首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Geometric ray theory is an extremely efficient tool for modelling wave propagation through heterogeneous media. Its use is, however, only justified when the inhomogeneity satisfies certain smoothness criteria. These criteria are often not satisfied, for example in wave propagation through turbulent media. In this paper, the effect of velocity perturbations on the phase and amplitude of transient wavefields is investigated for the situation that the velocity perturbation is not necessarily smooth enough to justify the use of ray theory. It is shown that the phase and amplitude perturbations of transient arrivals can to first order be written as weighted averages of the velocity perturbation over the first Fresnel zone. The resulting averaging integrals are derived for a homogeneous reference medium as well as for inhomogeneous reference media where the equations of dynamic ray tracing need to be invoked. The use of the averaging integrals is illustrated with a numerical example. This example also shows that the derived averaging integrals form a useful starting point for further approximations. The fact that the delay time due to the velocity perturbation can be expressed as a weighted average over the first Fresnel zone explains the success of tomographic inversions schemes that are based on ray theory in situations where ray theory is strictly not justified; in that situation one merely collapses the true sensitivity function over the first Fresnel zone to a line integral along a geometric ray.  相似文献   

2.
Summary . Seismograms recorded at regional distances (2°–12°) are quite complicated due to the waveguide nature of the crust. Generalized ray theory can be used to model the body waves in this distance range but a very large number of rays is required. Here I present a series of approximations to streamline generalized ray theory for the waveguide problem. If a layer over a half-space is used for the structure, then the de Hoop contour for a given ray is most strongly dependent on the fastest velocity of any leg of the ray. This results in analytic approximations to locate the contour. Each ray has two body wave arrivals (a headwave and a reflected arrival) so the displacement response of the ray need only be evaluated at a few points in time about the two arrival times and interpolated in between. A change in structure (increasing crustal thickness or Pn velocity) most strongly affects the relative timing of the headwave and the reflected arrival, so it is possible to 'stretch' or 'squeeze' the waveform of a representative model to simulate a whole suite of models.
Also discussed is the applicability of a single layer over a half-space structure for modelling the observed regional distance waveforms for shallow earthquakes. At periods greater than a few seconds crustal layering can be replaced by a single layer having the appropriate average velocities. Lateral variations in crustal thickness with scale lengths of less than about 100 km can also be modelled with a simple horizontal layer of appropriate average thickness.  相似文献   

3.
Summary. High-frequency reflection and refraction seismograms for laterally variable multi-layered elastic media are computed by using the frequency domain elastic Kirchhoff–Helmholtz (KH) theory of Frazer and Sen. Both source and receiver wavefields are expanded in series of generalized rays and then elastic (KH) theory is applied to determine the coupling between each source ray and each receiver ray at each interface. The motion at the receiver is given as a series of integrals, one for each generalized ray. We use geometrical optics and plane wave reflection and transmission coefficients for rapid evaluation of the integrand. When the source or the receiver ray field has caustics on the surface of integration geometrical ray theory breaks down and this gives rise to singularities in the KH integrand. We repair this using methods suggested by Frazer and Sen.
Examples of reflection seismograms for 2-D structures computed by elastic KH theory are shown. Those for a vertical fault scarp structure are compared with the seismograms obtained by physical modelling. Then OBS data obtained from the mid-America trench offshore Guatemala area are analysed by computing KH synthetics for a velocity model that has been proposed for that area. Our analysis indicates the existence of a small low-velocity zone off the trench axis.
No head wave arrivals are obtained in our KH synthetics since we do not consider multiple interactions of a ray with an interface. The nearly discontinuous behaviour of elastic R/T coefficients near the critical angle causes small spurious phases which arrive later than the correct arrivals.  相似文献   

4.
In isotropic ray tracing, the ray approximation to the wavefield undergoes a phase shift when the ray crosses a caustic. The cumulative number of such phase shifts along a ray is usually called the KMAH index. The sign of these phase shifts is prescribed by the sign of the angular frequency in combination with the sign convention used for the Fourier transformation. In isotropic media the KMAH index always increases by one or by two, depending on the type of caustic crossed. For (quasi-)shear waves in anisotropic media the KMAH index may decrease. This is the case if the associated slowness sheet is locally concave in one or two of its principal directions of curvature.  相似文献   

5.
Summary. Using a single scattering approximation, we derive equations for the scattering attenuation coefficients of P- and S -body waves. We discuss our results in the light of some recent energy renormalization approaches to seismic wave scattering. Practical methods for calculating the scattering attenuation coefficients for various earth models are emphasized. The conversions of P - to S -waves and S- to P -waves are included in the theory. The earth models are assumed to be randomly inhomogeneous, with their properties known only through their average wavenumber power spectra. We approximate the power spectra with piecewise constant functions, each segment of which contributes to the net, frequency-dependent, scattering attenuation coefficient. The smallest and largest wavenumbers of a segment can be plotted along with the wavevectors of the incident and scattered waves on a wavenumber diagram. This diagram gives a geometric interpretation for the frequency behaviour associated with each spectral segment, including a 'transition' peak that is due entirely to the wavenumber limits of the segment. For regions of the earth where the inhomogeneity spectra are concentrated in a band of wavenumbers, it should be possible to observed such a peak in the apparent attenuation of seismic waves. We give both the frequency and distance limits on the accuracy of the theoretical results.  相似文献   

6.
Shear-wave polarizations on a curved wavefront at an isotropic free surface   总被引:12,自引:0,他引:12  
Summary. We present polarization diagrams of the particle motions at the free surface of an isotropic half-space generated by incident shear waves from a local buried point source. The reflectivity technique is used to calculate synthetic seismograms from which the particle motions are plotted. The particle motions are examined over a range of epicentral distances in a uniform isotropic half-space for different source frequencies and polarization angles, and for different Poisson's ratios. The particle motions due to a curved wavefront possess different characteristics from those generated by plane wavefronts at corresponding incidence angles. A curved wavefront generates a local SP -phase: a P -headwave which propagates along the free surface, and arrives shortly before the direct S -wave. These two arrivals give rise to cruciform particle motions in the sagittal and horizontal planes, which could be misinterpreted as anisotropy-induced shear-wave splitting. An examination of the particle motion in the transverse plane, mutually orthogonal to the sagittal and horizontal planes, can be used to discriminate between isotropic and anisotropic interpretations. The amplitude of the SP -phase is enhanced when it propagates in a low-velocity surface layer overlying the source layer, and may then become the dominant phase on radial-component seismograms. The presence of even a single surface layer may introduce considerable complexity into the seismogram, and we examine the effects of layer thickness, velocity contrast, and source depth on the corresponding polarization diagrams. Reliable information on the source and propagation path characteristics of shear waves from a buried local point source can only be obtained from free-surface records if they are recorded within a very limited epicentral distance range.  相似文献   

7.
Finite-frequency sensitivity kernels for head waves   总被引:2,自引:0,他引:2  
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the 'banana–doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.  相似文献   

8.
Summary. A technique based on ray asymptotics has been developed to propagate complex spectra of elastic normal mode surface waves in a waveguide with material and geometrical properties varying smoothly in the lateral directions. In the technique, the original problem defined in the unstretched coordinates has been transformed into an eiconal equation as well as into a certain number of transport equations defined in stretched coordinates.
The solution of the eiconal equation is equal to the solution of the eigenproblem of the eiconal operator A0. Due to the self-adjointness of A0, in each of the relevant local inner product spaces, LIPS, the solution of the eigenproblem, A0ψ= v ψ results in the set { v t} of real local eigenvalues and in the orthonormal system {ψt} of local eigenvectors.
As the Hamiltonian function of an initial value problem, each eigenvalues gives birth to a bicharacteristic curve as well as to the related ray. The introduction of the rays induces connections between the vertical cross-sections of the waveguide.
Finally, for each asymptotic order j , the LIPS-valued transport equations are reduced to a set of matricial propagation equations in the local spectral amplitude vectors, LSAVs. Consequently, a knowledge of the initial conditions at a vertical cross-section makes it possible to propagate the LSAVs along the rays of the relevant modes. However, to complete the propagation one needs, in addition to the initial values, information about certain additional quantities, non-diagonal terms of order j , diagonal terms of orders lower than j and the auxiliary boundary terms of orders from 1 to j . The treatment has been completed by the propagation of the modal phases along the relevant rays.  相似文献   

9.
The parameter that defines the ray tracing equations in the direct geometrical approach is the product of the radius of curvature of the wave front by the velocity on the wave front ( RV ). To show this, we derive motion equations for the centre and the radius of curvature of an expanding wave front. The continuity of RV along rays implies Snell's Law. For constant velocities the equation for the radius of curvature reduces to the original Huygens' Principle. The variable RV can be computed during ray tracing and used to determine the local radius of curvature, which in turn can be used in geometrical spreading, amplitude corrections and structure interpretation.  相似文献   

10.
Wave propagation in weakly anisotropic inhomogeneous media is studied by the quasi-isotropic approximation of ray theory. The approach is based on the ray-tracing and dynamic ray-tracing differential equations for an isotropic background medium. In addition, it requires the integration of a system of two complex coupled differential equations along the isotropic ray.
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails.  相似文献   

11.
Traveltimes for infrasonic waves propagating in a stratified atmosphere   总被引:1,自引:0,他引:1  
The tau– p method of Buland & Chapman (1983) is reformulated for sound waves propagating in a stratified atmosphere under the influence of a height-dependent wind velocity profile. For a given launch angle along a specified azimuth, the ray parameter is redefined to include the influence of the horizontal wind component along the direction of wave propagation. Under the assumption of negligible horizontal wind shear, the horizontal wind component transverse to the ray propagation does not affect the direction of the wave normal, but displaces the reference frame of the moving wavefront, thus altering the observed incidence azimuth. Expressions are derived for the time, horizontal range, and transverse range of the arriving waves as a function of ray parameter. Algorithms for the location of infrasonic wave sources using the modified tau– p formulation in conjunction with regional atmospheric wind and temperature data are discussed.  相似文献   

12.
Ray tracing has recently been expressed for anisotropy specified in a local Cartesian coordinate system, which may vary continuously in a model specified by elastic parameters. It takes advantage of the fact that anisotropy is often of a simpler nature locally (and is thus specified by a smaller number of elastic parameters) and that the orientation of its symmetry elements may vary. Here we extend this approach by replacing the local Cartesian coordinate system with a curvilinear coordinate system of global extent and by applying the new approach to ray tracing and inhomogeneous dynamic ray tracing. The curvilinear coordinate system is orthogonal and is constructed so that the coordinate axes are consistent with the considered anisotropy of the medium. Our formulation allows for computation of ray attributes (e.g. ray velocity vector and paraxial ray attributes) in the curvilinear coordinate system, while rays are computed in global Cartesian coordinates. Compared to the classic formulation in terms of 21 elastic moduli in global Cartesian coordinates, the main advantages are improved efficiency, lower computer-memory requirements, and conservation of anisotropic symmetry throughout the model.  相似文献   

13.
Summary. An algorithm for the computation of travel times, ray amplitudes and ray synthetic seismograms in 3-D laterally inhomogeneous media composed of isotropic and anisotropic layers is described. All 21 independent elastic parameters may vary within the anisotropic layers. Rays and travel times are evaluated by numerical solution of the ray tracing equations. Ray amplitudes are determined by evaluating reflection/ transmission coefficients and the geometrical spreading along individual rays. The geometrical spreading is computed approximately by numerical measurement of the cross-sectional area of the ray tube formed by three neighbouring rays. A similar approximate procedure is used for the determination of the coefficients of the paraxial ray approximation. The ray paraxial approximation makes computation of synthetic seismograms on the surface of the model very efficient. Examples of ray synthetic seismograms computed with a program package based on the described algorithm are presented.  相似文献   

14.
Summary. The ray series solution of the elastodynamic equation of motion for shear waves propagating through a laterally inhomogeneous three-dimensional medium can be simplified by the use of a particular coordinate system that accompanies the wave front along the ray of investigation. The system is entirely determined by parameters that are obtainable from the ray. The transport equations for the principal shear wave components are then no longer coupled, but reduce to the same type of equation which determines the principal compressional wave component.  相似文献   

15.
Precise time and facies correlations between drilled holes are fundamental for a better understanding of the geological evolution of sedimentary basins. A downhole magnetic measurement device called the geological high-sensitivity magnetic tool (GHMT) has been run within two wells drilled by Gaz de France in the Landes oil-field (southwest France) as part of a gas storage exploration program. The method of interpretation of downhole magnetic measurements yielded a magnetostratigraphy within each well, allowing absolute dating and time correlations between the wells.
  Magnetic susceptibility and natural gamma ray intensity are useful parameters for establishing high-resolution lithological correlations at a basin scale. We present a correlation parameter established from a simultaneous analysis of the susceptibility and the gamma ray logs within each well. The correlation parameter appears to provide a new tool for delineating lithological elements when local lithological changes are too subtle to show clear well-to-well correlations either from susceptibility logs or from gamma ray logs. This new approach is interpreted as a sensitive way to detect relative variations between the detrital and clay content of the penetrated sediment.  相似文献   

16.
Summary. Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. Using ray-centred coordinates, parabolic equations are obtained for lateral variations while vertical structural variations at a given point are specified by eigenfunctions of normal mode theory as for the laterally homogeneous case. Final results on wavefields close to a ray can be expressed by formulations similar to those for elastic body waves in 2-D laterally heterogeneous media, except that the vertical dependence is described by eigenfunctions of 'local' Love or Rayleigh waves. The transport equation is written in terms of geometrical-ray spreading, group velocity and an energy integral. For the horizontal components there are both principal and additional components to describe the curvature of rays along the surface, as in the case of elastic body waves. The vertical component is decoupled from the horizontal components. With complex parameters the solutions for the dynamic ray tracing system correspond to Gaussian beams: the amplitude distribution is bell-shaped along the direction perpendicular to the ray and the solution is regular everywhere, even at caustics. Most of the characteristics of Gaussian beams for 2-D elastic body waves are also applicable to the surface wave case. At each frequency the solution may be regarded as a set of eigenfunctions propagating over a 2-D surface according to the phase velocity mapping.  相似文献   

17.
A finite difference model, allowing for episodic movements along different faults, is used to examine the effect of tectonics on the stratigraphic signature in the Oseberg–Brage area in the northern Viking Graben. Constraints are provided by local exploration and production well data and 3-D seismic coverage, and a regional depth-converted seismic line.
In the modelling, we focus on the influence of varying rates of fault movement on stratigraphic signatures such as upflank unconformities and changes in layer thickness. We couple the basinwide features of the northern Viking Graben with the fault-block-scale features of the Oseberg–Brage area by using parameter constraints derived by large-scale modelling as input for the local-scale model. In addition, subsidence patterns resulting from the basinwide model were used as background subsidence for the fault block model of the Oseberg–Brage area.
The model results indicate that the alternating activation of different faults with varying extension rates can cause stratigraphic features such as unconformities, condensation and onlap/offlap patterns. Onlap occurs during periods of low extension rates. An increase in extension rate along a fault causes footwall uplift, resulting in condensation or upflank erosion yielding unconformities. This influence can also affect sub-basins further away from the fault. Downdip layer thickening reflects the local tilting of fault blocks.
The coupling of the local and regional scales turns out to be essential in explaining the stratigraphy of the Oseberg–Brage area: basinward and, notably, updip layer thickening as observed on some of the fault blocks can only be explained by activity of the boundary fault on the opposing, western margin of the northern Viking Graben.
  相似文献   

18.
Summary. We show that Maslov's extension of the WKBJ method allows an extension of the dynamic ray tracing to wavefields involving caustics of arbitrary form. If the receiver lies off the caustics, then the synthetic seismogram can be obtained by integrating the DRT system along a single ray joining the receiver to the source which may touch caustics. If the receiver-lies in the vicinity of a caustic then DRT has to be carried out along a bunch of rays covering a neighbourhood of the receiver. Our approach encompasses pre-stressed and/or anisotropic media. Initial boundary conditions for a point source embedded in an anisotropic elastic medium are also presented.  相似文献   

19.
A simple modification of the waveform inversion formula, based on the normal mode perturbation theory, is shown to lead to a formula for traveltime anomalies. The kernel which is derived can be used for traveltime inversion with automatic inclusion of finite frequency effects. Inversion for Earth structure with such kernels will lead to better resolution estimates than ray-theoretical traveltime inversion. Examples of kernels for transverse component seismograms are shown for direct S waves, ScS , Love waves and diffracted S waves. A measure of finite frequency effects is also proposed by comparing our formula with the one from ray theory. A quantity which should be 1 in the case of ray theory is computed for the finite frequency kernels and is shown to have deviations up to about 30 per cent from 1. Therefore, the use of ray theory for long-period body waves applies incorrect weight along a ray path and may introduce a small bias to an earth model.  相似文献   

20.
Summary. A method of comparison of exact numerical computations with an asymptotic ray series expansion consisting of the two first terms is proposed. The method makes it unnecessary to derive complicated explicit expressions for the second leading term of the ray series.
As a practical example we consider the anomalous PS arrival generated in the case of a near-vertical incidence of a spherical P wave on a solid/solid boundary. The areas in which the PS wave may be described by two leading terms of the ray series expansion are marked and deviations from the ray theory are analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号