首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pioneer is an open‐air, stratified, multicomponent archaeological site located in the upper Snake River Plain of southeastern Idaho, USA. Block excavations provided an opportunity to contribute to the Late Quaternary geomorphic history of the Big Lost River drainage and provide geochronological context of archaeological components at the site. The stratigraphic sequence is interpreted as reflecting multiple depositional episodes and five soil‐formation periods beginning pre‐7200 cal. yr B.P. and lasting to the historic period. The stratigraphic sequence contains an archaeological component dated to ∼3800 cal. yr B.P. and several other components post‐800 cal. yr B.P. Major site formation processes include fluvial deposition and erosion, pedogenesis (accumulation of secondary carbonates), and bioturbation. Periods of increased deposition at Pioneer and elsewhere along the Big Lost River are inferred to have occurred between ∼8400–6500 cal. yr B.P. and ∼2700–400 cal. yr B.P., potentially related to cooler/wetter episodes of the mid‐to‐late Holocene, including increased precipitation during the Medieval Climatic Anomaly (post‐750 cal. yr B.P.). There is also evidence of a high‐energy erosional event at ∼3800 cal. yr B.P. indicating a large middle Holocene flood. Pioneer provides an example of the archaeological and paleoclimatic value of studying alluvial buried soil stratigraphic sequences in arid environments.  相似文献   

2.
Interdisciplinary investigations at the Milford Reservoir, central Maine, resulted in excavation and analysis of a Middle Archaic quarry and manufacturing site at Gilman Falls, dated to between 7300 and 6300 yr B.P. Lithological analysis indicates that the majority of the artifacts came from very local outcrops, providing low‐grade metamorphic rocks. Native Americans used a specialized technique to reduce the granofels and other rocks to long rods, artifacts commonly placed in local cemeteries. The Gilman Falls site was largely abandoned once these artifacts were no longer in vogue. Therefore, access to particular bedrock outcrops seems to have played an important role in site selection. Gilman Falls and other early to middle Holocene sites are preserved where bedrock sill dams ponded water that deposited fine sand. Early site sedimentation history is paralleled by a drainage change in the headwaters of the Penobscot River. Evidence for lower mid‐Holocene lake levels and a period of higher temperatures and lower precipitation may correlate with the sedimentation history. © 2001 John Wiley & Sons, Inc.  相似文献   

3.
嘉陵江曲流地貌景观在世界曲流地貌中具有典型性和代表性。系统的阐述了嘉陵江曲流的演化、形成,并进行了与国际河谷曲流的对比研究,提出建立国家级曲流地质公园的意见和保护建议。  相似文献   

4.
Controlled by a local base level of downfaulted Edwards and Comanche Peak limestone, and aided by landsliding in Glen Rose marl, the Sabinal River and its tributaries have developed a large valley in the Edwards Plateau. Extensive soil-covered pediments that cut Glen Rose bedrock and Pleistocene terrace gravels are present along each side of the valley. Six alluvial deposits of late Pleistocene and Holocene age were recognized in the upper Sabinal River valley. The Holocene series is represented by three deposits. The oldest of these exhibits a Stage II calcic horizon and appears to have been deposited before ca. 5000 yr B.P. The Pleistocene deposits have a calcrete zone (calcic Stage IV and III horizon) in the upper 3-4 m. The Holocene alluviums, locally beveled by stream action, parallel the river's course and contain Archaic and younger artifacts, which in central Texas range in age from about 8000-350 yr B.P. One of the Holocene deposits (Q2) is correlated with the Georgetown and Fort Hood alluviums of the Cowhouse Creek at Fort Hood, which range in age from 11,000 yr B.P. to 5200 yr B.P., with the Wilson-Leonard terrace site in the Lampasas Cut Plain that ranges from about 11,000 to 5000 yr B.P., and with Unit E of Blum and Valastro (1989) in the Pedernales River valley, ranging from 10,550 to 7150 yr B.P. Modern climate in the valley is drought-prone, and fluctuates from semiarid to dry subhumid. Paleoclimate has ranged from much drier during the Middle Holocene to much cooler and wetter during the Late Pleistocene.  相似文献   

5.
Late- and postglacial history of the Great Belt, Denmark   总被引:3,自引:0,他引:3  
On the basis of shallow seismic records, vibrocoring, macrofossil analyses and AMS radiocarbon-dating, five stratigraphical units have been distinguished from the deepest parts of the central Great Belt (Storebælt) in southern Scandinavia. Widespread glacial deposits are followed by two lateglacial units confined to deeply incised channels and separated by an erosional boundary. Lateglacial Unit I dates from the time interval from the last deglaciation to the Allerød; lateglacial Unit II is of Younger Dryas age. Early Holocene deposits show a development from river deposits and lake-shore deposits to large lake deposits, corresponding to a rising shore level. Lake deposits are found up to 20 m below the sea floor, and the lake extended over some 200–300 km2. The early Holocene freshwater deposits are dated to the time interval c. 10900 to c. 8800 cal. yr BP and the oldest shells of marine molluscs from the Great Belt are dated to c. 8100 cal. yr BP.  相似文献   

6.
A newly recognized 2-m-thick trachytic volcanic ash deposit from northwestern Greece is dated at 374,000 ± 7000 yr and correlated with the Middle Pleistocene volcanic activity of central Italy. The deposit represents ash fallout from one of the largest volcanic eruptions in Europe of the past 400,000 yr and should provide an important stratigraphic marker within the poorly dated Middle Pleistocene deposits of Italy and Greece.  相似文献   

7.
This article focuses on local paleohydrological changes experienced by the Las Pitas and Miriguaca Rivers in the south‐central Andes of Argentina and their impacts on hunter‐gatherers as they transitioned to food‐producing communities 7000–3000 cal. yr B.P. Paleoenvironmental reconstruction based on geomorphology, alluvial sedimentology, and diatom evidence indicates a dry phase of reduced streamflow between ca. 6700 and 4800 cal. yr B.P. for the Las Pitas River, and 6600 and 3000 cal. yr B.P. for the Miriguaca River. A phase of more humid environmental conditions commenced after ca. 4900 cal. yr B.P. along the Las Pitas River, and after 3000 cal. yr B.P. along the Miriguaca River. Differences in the chronology and magnitude of hydrological changes along both rivers are related to topographic and hydrological characteristics of their respective watersheds. Higher catchment elevation and enhanced orographic precipitation favored greater sensitivity for the Las Pitas River to short humid events during the middle‐to‐late Holocene. The archaeological evidence suggests that the paleohydrological changes within these catchments played a significant role in human occupational dynamics such that the Las Pitas River offered better environmental conditions for human occupation relative to the Miriguaca River as foragers increasingly relied on plant and animal domestication.  相似文献   

8.
Archaeological excavations at the Cooper's Ferry site (10IH73), located in the lower Salmon River canyon of western Idaho, revealed a stratified sequence of cultural occupations that included a pit feature containing stemmed points. However, radiocarbon ages determined on charcoal and bone in the pit feature range between ca. 12,000 yr B.P. and 7300 yr B.P. By considering the effects of postdepositional processes on dated samples, and by comparing the lithostratigraphy, pedostratigraphy, and stable isotope geochemistry of pedogenic carbonates from Cooper's Ferry with other well‐dated stratigraphic sections in the canyon, site geochronology is clarified. Based on the presence of key radiocarbon ages and distinctive stratigraphic criteria, we argue that the initial occupation and interment of lithic artifacts in a pit feature at Cooper's Ferry occurred during the late Pleistocene, between ca. 11,410 and 11,370 yr B.P., and not during the early Holocene. Records of geomorphic change and paleoenvironmental proxy data from the site reveal that early occupation in the lower Salmon River canyon corresponds with evolving riparian ecosystems, which must be considered as a contextual aspect of local prehistoric cultural ecology. © 2004 Wiley Periodicals, Inc.  相似文献   

9.
The Dent site provided the first association of fluted points with mammoth bones in the New World. However, the stratigraphic integrity of the site has remained in doubt since the original excavations in 1932 and 1933. Core sampling at the Dent Clovis site indicates that the site, on Kersey terrace gravel, extends under railroad tracks adjacent to the original area of excavation. Four hundred meters south the Kuner strath terrace has been exposed by a roadcut at the Bernhardt site. An Archaic hearth dated 4030 ± 60 B.P. is near the top of a 1-m-thick eolian sand overlying 1 m of fine-grained alluvium dated 5740 ± 60 B.P., which in turn overlies sand and gravel of the Kuner strath terrace with an AMS radiocarbon age of 10,105 ± 90 B.P. The South Platte River appears to have been quasistable at the Kuner level during the Younger Dryas when Paleoindians from Clovis to Cody hunted megafauna on the Kersey terrace. © 1998 John Wiley & Sons, Inc.  相似文献   

10.
High-resolution macroscopic charcoal analysis was used to reconstruct a 14,300-year-long fire history record from the lower Columbia River Valley in southwestern Washington, which was compared to a previous vegetation reconstruction for the site. In the late-glacial period (ca. 14,300-13,100 cal yr BP), Pinus/Picea-dominated parkland supported little to no fire activity. From the late-glacial to the early Holocene (ca. 13,100-10,800 cal yr BP), Pseudotsuga/Abies-dominated forest featured more frequent fire episodes that burned mostly woody vegetation. In the early to middle Holocene (ca. 10,800-5200 cal yr BP), Quercus-dominated savanna was associated with frequent fire episodes of low-to-moderate severity, with an increased herbaceous (i.e., grass) charcoal content. From the middle to late Holocene (ca. 5200 cal yr BP to present), forest dominated by Pseudotsuga, Thuja-type, and Tsuga heterophylla supported less frequent, but mostly large or high-severity fire episodes. Fire episodes were least frequent, but were largest or most severe, after ca. 2500 cal yr BP. The fire history at Battle Ground Lake was apparently driven by climate, directly through the length and severity of the fire season, and indirectly through climate-driven vegetation shifts, which affected available fuel biomass.  相似文献   

11.
The Lower Mississippi Valley (LMV) has been one of the most intensively studied alluvial valleys in the world in terms of it's geological and geomorphic framework and history. A brief outline of the history of the major geological and geomorphological investigations of the LMV is provided. The results of these investigations are discussed in terms of the fluvial geomorphic framework of the valley and the apparent significant changes in the regime of the Mississippi River during the Late Wisconsinan and Holocene stages.

The LMV occupies the broad deep synclinal trough of the Mississippi Embayment which extends from Cairo, Illinois, to the Gulf of Mexico in a slightly sinuous north-south trend. The embayment is filled with a north to south thickening wedge of non-marine and marine sediment ranging in age from Jurassic to Holocene. The major landscapes of the LMV may be considered in four regions: (1) a narrow active meander belt in a broad valley of Late Pleistocene valley train in the northern third; (2) a wide mosaic of interwoven Holocene meander belts in the middle third; (3) a relatively narrow valley of the Atchafalaya Basin bounded on each side by narrow meander belts in the upper part of the lower third; and (4) the broad distributary wedge of the deltaic plain in the southernmost region of the valley. The valley trains vary in age and landform with the oldest occurring as slightly dissected low ridges and the youngest as broad flats separated by shallow interwoven former braided channels. Meander belts formed throughout the Holocene are comprised of low natural levee ridges flanking abandoned courses and bordered by crescent-shaped oxbow lakes and ridge and swale topography. In the middle third of the valley, meander belts are separated by expansive backswamps of very little relief. The deltaic plain is also exceptionally flat, interrupted by the low natural levee ridges of the abandoned deltaic distributaries.

The floodplain of the LMV is a complex mosaic of fluvial features and landscapes within the four landscape regions. Included in this mosaic are abandoned channels and courses, lateral accretion topography of ridges and swales, natural levees, crevasses and crevasse channels, distributary channels, backswamps and rimswamps, alluvial fans and aprons, valley trains (braided stream terraces), lakes and lacustrine deltas, terraces, and the alluvial valley bluff.

Changes in the hydraulic regime of the Lower Mississippi River (LMR) since the Late Pleistocene have played a major role in the development of the landscape of the valley. The most important regime change was the diminishment of the influence of Wisconsinan glaciation in the upper Midwest and the resultant evolution of the Mississippi River from a broad braided outwash channel to a more narrow but sinuous meandering channel at the end of the Pleistocene. During the Holocene, the Mississippi River undoubtedly responded to major climatic changes, rising sea level, tributary stream influence, and possibly tectonism, diapirism, and subsidence through the growth and evolution, and abandonment of it's meander belts and deltas.  相似文献   


12.
The world's most extensive and active deltas, Louisiana's wetlands, are deteriorating rapidly due to multiple stressors. Their ecological and anthropogenic histories on a multimillennial timescale have not been thoroughly documented. This study investigates hydrological and anthropogenic impacts on southern Louisiana wetlands to guide future efforts toward environmental restoration. A 3.6 m sediment core (JOYWMA) extracted from a freshwater wetland adjacent to Lake Pontchartrain yielded a 5000-year record. Multiproxy data indicate four distinct stages, with the earliest period representing an oyster reef (~4.5 cal yr bp ) marked by elevated Ca and Sr concentrations. Evolution to a freshwater marsh occurred 4.5–4.0 cal yr bp during the St. Bernard delta progradation, marked by increased Zr and Br concentrations. The site transitioned to a lake due to the isolation from the St. Bernard delta and local subsidence (4.0–2.0 cal yr bp ), marked by increased Ti, Fe, Mn and K concentrations. The site altered to a cypress swamp after 2.0 cal yr bp due to increased sediment supply during the St. Bernard subdelta progradation. Both natural (delta progradation and subsidence) and anthropogenic (fire, deforestation) stressors have impacted the site over the last 4500 years. Delta-switching of the Mississippi River caused the significant geomorphological and ecological changes.  相似文献   

13.
A filled prehistoric water well discovered at the village of San Marcos Necoxtla, Puebla, Mexico, may be the oldest directly dated water-management feature in the Americas. The ∼10 m stratigraphic section exposed at this remarkable site records 18,000+ yr of deposition, erosion, water-table and hydrochemical fluctuations, and ≥10,000 yr of continual occupation. Temporal control is afforded by a multicomponent cultural chronology and radiocarbon assays by conventional and experimental techniques. The ∼10 m wide, ∼5 m deep well was excavated, utilized, maintained, and filled with cultural material between <9863 and ≫5950 yr B.P., a span of ≪3913 yr. Ages of other reported Late Pleistocene(?) to Middle Holocene wells in the New World are based on indirect or questionable dating, or are ≤6600 yr. Because of its age and continuity of occupation, the San Marcos Necoxtla well site may help define the nature of the peopling of the Americas and the advent of New World agriculture. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The authors develop an integrated method using geochemistry and micromorphology to examine the use of archaeological features at Dust Cave, a Paleo‐Indian through Middle Archaic (10,650–3600 cal. B.C.) site in northwest Alabama. Samples analyzed using ICP‐AES for aluminum (Al), barium (Ba), calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), phosphorous (P), strontium (Sr), sulfur (S), and zinc (Zn) and suggest that cultural features differ chemically from geogenic sediments in several ways: (a) K‐means cluster analyses indicate that features of known origin and suspected features of the same origin cluster together, thereby allowing for a preliminary separation into discrete functionalities; (b) phosphorus serves as an indicator of human occupation intensity; and (c) Sr/Ca and K/P ratios help identify anthropogenic materials. Micromorphological observations allow for a finer subdivision of feature types and help highlight postdepositional processes affecting cave sediments, and interpretation of activity at the site. These findings show that feature diversity and occupation intensity increased through time, peaking during the Middle Archaic. © 2006 Wiley Periodicals, Inc.  相似文献   

15.
Middle Park, a high‐altitude basin in the Southern Rocky Mountains of north‐central Colorado, contains at least 59 known Paleoindian localities. At Barger Gulch Locality B, an extensive Folsom assemblage (˜10,500 14C yr B.P.) occurs within a buried soil. Radiocarbon ages of charcoal and soil organic matter, as well as stratigraphic positions of artifacts, indicate the soil is a composite of a truncated, latest‐Pleistocene soil and a younger mollic epipedon formed between ˜6000 and 5200 14C yr B.P. and partially welded onto the older soil following erosion and truncation. Radiocarbon ages from an alluvial terrace adjacent to the excavation area indicate that erosion followed by aggradation occurred between ˜10,200 and 9700 14C yr B.P., and that the erosion is likely related to truncation of the latest‐Pleistocene soil. Erosion along the main axis of Barger Gulch occurring between ˜10,000 and 9700 14C yr B.P. was followed by rapid aggradation between ˜9700 and 9550 14C yr B.P., which, along with the erosion at Locality B, coincides with the abrupt onset of monsoonal precipitation following cooling in the region ˜11,000–10,000 14C yr B.P. during the Younger Dryas oscillation. Buried soils dated between ˜9500 and 8000 14C yr B.P. indicate relative landscape stability and soil formation throughout Middle Park. Morphological characteristics displayed by early Holocene soils suggest pedogenesis under parkland vegetation in areas currently characterized by sagebrush steppe. The expansion of forest cover into lower elevations during the early Holocene may have resulted in lower productivity in regards to mammalian fauna, and may partly explain the abundance of early Paleoindian sites (˜11,000–10,000 14C yr B.P., 76%) relative to late Paleoindian sites (˜10,000–8000 14C yr B.P., 24%) documented in Middle Park. © 2005 Wiley Periodicals, Inc.  相似文献   

16.
Indian Knoll is the largest Archaic shell midden excavated by WPA archaeologists in Kentucky. Situated in a large alluvial valley, the site is not associated with a known river shoal as might be expected, making its fluvial and geomorphic setting of interest. Based on sediment cores and auger samples, undisturbed portions of the site remain despite extensive excavations. In undisturbed portions, a shell‐bearing layer is overlain by a shell‐free midden layer. Profiles of organic matter and calcium carbonate content for both layers are similar to those of other Green River shell middens. New radiocarbon determinations date the shell deposit at 5590–4530 cal yr B.P. Analysis of mussel species collected from the Indian Knoll indicates that shell fishing took place in a swiftly flowing, shallow to moderately deep setting of the main river channel. Overall, the prehistoric river setting adjacent to Indian Knoll was characterized by deeper water on average with variable but finer‐grained substrate compared to other Green River shell midden sites. © 2002 Wiley Periodicals, Inc.  相似文献   

17.
Accelerator mass spectrometer radiocarbon ages of the Roxana Silt (loess) along the Upper Mississippi Valley of Wisconsin and Minnesota indicate that loess sedimentation of the Roxana Silt occurred between about 55,000 and 27,000 14 C yr B.P. However, due to local environmental controls, the basal age at any given site may range from 55,000 to 35,000 14C yr B.P. The radiocarbon ages presented here are in agreement with previous radiocarbon ages for the Roxana Silt in its type area of west-central Illinois, but indicate that long-term sedimentation rates along the bluffline of the Upper Mississippi Valley were very slow (4-8 cm/1000 yr) compared to long-term sedimentation rates along the bluffline of the type area (40-70 cm/1000 yr). Comparison of radiocarbon ages for midcontinent middle Wisconsinan loess deposits indicates that sedimentation along the Mississippi River valley may have preceded loess sedimentation along the Missouri River valley by as much as 20,000 yr or that basal ages for middle Wisconsinan loess along the Missouri Valley are erroneously young. The bracketing ages for the Upper Mississippi Valley Roxana Silt indicate that the Mississippi River valley was receiving outwash sedimentation between 55,000 and 27,000 14C yr B.P.  相似文献   

18.
Since 1850, there has been an overall decrease in excess of 70 percent in the suspended load transported by the Lower Mississippi River. A decrease of 25 percent between the earliest measurements and 1950 may be partly the result of a decline in discharge and partly the result of a change in land use practices. The largest decrease occurred in 1952–53 following construction of major main-stem reservoirs on the Missouri River. Similar construction on the Arkansas River has resulted in a further decrease in 1962–63. The decrease in suspended load, combined with the artificial levee construction program and the overall enhancement of the river channel for navigation has been accompanied by an accelerating decline in land area of the Louisiana coastal zone from 17 km2/yr in 1913 to 102 km2/yr in 1980.  相似文献   

19.
Correlation of volcaniclastic deposits of the Bedded Tuff Member (K4) of the Kapthurin Formation (Kenya) provides the means to assess the nature of archaeological change during the later middle Pleistocene, a time period critical to human evolution but poorly represented at other African localities. Field stratigraphic evidence, and petrographic and electron microprobe geochemical analyses of volcanic glass and phenocrysts, define eight subdivisions of K4 tephra. These include a succession of deposits from a local volcanic source that erupted intermittently, as well as other tuffs likely from different sources outside the Baringo basin. Upper portions of the Bedded Tuff Member date to 235,000 yr. The Bedded Tuff Member is underlain by sediments that include the Grey Tuff, dated to 509,000 ± 9000 yr. The tephrostratigraphic framework defined here is used to place Acheulian and Middle Stone Age (MSA) archaeological sites in chronological order. Results show the persistence of Acheulian large cutting tool manufacture after the advent of points, considered an MSA artifact type. Two assemblages from the site of Koimilot record the appearance at 200,000–250,000 yr of a variety of Levallois flake production methods, an integral if incompletely understood feature of the MSA, here likely derived from local technological antecedents. Combined evidence from the tools and flake production methods suggest an incremental and mosaic pattern of change in hominin adaptive strategies during the Acheulian–MSA transition.  相似文献   

20.
J.L. Ripley 《Geoarchaeology》1998,13(8):793-818
Archaeological sites that have only surface scatters are usually considered to be of little or no use in reconstructing paleoenvironmental conditions during episodes of human occupation. However, geoarchaeological research at the Skare site in south-central Wisconsin reveals that these sites can be used to provide information about the timing of paleoenvironmental changes and their affect on the location of human occupations. Geomorphic investigations revealed the presence of Alfisols formed in late Wisconsin loess on upland and low bench positions; morphologically younger Mollisols formed in alluvial and colluvial sediments on low alluvial plain positions; and beach sediments that represent the low-water stand of Glacial Lake Yahara. Semiquantitative age control for timing the formation of these soils and the lake level(s) of Glacial Lake Yahara is based on the location of diagnostic artifacts (Early Paleoindian to Late Woodland) recovered during ten separate surface collections. Early and Late Paleoindian artifacts all occur on Alfisols and are only found above the low-water stand of Glacial Lake Yahara, indicating that loess deposition and subsequent soil formation happened sometime between 12,000 and 11,000 yr B.P., and that Glacial Lake Yahara remained near the low-water stand at least until ∼9500 yr B.P. Early Archaic artifacts are present below the low-water stand and provide ages for lowering of the lake to be between 8000 and 9500 yr B.P. Middle Archaic artifacts are present on Mollisols and provide an age of soil formation to be between 5000 and 3000 yr B.P. A majority of Woodland artifacts occur on these Mollisols and are present along the floodplain of the Yahara River, possibly representing a change in subsistence strategy and settlement patterns relative to Paleoindian and Archaic occupations. The agreement of soil morphological and sedimentological data with semiquantitative age data of diagnostic artifacts provides evidence that archaeological surface scatters can be useful tools in dating soils and landforms associated with these sites. © 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号