首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major ion and trace element analyses were performed on groundwater samples collected from the Bengal Delta (Chakdaha municipality, West Bengal and Manikgonj town, Bangladesh) and Chianan Plains (SW Taiwan) to compare geochemical characteristics. Results showed that concentrations of Na, K, Mg, Cl and SO4 were generally higher in Chianan Plain (CNP) groundwaters, while high Ca was observed in Bengal Delta Plain (BDP) groundwater. Measured As concentrations in groundwaters of BDP and CNP showed large variations, with mean As concentrations of 221 μg/L (range: 1.1-476 μg/L) in Chakdaha, 60 μg/L (range: 0.30-202 μg/L) in Manikgonj, and 208 μg/L (range: 1.3-575 μg/L) in CNP groundwater. The Fe-reduction mechanism was found to be the dominant geochemical process in releasing As from sediment to groundwater in Chakdaha, West Bengal, however the Mn-reduction process was dominant in groundwaters of Manikgonj, Bangladesh. In Chianan Plain groundwater, a combination of geochemical processes (e.g., bacterial Fe-reduction, mineral precipitation and dissolution reactions) controlled release of As. Fluorescence spectral patterns of the groundwater showed low relative fluorescence intensity (RFI) of dissolved humic substances in BDP groundwater (mean: 63 and 72 QSU, Chakdaha and Manikgonj, respectively), while high RFI was observed in CNP groundwater (mean: 393 QSU). The FT-IR spectra of the extracted humic acid fractions from sediments of Chianan Plain showed a stronger aliphatic band at 2850-3000 cm−1 and a higher resolved fingerprint area (from 1700 to 900 cm−1) compared with BDP sediments. The geochemical differences between the study areas may play a crucial role in the clinical manifestation of Blackfoot disease observed only in Chianan Plain, SW Taiwan.  相似文献   

2.
Mineral soil horizons (Ae, Bhf1, Bhf2, Bf, BC and C) were carefully collected from two podzolic soil profiles in the Lake Clair watershed (Québec) in order to assess anthropogenic trace metal accumulation. Petrographic and selective analyses were performed to establish the soil mineralogy and properties. Furthermore, a complete sequential extraction procedure has been applied to help understanding the complex chemical speciation of Pb in forest soils. Chemical speciation of Pb showed a strong vertical gradient: 85% of this metal is mainly partitioned in refractory minerals in the C-horizon whereas in the upper Bhf1 and Ae-horizons, less than 50% of Pb is associated with this fraction. In the Ae-horizon, for example, 35%, 30% and 12% of total Pb, respectively, is associated with the exchangeable, labile organic matter and amorphous Fe-Mn oxides fractions. The distribution of Pb and Cr in the studied forest soils mainly reflects progressive contamination of the watershed by anthropogenic atmospheric sources. The anthropogenic source is indicated by elevated Cr and Pb concentrations in the topsoil (Bhf and Ae) horizons and by strong negative correlation between 206Pb/207Pb ratios and total Pb concentrations. According to these isotopic values, penetration of anthropogenic Pb does not exceed 10 cm in both soil profiles. Below this depth, both Pb concentrations and isotopic ratios remain nearly constant and similar to values observed in pre-anthropogenic sediments from Lake Clair. These values are interpreted as the natural geochemical backgrounds of the watershed. Based on that behaviour, calculated anthropogenic Pb net inputs amounted to between 1.24 and 1.8 g/m2.  相似文献   

3.
《Applied Geochemistry》2002,17(4):475-492
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input.  相似文献   

4.
Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A “winnowing index” was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment–soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others.  相似文献   

5.
Hydrogeochemical characteristics and elemental features of groundwater and core sediments have been studied to better understand the sources and mobilization process responsible for As-enrichment in part of the Gangetic plain (Barasat, West Bengal, India). Analysis of water samples from shallow tubewells (depth 24.3–48.5 m) and piezometer wells (depth 12.2–79.2 m) demonstrate that the groundwater is mostly the Ca-HCO3 type and anoxic in nature (mean EhSHE = 34 mV). Arsenic concentrations ranged from <10–538 μg/L, with high concentrations only present in the shallow to medium depth (30–50 m) of the aquifer along with high Fe (0.07–9.8 mg/L) and relatively low Mn (0.15–3.38 mg/L) as also evidenced in core sediments. Most groundwater samples contained both As(III) and As(V) species in which the concentration of As(III) was generally higher than that of As(V), exhibiting the reducing condition. Results show lower concentrations of NO3, SO4 and NO2 along with higher values of DOC and HCO3, indicating the reducing nature of the aquifer with abundant organic matter that can promote the release of As from sediments into groundwater. Positive correlations of As with Fe and DOC were also observed. The presence of DOC may actively drive the redox processes. This study revealed that reduction processes of FeOOH was the dominant mechanism for the release of As into the groundwater in this part of the Ganges Delta plain.  相似文献   

6.
Acid extractable Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb. and Zn were determined in sediments from the Inner Virginia Shelf, and from shipping channels in the lower Chesapeake Bay and Hampton Roads, Virginia, harbor system. Data were evaluated by a variety of techniques Levels of Cd, Cu, Pb, and Zn exceeded average crustal abundances for most of the study sites. Cumulative frequency curves suggested that there were two major populations for all metals and perhaps a third and smaller, one for Cd, Cr, and Mn Plots of metal vs Fe indicated no anthropogenic inputs of metals for shelf and Chesapeake Bay channel sites, but suggested anthropogenic influences for all metals in several of the inshore sites. Enrichment factor calculations showed enrichment of Cd, Pb, and Zn with respect to average crustal abundances for all sites and of Cu for the industrial harbor system. A recommendation of this study for evaluation of environmental geochemical metals data is to utilize mean concentrations, cumulative frequency plots, and metal vs Fe and/or enrichment factor calculations when evaluating the pollution status of sediments.  相似文献   

7.
Diagnosis of stream sediment quality, multivariate statistics and GIS database proved successful tools for assessing As, Cr and other potentially toxic element contamination in East Attica region. Stream sediments are mixtures of sediments, soils and rocks from the drainage basin upstream of the collection site. Stream sediment quality can be used as initial condition in reaction progress calculations to predict the groundwater quality. The type of methodology used in this study consists of chemical analysis, pH evaluation, X-ray diffraction analysis, scanning electron microscope analysis, cumulative probability plots, factor analysis, GIS database and comparison of the sediment contents with quality standards and levels recorded in the literature and quantification of sediment contamination. Relationships between various elements have been identified from factor analysis and reflect genetic associations. A GIS elaboration showed the spatial relationship between high positive factor scores and presence of ore deposits and anthropogenic contamination. There is both natural and anthropogenic input of As in East Attica streams. High Cr and Ni contents in East Attica stream sediments constitute a natural case of contamination. The contamination degree in East Attica streams follows the order: Keratea-Lavrio > Keratea-Artemis > Rafina > Erasinos.  相似文献   

8.
A wide range of wetland types occur on the Swan Coastal Plain of Western Australia. They vary from basins, and flats, to slopes and channels, and vary in size, shape, water characteristics, sediment types, stratigraphy, vegetation, origin, and maintenance processes. The wetlands range from large linear lakes to small round or irregular seasonally damp wetland basins to seasonally flooded flats, to seasonally flooded or permanently flowing channels. Salinity ranges from fresh to saline to hyposaline; and recharge mechanisms from perching of surface-water to wetting and inundation by groundwater, as determined by regional features such as geology, geomorphology, soils, climate and hydrology, and local physical/chemical processes. The Swan Coastal Plain presents a bewildering array, diversity, and complexity of wetlands, but patterns and ordering can be recognised if the wetlands are aggregated into natural groups. The wetlands, in fact, have been aggregated into natural groupings termed ‘consanguineous suites’, resulting in some 30 different formally named wetland suites related to geomorphic setting varying, for instance, from interdune depressions on a beach-ridge plain (the Becher Suite), to karst-formed linear lakes in limestone-ridge country (the Yanchep Suite), to irregular to round, semi-interconnected basins on a quartz sand subdued dune system (the Jandakot Suite), to linear and round basins formed along the hydrological contact between limestone and quartz sand (the Bibra Suite), among others. The variety of wetland types on the Swan Coastal Plain represents geodiversity that needs to be addressed in geoheritage assessments of the State of Western Australia. Further, as repositories of Holocene to Pleistocene sedimentary sequences, the wetlands present significant reservoirs of information on wetland history, climate changes, and hydrochemical history, and are templates on wetland maintenance and functioning, diagnostic for their geologic/geomorphic setting useful for management of wetlands in Western Australia, nationally, and globally. From a global perspective, the diversity and array of consanguineous suites of the Swan Coastal Plain is unique. An understated aspect of the approach in identifying consanguineous suites of wetlands of the Swan Coastal Plain is that in their geological, geomorphological, and hydrological/hydrochemical setting they provide profound insights into gradual and uninterrupted wetland development, sedimentary filling and ecological functioning because, for a given east–west transect, they are located in the same climate setting but in different geologic/geomorphic and hydrochemical settings. They appear to be unrepresented globally, and therefore, in terms of geoheritage, are internationally significant.  相似文献   

9.
The sustainable use of groundwater has become increasingly challenging due to extreme hydrological events and anthropogenic activity. In this study, the basin-scale groundwater response to precipitation variation was analyzed using an integrated model that comprises lumped models for land and river recharges and a distributed model for groundwater. The integrated model was applied to the Chih-Ben watershed, Taiwan, using 20?years (1988?C2007) of data. The hydrological data were analyzed for trends using statistical tests. Based on decreasing trends in precipitation and groundwater levels and an increasing trend in stream flow, the oblique-cut method was applied to precipitation and excess infiltration to assess land and streambed recharge. Distributed numerical groundwater modeling was used to simulate the basin-scale groundwater responses to precipitation variation and anthropogenic pumping. The model was calibrated using stable-isotope and groundwater-level data. The safe yields were estimated for the Chih-Ben watershed for dry, wet, and normal precipitation scenarios. The safe yield of groundwater was shown to vary with precipitation, which does not guarantee the sustainable use of groundwater resources. Instead, water resources should be assessed at a basin scale, taking into account the whole ecosystem, rather than only considering water for human consumption in the alluvium.  相似文献   

10.
To assess heavy metals in mangrove swamps of Sehat and Tarut coastal areas along the Arabian Gulf, 18 sediment samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis. The results indicated that the distribution of some metals was largely controlled by anthropogenic inputs, while others were of terrigenous origin and most strongly associated with distribution of aluminum and total organic carbon in sediments. Mangrove sediments were extremely severe enriched with Sr (EF?=?67.59) and very severe enriched with V, Hg, Cd, Cu, As (EF?=?44.28, 37.45, 35.77, 25.97, and 11.53, respectively). Average values of Sr, V, Hg, Cd, Cu, Ni, As, and Cr were mostly higher than the ones recorded from the Mediterranean Sea, the Red Sea, the Gulf of Aqaba, the Caspian Sea, the Arabian and Oman gulfs, coast of Tanzania, sediment quality guidelines, and the background shale and the earth crust. Landfilling due to coastal infrastructure development around mangrove forests, oil spills and petrochemical and desalination effluents from Al-Jubail industrial city to the north were the anthropogenic activities that further enhanced heavy metals in the studied mangrove sediments.  相似文献   

11.
Spatial relations between land use and groundwater quality in the watershed adjacent to Assateague Island National Seashore, Maryland and Virginia, USA were analyzed by the use of two spatial models. One model used a logit analysis and the other was based on geostatistics. The models were developed and compared on the basis of existing concentrations of nitrate as nitrogen in samples from 529 domestic wells. The models were applied to produce spatial probability maps that show areas in the watershed where concentrations of nitrate in groundwater are likely to exceed a predetermined management threshold value. Maps of the watershed generated by logistic regression and probability kriging analysis showing where the probability of nitrate concentrations would exceed 3 mg/L (>0.50) compared favorably. Logistic regression was less dependent on the spatial distribution of sampled wells, and identified an additional high probability area within the watershed that was missed by probability kriging. The spatial probability maps could be used to determine the natural or anthropogenic factors that best explain the occurrence and distribution of elevated concentrations of nitrate (or other constituents) in shallow groundwater. This information can be used by local land-use planners, ecologists, and managers to protect water supplies and identify land-use planning solutions and monitoring programs in vulnerable areas.  相似文献   

12.
A small watershed (160 km2) located in the Massif Central (France) has been chemically, isotopically and hydrologically studied through its dissolved load, bed sediments and soils. This watershed is underlain by basaltic bedrock and associated soils in which the vegetation is dominated mainly by meadows.Dissolved concentrations of major ions (Cl, SO4, NO3, HCO3, Ca, Na, Mg, K, Al and Si), trace elements (Rb and Sr) and strontium isotopes have been determined for two different hydrologic periods on the main stream of the Allanche river and its tributaries.The major objectives of this study were to characterize the chemical and isotopic signatures of each reservoir occurring in the watershed. Changes in chemical and isotopic signatures are interpreted in terms of fluctuations of the different components inputs: rainwater, weathering products, anthropogenic addition.Water quality may be influenced by natural inputs (rainwater, weathering processes) and anthropogenic additions (fertilizers, road salts, etc.). Precipitation serves as a major vehicle for dissolved chemical species in addition to the hydrosystem and, in order to constrain rain inputs, a systematic study of rainwaters is carried out over a one year period using an automatic collector. Corrections of rainwater addition using chloride as an atmospheric input reference were computed for selected elements and the Sr/Sr ratio. After such corrections, the geochemical budget of the watershed was determined and the role of anthropogenic additions evaluated through the relationship between strontium isotopes and major and trace element ratios. Thus, 10% of Ca and Na originate in rainwater input, 40 to 80% in fertilizer additions and 15 to 50% in rock weatheringThe cationic denudation rates for this watershed are around 0.3 g s–1 km2 during low water discharge and 0.6 g s–1 km2 in high water stage. This led to a chemical denudation rate of 5.3 mm/1000 years.For solid matter, the normalization of chemical species relative to parent rocks shows the depletion or enrichment in soils and sediments. The use of K and Ca as mobile reference illustrates the weathering state of soils and sediments relative to parent rocks. This weathering state for bed sediments range from 15 to 45% for the K normalization and from 2 to 50% for the Ca normalization. For the soils, the weathering state ranges from 15 to 57% for the K normalization and from 17 to 90% for the Ca normalization.  相似文献   

13.
To evaluate biogeochemical characteristics, eco-environmental risks and sources of trace elements (TEs: As, Hg, Se, Sb, Te, Sn, Bi and Ge), their total concentrations and chemical speciation in surface sediments collected from the Changjiang Estuary were determined. Total concentrations for As, Hg, Se, Sb, Te, Sn, Bi and Ge were 4.57–30.20, 0.01–0.40, 0.04–0.38, 0.36–1.48, 0.02–0.10, 0.48–6.58, 0.13–0.64 and 0.83–2.43 μg/g, respectively, with higher values at the estuary. This distribution pattern was attributed to the riverine input and high clay and total organic carbon contents. The sequential extraction suggested that TEs mainly occurred in residual fractions. The risk assessment code suggested that As, Hg and Sn were at low risk, whereas Bi, Se, Sb, Te and Ge were at medium risk. The geoaccumulation index (I geo) and principal component analysis indicated that Se and Sn mainly came from the natural input (crustal and biological inputs), whereas As, Sb, Hg, Bi and Te came from both of the crustal and anthropogenic inputs via atmosphere and rivers. In addition, Ge possibly came from the natural (crustal and biological inputs) and anthropogenic inputs.  相似文献   

14.
系统探讨了黔中小流域水体悬浮物和沉积物中微量及稀土元素地球化学特征。结果表明,元素含量在河流与湖泊、悬浮物与沉积物之间均存在明显差异。稀土元素北美页岩标准化分布模式大致为轻稀土相对富集的平坦模式,δEu为0.82~1.25,δCe为0.79~1.25,整体变化不大,均表现为弱异常。麦翁河稀土总量与分布模式均发生异常,主要受上游盘龙煤矿影响。悬浮物的∑REE与pH呈反相关关系,而沉积物的∑REE却与pH表现出正相关关系,表明悬浮物与沉积物中稀土元素行为的控制因素不同。元素相关分析、因子分析及微量元素图解均表明悬浮物与沉积物中的元素具有同源性,主要来源于流域岩石化学风化和土壤物理侵蚀的产物,而某些金属元素Zn、Co、Cu、Cr、Ni则来源于周边工矿企业、农业生产等人为排放。本研究丰富和发展了喀斯特地区水体元素地球化学,揭示了小流域化学风化与物理侵蚀过程中的元素特征和物质输送状况,并为该流域的生态环境现状、治理及管理提供了科学依据和基础资料。  相似文献   

15.
This paper reports on the aquatic chemistry of trace elements in terms of spatial and temporal distribution, but also pollution sources in the transboundary watershed of the Seversky Donets River (Ukraine/Russia). Bed sediments and filtered water were collected from the Udy and Lopan Rivers at sites from the river source in the Belgorod region (Russia) to rural and urban areas in the Kharkiv region (Ukraine) in May and August 2009. Priority trace elements (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn), an urban tracer (Ag) and additional metals (Co, Mo, V) and Th were measured in stream water and sediments. The low levels and variability of Th-normalized concentrations indicated the absence of geochemical anomalies in the upstream part of the rivers and suggested that these data represent a regional baseline for trace elements in bed sediments. In contrast, water and sediments within the city of Kharkiv were contaminated by Ag, Pb, Cd, Cu, Cr and Zn, which are mainly attributed to municipal wastewater inputs and urban run-off. Results of the environmental quality assessment showed that element concentrations in the sediments can be considered as potentially toxic to aquatic organisms in sites downstream of the wastewater discharges.  相似文献   

16.
Data are presented for trace element concentrations determined in the <63 μm fraction of streambed sediment samples collected at 24 sites on the island of O‘ahu, Hawai‘i. Sampling sites were classified as urban, agricultural, mixed (urban/agricultural), or forested based on their dominant land use, although the mixed land use at selected sampling sites consisted of either urban and agricultural or forested and agricultural land uses. Forest dominated sites were used as reference sites for calculating enrichment factors.Trace element concentrations were compared to concentrations from studies conducted in the conterminous United States using identical methods and to aquatic-life guidelines provided by the Canadian Council of Ministers of the Environment. A variety of elements including Pb, Cr, Cu and Zn exceeded the aquatic-life guidelines in selected samples. All of the Cr and Zn values and 16 of 24 Cu values exceeded their respective guidelines. The potential toxicity of elements exceeding guidelines, however, should be considered in the context of strong enrichments of selected trace elements attributable to source rocks in Hawai‘i, as well as in the context of the abundance of fine-grained sediment in the streambed of O‘ahu streams.Statistical methods including cluster analysis, Kruskal–Wallis non-parametric test, correlation analysis, and principal component analysis (PCA) were used to evaluate differences and elucidate relationships between trace elements and sites. Overall, trace element distributions and abundances can be correlated to three principal sources of elements. These include basaltic rocks of the volcanic edifice (Fe, Al, Ni, Co, Cr, V and Cu), carbonate/seawater derived elements (Mg, Ca, Na and Sr), and elements enriched owing to anthropogenic activity (P, Sn, Cd, Sn, Ba and Pb). Anthropogenic enrichment gradients were observed for Ba, Cd, Pb, Sn and Zn in the four streams in which sediments were collected upstream and downstream.The findings of this study are generally similar to but differ slightly from previous work on sediments and suspended particulate matter in streams, from two urban watersheds of O‘ahu, Hawai‘i. Inter-element associations in the latter were often stronger and indicated a mixture of anthropogenic, agricultural and basaltic sources of trace elements. Some elements fell into different statistical categories in the two studies, owing in part to differences in study design and the hydrogeological constraints on the respective study areas.  相似文献   

17.
鄱阳湖平原地下水重金属含量特征与健康风险评估   总被引:1,自引:0,他引:1  
鄱阳湖平原作为长江中下游平原的重要组成部分,随着城镇化进程的快速推进,由于工矿业污染物、农村生活污水和农业生产废水向地下水的过量排放,农村地下水污染程度和范围不断扩大,为了解鄱阳湖平原地下水重金属污染状况,本研究在大量的水文地质调查和水化学样品测试基础上,分析该区地下水中重金属Cu、As、Cr、Hg、Pb、Cd含量特征,利用美国环境保护署(USEPA)的健康风险评价模型对鄱阳湖平原地下水重金属进行健康风险评价。研究区171个地下水样品中Cd、Cu、Hg、As、Pb、Cr等6种重金属元素含量变化幅度大,其中Hg、Cd和As平均值超过《地下水环境质量标准》(GB/T14848—2017)Ⅲ类标准,结果表明鄱阳湖平原地下水水质受人为影响大,局部地下水存在严重的污染。致癌物健康风险评价结果显示,Cr、As和Cd的平均个人年健康风险值均大于可接受风险值,Cr的健康风险值最大,是主要的致癌因子,As次之,Cd最低;非致癌物质健康风险结果显示,Hg、Pb和Cu的健康风险水平表现为Hg>Pb>Cu,属于可忽略风险。区域饮水途径上的健康风险主要来自致癌物质,总体上男性健康风险大于女性的健康风险。鄱阳湖平原地下水水质污染状况研究及治理监管工作提供理论依据,为其他区域地下水重金属的监测和质量控制提供参考和借鉴。  相似文献   

18.
《Applied Geochemistry》2004,19(7):1011-1037
Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2-3-fold dilution of the particulate concentrations of Pb, Zn and Cu in the Ala Wai canal watershed.  相似文献   

19.
The town of Salihli is situated in Gediz Graben in the western Anatolia. This region is important in terms of industry, mining, geothermal energy, water sources, and agricultural production. Geothermal flow and anthropogenic activities in Salihli threaten the surrounding environment due to the contamination of cold groundwater, surface water, and soil. The goal of the present study is to determine the environmental effects of the geothermal and anthropogenic activities in Salihli on soil, stream sediments, and water. Stream sediments and farm soil have been contaminated by substances derived from geothermal and industrial effluents. To this end, the quality review of the water was completed and the heavy metal levels in stream sediment samples were measured to determine the extent of contamination. The elements As, B, Br, Fe, and Ni are the major contaminants present in surface water and groundwater in the study area. The concentrations of these elements excess tolerance limits of international water standards. Gibbsite, K-mica, kaolinite, sepiolite, halite, sulfur, willemite, and Pb(OH)2 might be precipitated as scales at low temperatures on the soil; this could be interpreted as a resultant from soil contamination. The concentrations of 17 elements (As, Ba, B, Cd, Co, Cr, Cu, Fe, Hg, Li, Mo, Mn, Ni, Pb, Sb, Sr, and Zn) were measured in samples from stream sediments and surface soils. In the study area, especially geothermal and anthropogenic activities give rise to environmental pollution.  相似文献   

20.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号