首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
帕米尔构造结及邻区的晚新生代构造与现今变形   总被引:20,自引:7,他引:13       下载免费PDF全文
陈杰  李涛  李文巧  袁兆德 《地震地质》2011,33(2):241-259
帕米尔构造结是中国大陆受板块动力作用和地震活动最强烈的地区之一.晚新生代帕米尔构造结北部向北楔入推移了约300km,但对这一变形过程至今未能很好的限定.帕米尔构造结的晚新生代构造变形在空间上是不对称的.帕米尔西缘表现为NW向的径向逆冲,伴随着塔吉克盆地东部块体绕垂直轴的逆时针旋转.在帕米尔东部,构造变形的方式、空间分布...  相似文献   

2.
跨越中、印、缅三国交界的喜马拉雅“东构造结”地区(92°E~97°E,26°N~30°N)有一半以上的面积尚没有重力测点,是重力数据空白区,故无法直接研究其重力场特征与深部地壳结构(构造).本文应用卫星重力异常资料作为近似空间重力异常,经计算给出的布格重力异常,其特征与该地区的地形高程呈很好的镜像相关.据此得到该区不同方位的3个地壳深部结构剖面.重力异常反演求得青藏高原地壳厚度>70 km;喜马拉雅造山带为55 km左右;布拉马普特拉河谷盆地为33~35 km;那加山山脉地区为40~45 km,即呈现出3个不同构造单元的展布.同时求得“东构造结"区由高密度的刚性物质构成,在印度洋板块的碰撞、挤压作用下呈向北运移,并插入青藏高原东缘.基于这样的构造格局和深层动力过程,导致了青藏高原东南缘和东北缘的强烈构造运动,大、小地震的频频发生和矿产资源的聚集.  相似文献   

3.
喜玛拉雅“东构造结”地区特异重力场的探讨   总被引:4,自引:6,他引:4       下载免费PDF全文
跨越中、印、缅三国交界的青藏高原东南的喜玛拉雅“东构造结”地区(92°E~97°E,26°N~30°N)一半以上的面积尚没有重力测点,是重力数据空白区,故无法直接研究其重力场特征与深部地壳结构(构造).本文分析了卫星重力异常的特性,提出应用卫星重力异常作为近似空间重力异常,并作布格改正后,得到的布格重力异常具有与该地区地形高程呈镜像相关的特征,可用以研究深部地壳结构.据三条重力剖面计算得到该地区三个地壳深部结构剖面的结果,给出青藏高原地壳厚度>70 km;喜马拉雅造山带为55 km左右;布拉马普特拉河谷盆地为33~35 km;那加山山脉地区为40~45 km,显示出三者为三个不同的构造单元.同时给出布拉马普特拉构造单元为相对高密度的刚性物质构成,随着印度洋板块向北运移,在碰撞、挤压下,插入青藏高原东南缘一带.导致该地带的强烈构造运动,和频发大、小地震.最后提出了几点认识和建议.  相似文献   

4.
在喜马拉雅造山带的东缘,雅鲁藏布江缝合带在这里发生急剧转折,南迦巴瓦变质体快速隆起,然而关于东构造结的形成机制一直未有定论.利用围绕南迦巴瓦峰的48个宽频带地震台站记录的远震数据提取P波接收函数,采用改进的H-κ叠加方法和共转换点叠加方法综合研究了东构造结的地壳厚度、波速比分布和地壳结构特征.结果表明:研究区平均地壳厚度为64.03 km,大部分台站介于60.48~66.55 km范围;平均波速比为1.728,主要集中范围为1.696~1.742.东构造结地壳厚度横向变化剧烈,构造结西端和北端厚而中间薄,东构造结核部Moho面呈现上隆的构造形态,东西向上隆幅度约为6~7 km,南北向的上隆超过9~10 km.东构造结核部地壳上隆减薄可能由高密度、高波速的岩石圈撕裂残片拆沉到上地幔软流圈后重力失衡所致.平均波速比超过1.8的高值异常展布于东构造结的两侧,推测为环东构造结的壳内部分熔融体.东构造结地壳上隆减薄和壳内部分熔融的存在很可能均与幔源热物质的上涌有关,而软流圈地幔的上涌则可能由印度板片的撕裂引起.  相似文献   

5.
青藏高原东部玛多-沙马地区的重力场与深部构造   总被引:9,自引:4,他引:9  
根据青藏高原东部玛多-沙马(下察隅)重力剖面的重力数据资料,对该地区的重力场和深部地壳构造特征作了分析研究,提出青藏高原东部的布格重力异常是高原边缘高,内部低,地壳厚度是边缘薄,内部厚,平均地壳厚度为60km左右,在察隅-沙马地区,为负均衡异常区,因此,该地区是属于地壳上升的地区,此项结果,填补了察隅-沙马地区的均衡重力异常的空白。  相似文献   

6.
本文使用位于喜马拉雅东构造结地区布置的24个宽频带地震台站记录的远震波形数据,利用P波接收函数的方法研究了台站下方的Moho面深度、泊松比和地壳速度结构.结果表明,东构造结内Moho面深度呈现出自南西向北东方向逐渐变深的趋势,地壳厚度在54~60 km范围内,其中东久一米林走滑断裂带附近Moho面最浅,东构造结周围拉萨地块的Moho面深度在60 km以上.东构造结西部东久一米林走滑断裂带附近地壳泊松比较高.嘉黎断裂带南北两侧的泊松比差别较大,说明该断裂带两侧地壳结构存在显著差异.东构造结周边拉萨地块地壳内普遍存在低速层,分布在20~40 km深度范围内,厚度约为5~15 km.  相似文献   

7.
南北构造带及邻域地壳、岩石层速度结构特征研究   总被引:4,自引:4,他引:0       下载免费PDF全文
本文利用重力数据采用Parker-Oldenburg方法反演了南北构造带及邻域地区的地壳厚度,同时采用体波地震层析成像方法反演了研究区的地壳至上地幔的三维速度结构.根据计算结果对研究区的地壳及岩石层结构进行了探讨,力图揭示南北构造带及邻域地壳、岩石层变形特征,并且对青藏高原边缘活动带壳幔构造演化的深部成因、研究区的上地幔流变性及其动力学意义进行了相应的讨论.通过分析研究表明南北构造带地区为地壳厚度剧变区,西侧为地壳增厚区,东侧的鄂尔多斯、四川盆地为地壳稳定区,而再向东为地壳逐渐减薄区.中国岩石层减薄与增厚的边界基本被限定在大兴安岭—太行山—秦岭—大巴山—武陵山一带,这也是东部陆缘带和中部扬子、鄂尔多斯克拉通地区深部构造边界的分界线,其两侧不仅浅层地质构造存在较大的差异,上地幔深部的物性状态和热活动也明显不同,这说明研究区的岩石层和软流层结构以及深部物质的分布存在横向非均匀性.中部地区和青藏高原深部构造边界的分界线位于东经100°—102°左右.  相似文献   

8.
青藏高原边缘是研究青藏高原构造生长的重要场所.然而,青臧高原各边界却呈现出不同的地貌形态响应.尤其是青藏高原东北缘的六盘山地区,与青藏高原东缘相比,它与邻近稳定鄂尔多斯地台之间表现出了截然不同的地形变化.青藏高原东边界所对应的龙门山构造带呈现出高陡的地貌形态:在100 km范围内,海拔高程从四川盆地的500 m陡升至临近的龙门山构造带的3500 m.而青藏高原东北边界所对应的六盘山构造带则与邻近的鄂尔多斯盆地表现为宽缓的地形变化.之前由于缺少高精度的数据资料,对造成这一地表形态差异所对应的地壳结构缺少必要的了解.在本次研究中,将着重利用前期在青藏高原东北缘六盘山地区所获得的165 km长高分辨率深反射地震数据,并结合在此区域所获得的航磁数据资料进行该地区地壳结构的综合解释,得出青藏高原东北缘一鄂尔多斯地块构造转换带的地壳结构变形模型.研究表明六盘山地区主要物质组成为构造增生楔,其两侧分别存在陇西火山岛弧和鄂尔多斯结晶基底.高原生长所产生的构造应力并不能使相对松散的构造增生楔无限制的抬高而是容易发生重力坍塌,从而造成六盘山地区比较宽缓的地形结构.同时本文还将此地壳结构研究结果与前人在青藏高原东缘所获得的地壳结构及变形机制进行对比分析,探讨这两个地区的构造变形模式,并找出两个地区的构造变形共性和差异.研究结果也将为了解青藏高原侧向构造生长过程提供理论和数据支持.  相似文献   

9.
宁化—大田—惠安地壳构造与速度结构特征   总被引:5,自引:3,他引:2       下载免费PDF全文
福建地处欧亚大陆东南缘,新构造活动强烈,区内北东向断裂带异常发育,是华南震区中、强地震活动的频发区.为深入认识我国东南沿海地壳上地幔速度结构特征及其深部构造背景,福建省地震局联合中国地震局地球物理勘探中心于2010年至2012年在福建陆域实施由18次人工爆破、四条北西向原生纵测线和四条北东向集成纵测线构成的三维人工地震测深实验.本文对该实验中以北西-南东走向近似垂直穿过政和—海丰断裂的宁化—大田—惠安深地震测深测线数据进行处理解释,采用地震射线走时正演构建了该剖面二维地壳速度模型.结果显示,沿剖面地壳厚度由西向东逐渐减薄,其西北侧地壳厚约31.8km,东南侧地壳厚达28.4km.剖面上地壳P波速度从5.90km·s~(-1)逐渐增加至6.20km·s~(-1),上地壳厚度横向变化不大,厚度在16~17km左右,但是下地壳厚度由西向东减薄较为明显.地壳以政和—海丰断裂为界,东西两段具有明显不同的速度结构,呈西段速度偏低、东段速度较高的特性,且西段在上下地壳分界面下方存在一个低速层.研究表明,剖面不同区段呈现出的速度结构差异与该区大地构造单元的划分基本吻合,剖面解释结果和以往远震接收函数研究结果均印证了作为闽西南坳陷带和闽东火山断陷带分界线的政和—海丰断裂是一条切割至下地壳底部的深大断裂.  相似文献   

10.
南海海盆三维重力约束反演莫霍面深度及其特征   总被引:3,自引:3,他引:0       下载免费PDF全文
利用南海海盆及周边最新的重力,经过海底地形、沉积层的重力效应改正,并采用岩石圈减薄模型的温度场公式,校正了从张裂边缘到扩张海盆的热扰动重力效应.通过研究区的地震剖面和少量声呐数据得到的莫霍面深度点作为约束,采用基于"起伏界面初始模型"的深度修正量反演迭代公式,反演、计算了研究区的莫霍面深度及地壳厚度.结果表明,海盆区莫霍面深度在8~14 km之间,地壳厚度在3~9 km之间;东部海盆和西南海盆残留扩张中心沿NNE向展布向西南延伸至112°E,莫霍面深度超过12 km,地壳厚度在6 km以上,而西北海盆没有明显的增厚扩张中心;在西南海盆北缘的中沙地块南侧,存在一个近EW向地壳减薄带,地壳厚度在9~10 km;莫霍面深度14 km的等深线和地壳厚度9 km的等值线可指示洋陆边界位置.  相似文献   

11.
A compiled gravity anomaly map of the Western Himalayan Syntaxis is analysed to understand the tectonics of the region around the epicentre of Kashmir earthquake of October 8, 2005 (Mw = 7.6). Isostatic gravity anomalies and effective elastic thickness (EET) of lithosphere are assessed from coherence analysis between Bouguer anomaly and topography. The isostatic residual gravity high and gravity low correspond to the two main seismic zones in this region, viz. Indus–Kohistan Seismic Zone (IKSZ) and Hindu Kush Seismic Zones (HKSZ), respectively, suggesting a connection between siesmicity and gravity anomalies. The gravity high originates from the high-density thrusted rocks along the syntaxial bend of the Main Boundary Thrust and coincides with the region of the crustal thrust earthquakes, including the Kashmir earthquake of 2005. The gravity low of HKSZ coincides with the region of intermediate–deep-focus earthquakes, where crustal rocks are underthrusting with a higher speed to create low density cold mantle. Comparable EET (∼55 km) to the focal depth of crustal earthquakes suggests that whole crust is seismogenic and brittle. An integrated lithospheric model along a profile provides the crustal structure of the boundary zones with crustal thickness of about 60 km under the Karakoram–Pamir regions and suggests continental subduction from either sides (Indian and Eurasian) leading to a complex compressional environment for large earthquakes.  相似文献   

12.
龙门山断裂带地壳密度结构   总被引:3,自引:1,他引:2       下载免费PDF全文
研究龙门山及邻区地壳密度结构对于认识该地区地震活动性具有重要意义.根据龙门山及邻区( 100°~105°E,28°~33°N)的布格重力异常资料,选取了跨越龙门山断裂带的6条重力测线,在深地震测深资料约束下,使用Geosoft软件分别反演出了龙门山地区地下的沉积层、康拉德界面和莫霍面的深度分布.研究结果表明:龙门山断裂带两侧的地壳结构明显不同,西面高原地区沉积层较薄,大部分为基岩出露;而东边盆地沉积层明显较厚,多在6km以上.莫霍面和康拉德面在两侧均相对平缓,康拉德面从东部的大约24km增加到青藏高原山区的35km左右;莫霍面深度从东部盆地的大约42km增加到西部青藏高原的67km左右.龙门山断裂带整体表现为一条近SN向的陡变重力梯度带,并在其地壳内各界面均发生错断,莫霍面和康拉德面错断距离分别达6 ~ 7km和3~ 5km.该区地壳的这种陡变和不均匀性是导致地震活动性强烈的主要原因之一.  相似文献   

13.
史克旭  张瑞青  肖勇 《地球物理学报》1954,63(12):4369-4381
青藏高原东北缘作为高原向外扩张的最前缘地区,代表了高原最新的变形状态,是研究青藏高原变形加厚的关键地区.本文利用"中国地震科学台阵探测"项目在南北地震带北段布设的密集宽频带流动台阵资料,采用虚拟地震测深方法(VDSS),对青藏高原东北缘及周边地区的地壳厚度进行了研究,以期为研究青藏高原东北向扩展的前缘位置,以及扩展的动力学模式等提供地球物理学依据.波形模拟的结果显示,研究区地壳厚度变化剧烈.其中,祁连和西秦岭地块内地壳厚度存在明显的东西向横向变化,以103°E为界,东部地区为45~50 km,而西部地区地壳已明显增厚,约达到55 km以上.与祁连造山带相邻的阿拉善块体南缘地壳也明显加厚,接近55 km,而阿拉善块体内部地壳厚度约为45~50 km.与其他研究地区相比,鄂尔多斯地块地壳相对要薄,但整体而言,鄂尔多斯地块地壳呈现南北薄(约45 km)、中央厚(约50 km)的形态特征.此外,在六盘山断裂带台站下方观测到复杂的SsPmp震相,推测为双Moho界面结构.结合其他地球物理学证据,我们认为青藏高原东北缘地区地壳增厚方式以均匀缩短增厚为主,且高原向北东扩展的前缘已越过祁连山北缘断裂,进入阿拉善块体南缘地区.  相似文献   

14.
渤海湾地区壳幔结构重磁综合研究   总被引:2,自引:1,他引:1       下载免费PDF全文
渤海湾盆地是华北克拉通破坏的中心,其东部渤海海域深部结构研究对认识华北克拉通破坏范围及动力学过程具有重要意义.为此,本文选取自河北新城经天津静海沿东南方向进入渤海海域的剖面进行重磁反演,研究其地壳结构特征.通过对该地区文献调研及2010年渤海海陆联测初步结果建立初始模型,结合本地区密度、磁化率特征进行二度半体重磁异常反...  相似文献   

15.
本文利用中国地震科学探测台阵2013-2015年在南北地震带北段及其周缘架设的673个台站所记录到的远震波形所提取到的接收函数并应用H-κ扫描方法获取了南北地震带北段及其周缘的地壳厚度和泊松比,结果显示研究区地壳厚度从青藏高原东北缘向鄂尔多斯块体逐渐减小,从65 km逐渐减薄至40 km,不同块体之间地壳厚度存在明显差异.祁连造山带西部地壳厚度超过60 km,而东部地壳厚度仅为约50 km左右,表明祁连造山带东、西部地壳增厚变形存在着明显差异.西秦岭造山带地壳厚度从60 km减薄到40 km,其东部具有较薄的地壳厚度可能经历了拆沉.阿拉善块体作为华北克拉通西部块体的一部分,西部地壳厚度约50 km,而东部约45 km,表明阿拉善块体西部由于印度一欧亚板块碰撞也受到了活化改造,其克拉通性质只在其中东部残留.研究区泊松比变化范围为0.20~0.31,平均泊松比约0.25,表明地壳主要由长英质矿物组成,较高的泊松比主要分布在六盘山断裂带和银川一河套地堑.研究结果显示地壳厚度与高程之间具有较好的相关性,表明地壳整体上处于相对均衡的状态,而西秦岭造山带和祁连造山带东部的部分区域地壳可能处于不均衡状态.  相似文献   

16.
帕米尔东北缘地壳结构的P波接收函数研究   总被引:6,自引:2,他引:4       下载免费PDF全文
利用位于新疆帕米尔东北缘地带12个固定数字地震台和天山动力学Ⅱ期10个流动宽频带数字地震台记录的高质量远震波形数据,应用接收函数H叠加方法研究了帕米尔东北缘的地壳厚度-泊松比特征和部分台站下方的壳内界面深度.研究发现:(1) 帕米尔东北缘的Moho面起伏变化剧烈,其总体分布呈现东薄西厚、南厚北薄的特征,由塔里木盆地向天山延伸,地壳厚度约从45 km加深到55 km,从塔里木盆地向西昆仑山延伸,地壳厚度约从45 km加深到69 km;(2)沿着天山动力学Ⅱ期剖面,位于塔里木盆地北缘台站的壳内间断面的深度约为13~16 km,向北进入天山南麓加深到20 km左右,继续向北进入南天山山区壳内间断面不明显,可能暗示塔里木盆地基底向北俯冲,俯冲距离可能到达南天山的山前;(3)研究区地壳泊松比变化复杂(约从0.20到0.31),显示地壳物质组成的复杂性和显著的不均匀构造;(4)整个研究区的地壳厚度和泊松比之间没有明显的相关性,但天山动力学Ⅱ期剖面的结果表明,从塔里木盆地北缘到西南天山,地壳厚度和泊松比之间存在反相关关系,意味着天山地壳的增厚可能主要是通过以长英质岩石为主要组成成分的上地壳叠置而成;(5) 研究区全部地震台地壳厚度与海拔高程的线性回归方程表明地壳厚度与海拔的相关性相对较弱(相关系数为0.66),天山动力学Ⅱ期10个台站的地壳厚度与海拔具有很好的相关性(相关系数为0.85),可能表明沿该剖面地壳整体上处于相对均衡的状态.  相似文献   

17.
研究帕米尔高原的构造变形特征对于理解印度板块向北推挤过程中的应变分配方式以及应力转换模式具有重要的意义.本文利用区域GPS应变场、地震应变场与震源应力场分析帕米尔高原的构造形变特征.主要结论为:(1)该区域变形主要以NNW-SSE或近N-S向的挤压为主,在高原内部伴有明显的近ENE-WSW或E-W向拉张,应力方向在帕米尔高原与塔吉克盆地区域呈现逆时针旋转的趋势,而在塔里木盆地则显示几乎与帕米尔高原的一致的应力状态,这可能与两侧盆地块体的强度差异有关.(2)安德森断层参数A∅显示帕米尔高原北缘与西侧区域为逆断层应力状态,在高原内部为正断层应力状态,这与GPS应变的结果显示的应变主要集中在主帕米尔断裂与阿莱谷地附近而在高原内部应变较低是一致的,另外应力在喀喇昆仑断裂北段的方向基本平行于断层走向,以及断层北端较低的滑动速率,这说明了地壳挤压缩短可能是帕米尔高原主要的的构造变形特征,并不支持由于边界走滑断裂导致的应变分异或者块体挤出的模式.(3)综合考虑地震应变方向与SHmax从帕米尔北部NNW-SSE方向到天山北部的近N-S方向的转换,GPS应变方向在帕米尔高原两侧盆地都存在不同程度的旋转,应力场安德森参数A∅显示的应力状态以及SKS的结果显示的近ENE-WSW方向,我们认为印度板块向北推挤与天山造山带碰撞导致帕米尔高原不对称的径向逆冲是帕米尔高原现今构造变形的主要成因与构造模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号