were observed in the western transects. Sediment headspace δ13CCH4 values ranged from −138 to −48‰, suggesting strong differences in shallow sediment CH4 cycling within and among sample locations. Measured porewater DIC concentrations ranged from 2.53 mM to 79.39 mM with δ13CDIC values ranging from −36.4‰ to 5.1‰. Higher down-core DIC concentrations were observed to occur with lower δ13C where an increase in δ13CCH4 was measured, indicating locations with active anaerobic oxidation of methane. Shallow core CH4 production was inferred at the two western most transects (i.e. Thetis Island and Halkett) through observations of low δ13CCH4 coupled with elevated DIC concentrations. At the easternmost Hammerhead transect and offshore locations, δ13CCH4 and DIC concentrations were not coupled suggesting less rapid methane cycling. Results from the MITAS expedition represent one of the most comprehensive studies of methane source(s) and vertical methane flux in shallow sediments of the U.S. Alaskan Beaufort Shelf to date and show geospatially variable sediment methane flux that is highly influenced by the local geophysical environment.  相似文献   

7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号