首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Further support for the view that mineralization at Mount Isa comprises two separate events is provided by 34S/32S measurement. Isotopic exchange between sulphides in lead-zinc-silver ores appears to have been promoted locally during metamorphism, whereas isotopic disequilibrium persists in the copper ores. These isotopic data are explained by a model in which sedimentary deposition of lead, zinc and silver was succeeded by the post-metamorphic emplacement of copper. Past biological activity is inferred from the occurrence of low concentrations of organic carbon with 13C values ranging from –21 to –26 PDB. Carbonate contents, expressed as carbon, vary from <0.1% to 10.9%. The 13C and 18O values for the carbonates are relatively constant at –4.4±1.1 and –17.6±1.1 PDB respectively. These values are interpreted as reflecting isotopic changes induced in original marine carbonates by isotopic exchange during lower greenschist metamorphism.  相似文献   

2.
The S-isotopic compositions of sulfide deposits from Steinmann, granitoid and felsic volcanic associations have been examined. Ores of Steinmann association have 34S values close to zero per mil (34S=+0.3±3.1) it appears they are of mantle origin. Isotopically, ores of granitoid association regularly show a variable enrichment in 32S relative to meteoritic (34S=–2.7±3.3). The composition is in accord with an upper mantle/lower crustal source. Two stratiform accumulations of felsic volcanic association show a narrow spread of 34S values (+0.2 to 2.4); a mantle origin for the sulfur in these deposits is favored. In contrast, vein, stockwork and cement ores are moderately enriched in 32S relative to meteoritic (34S=–4.0±6.4). These ores are polygenetic; sulfur and metals appear to have been leached from local country rocks where volcanogenic and biogenic sulfur predominate.  相似文献   

3.
Oxygen-isotope compositions have been measured for whole-rock and mineral samples of host and hydrothermally altered rocks from three massive sulfide deposits, Centennial (CL), Spruce Point (SP), and Anderson Lake (AL), in the Flin Flon — Snow Lake belt, Manitoba. Wholerock 18O values of felsic metavolcanic, host rocks (+8.5 to +16.1) are higher than those of altered rocks from the three deposits. The 18O values of altered rocks are lower in the chlorite zone and muscovite zone-I (CL=+ 5.3; SP=+5.4 to +8.3; AL= +3.7 to +5.9) than in the gradational zone (CL= +9.9 to +11.7; SP= +8.4 to +9.8; AL= + 6.6 to +7.7). Muscovite schist (Muscovite Zone-II) enveloping the Anderson Lake ore body has 18O values of +7.2 to +8.3. Quartz, biotite, muscovite, and chlorite separated from the altered rocks have lower 18O values compared to the same minerals separated from the host rocks. However, isotopic fractionation between mineral-pairs is generally similar in both host and altered rocks.It is interpreted that differences in the oxygen-isotope compositions of the altered and host rocks were produced prior to metamorphism, during hydrothermal alteration related to ore-deposition. Isotopic homogenization during metamorphism occurred on a grain-to-grain scale, over no more than a few meters. The whole-rock 18O values did not change significantly during metamorphism. The generally lower 18O values of altered rocks, the Cu-rich nature of the ore and the occurrence of the muscovite zone-II at Anderson Lake are consistent with the presence of higher temperature hydrothermal fluids at Anderson Lake than at the Centennial and Spruce Point deposits.  相似文献   

4.
Sulfur isotope ratios have been determined in 27 selected volcanic rocks from Iceland together with their whole rock chemistry. The 34S of analyzed basalts ranges from –2.0 to +0.4 with an average value of –0.8 Tholeiitic and alkaline rocks exhibit little difference in 34S values but the intermediate and acid rocks analyzed have higher 34S values up to +4.2 It is suggested that the overall variation in sulfur isotope composition of the basalts is caused by degassing. The small range of the 34S values and its similarity to other oceanic and continental basalts, suggest that the depleted mantle is homogeneous in its sulfur isotope composition. The 34S of the depleted mantle is estimated to be within the range for undegassed oceanic basalts, –0.5 to +1.0  相似文献   

5.
Temperatures of the formation of mud-volcanic waters are determined based on concentrations of some temperature-dependent components (Na–Li, Mg–Li). Estimates obtained for the Taman and Kakhetia regions are similar and range from 45 to 170°, which correspond to depths of 1–4.5 km. The calculated temperatures correlate with the chemical (Li, Rb, Cs, Sr, Ba, B, I, and HCO3) composition of water and 13 (2) and 13 (CH4) values in spontaneous gases. The isotope values indicate that mechanisms of the formation of 13-rich gases, i.e., gases with high 13 values (up to +16.0 in 2 and –23.4 in CH4) in mud-volcanic systems of Taman and Kakhetia are governed by fluid-generation temperatures rather than the supply of abyssal gases. The 11 value was determined for the first time in mud-volcanic products of the Caucasus region. This value ranges from +22.5 to +39.4 in the volcanic water of Georgia, from –1.2 to +7.4 in the clayey pulp of Georgia, and from –7.6 to +13.2 in the clayey pulp of Taman. It is shown that the 11 value in clay correlates with the fluid-generation temperature and 11 correlates with 13 in carbon-bearing gases. These correlations probably testify to the formation of different phases of mud-volcanic emanations in a single geochemical system and suggest the crucial role of temperature in the development of isotope-geochemical features.  相似文献   

6.
A systematic study of the auriferous quartz veins of the Val-dOr vein field, Abitibi, Quebec, Canada, demonstrates that the C, O, S isotope composition of silicate, carbonate, borate, oxide, tungstate and sulphide minerals have a range in composition comparable to that previously determined for the whole Superior Province. The oxygen isotope composition of quartz from early quartz–carbonate auriferous veins ranges from 9.4 to 14.4 whereas later quartz-tourmaline-carbonate veins have 18Oquartz values ranging from 9.2 to 13.8 . Quartz-carbonate veins have carbonate (18O: 6.9–12.5 ; 13C: –6.2– –1.9 ) and pyrite (34S: 1.2 and 1.9 ) isotope compositions comparable to those of quartz-tourmaline-carbonate veins (18O: 7.9–11.7 ; 13C: –8.0 – –2.4 ; 34S: 0.6–6.0 ). 18Oquartz values in quartz-tourmaline-carbonate veins have a variance comparable to analytical uncertainty at the scale of one locality, irrespective of the type of structure, the texture of the quartz or its position along strike, across strike or down-dip a vein. In contrast, the oxygen isotope composition of quartz in quartz-tourmaline-carbonate veins displays a regional distribution with higher 18O values in the south-central part of the vein field near the Cadillac Tectonic Zone, and which 18O values decrease regularly towards the north. Another zone of high 18O values in the northeast corner of the region and along the trace of the Senneville Fault is separated by a valley of lower 18O values from the higher values near the Cadillac Tectonic Zone. Oxygen isotope isopleths cut across lithological contacts and tectonic structures. This regional pattern in quartz-tourmaline-carbonate veins is interpreted to be a product of reaction with country rocks and mixing between (1) a deep-seated hydrothermal fluid of metamorphic origin with minimum 18O=8.5 , 13C=0.6 and 34S=–0.4 , and (2) a supracrustal fluid, most likely Archean seawater with a long history of water-rock exchange and with maximum 18O=3.9 , 13 C=–5.6 and 34S=5.0 .  相似文献   

7.
Isotopic compositions were determined for quartz, sericite and bulk rock samples surrounding the Uwamuki no. 4 Kuroko ore body, Kosaka, Japan. 18O values of quartz from Siliceous Ore (S.O.), main body of Black Ore B.O.) and the upper layer of B.O. are fairly uniform, +8.7 to +10.5. Formation temperatures calculated from fractionation of 18O between sericite and quartz from B.O. and upper S.O. are 250° to 300° C. The ore-forming fluids had 18O values of +1 and D values of –10, from isotope compositions of quartz and sericite.Tertiary volcanic rocks surrounding the ore deposits at Kosaka have uniform 18O values, +8.1±1.0 (n=50), although their bulk chemical compositions are widely varied because of different degrees of alteration. White Rhyolite, which is an intensely altered rhyolite occurring in close association with the Kuroko ore bodies, has also uniform 18O values, +7.9±0.9 (n=19). Temperatures of alteration are estimated to be around 300° C from the oxygen isotope fractionation between quartz and sericite. Paleozoic basement rocks phyllite and chert, have high 18O values, +18 and +19. The Sasahata formation of unknown age, which lies between Tertiary and Paleozoic formations, has highly variable 18O, +8 to +16 (n=4). High 18O values of the basement rocks and the sharp difference in 18O at their boundary suggest that the hydrothermal system causing Kuroko mineralization was mainly confined within permeable Tertiary rocks. D values of altered Tertiary volcanic rocks are highly variable ranging from –34 to –64% (n=12). The variation of D does not correlate with change of chemical composition, 18O values, nor distance from the ore deposits. The relatively high D values of the altered rocks indicate that the major constituent of the hydrothermal fluid was sea water. However, another fluid having lower D must have also participated. The fluid could be evolved sea water modified by interaction with rocks and the admixture of magmatic fluid. The variation in D may suggest that sea water mixed dispersively with the fluid.  相似文献   

8.
In closed magma systems SiO2 approximately measures differentiation progress and oxygen isotopes can seem to obey Rayleigh fractionation only as a consequence of the behaviour of SiO2. The main role of 18O is as a sensitive indicator of contamination, either at the start of differentiation ( 18Oinit) or as a proportion of fractionation in AFC. Plots of 18O vs SiO2-allow to determine initial 18O values for different sequences for source comparison. For NBS-28=9.60, the 18O at 48% SiO2-varies between a high 6.4 for Kiglapait (Kalamarides 1984), 5.9 for Transhimalaya, 5.8 for Hachijo-Jima (Matsuhisa 1979), 5.6 for Koloula (Chivas et al. 1982) and a low 5.3 for the Darran Complex, New Zealand. The Transhimalayan batholiths (Gangdese belt) were emplaced in the Ladakh-Lhasa terrane, between the present-day Banggong-Nujiang, and Indus-Yarlung Tsangbo suture zones, after its accretion to Eurasia. The gradient of the least contaminated continuous ( 18O vs SiO2-igneous trend line is similar to that of Koloula, and AFC calculations suggest a low secondary assimilation rate of less than 0.05 times the rate of crystallisation. Outliers enriched in 18O are frequent in the Lhasa, and apparently rare in the Ladakh transsect. Low- 18O (5.0–0) granitoids and andesites on the Lhasa-Yangbajain axis are the result of present day or recent near-surface geothermal activity; their quartzes still trace the granitoids to the Transhimalaya 18O trend line, but the distribution of low total rock or feldspar 18O values could be a guide to more recent heat flow and thermally marked tectonic lineaments. Two ignimbrites from Maqiang show hardly any 18O-contamination by crustal material.  相似文献   

9.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

10.
The pre-Cenozoic geology at Candelaria, Nevada comprises four main lithologic units: the basement consists of Ordovician cherts of the Palmetto complex; this is overlain unconformably by Permo-Triassic marine clastic sediments (Diablo and Candelaria Formations); these are structurally overlain by a serpentinitehosted tectonic mélange (Pickhandle/Golconda allochthon); all these units are cut by three Mesozoic felsic dike systems. Bulk-mineable silver-base metal ores occur as stratabound sheets of vein stockwork/disseminated sulphide mineralisation within structurally favourable zones along the base of the Pickhandle allochthon (i.e. Pickhandle thrust and overlying ultramafics/mafics) and within the fissile, calcareous and phosphatic black shales at the base of the Candelaria Formation (lower Candelaria shear). The most prominent felsic dike system — a suite of Early Jurassic granodiorite porphyries — exhibits close spatial, alteration and geochemical associations with the silver mineralisation. Disseminated pyrites from the bulk-mineable ores exhibit a 34S range from — 0.3 to + 12.1 (mean 34S = +6.4 ± 3.5, 1, n = 17) and two sphalerites have 34S of + 5.9 and + 8.7 These data support a felsic magmatic source for sulphur in the ores, consistent with their proximal position in relation to the porphyries. However, a minor contribution of sulphur from diagenetic pyrite in the host Candelaria sediments (mean 34S = — 14.0) cannot be ruled out. Sulphur in late, localised barite veins ( 34S = + 17.3 and + 17.7) probably originated from a sedimentary/seawater source, in the form of bedded barite within the Palmetto basement ( 34S = + 18.9). Quartz veins from the ores have mean 18O = + 15.9 ± 0.8 (1, n = 10), which is consistent, over the best estimate temperature range of the mineralisation (360°–460°C), with deposition from 18O-enriched magmatic-hydrothermal fluids (calculated 18O fluid = + 9.4 to + 13.9). Such enrichment probably occurred through isotopic exchange with the basement cherts during fluid ascent from a source pluton. Whole rock data for a propylitised porphyry ( 18O = + 14.2, D = — 65) support a magmatic fluid source. However, D results for fluid inclusions from several vein samples (mean = — 108 ± 14, 1, n = 6) and for other dike and sediment whole rocks (mean = — 110 ± 13, 1, n = 5) reveal the influence of meteoric waters. The timing of meteoric fluid incursion is unresolved, but possibilities include late-mineralisation groundwater flooding during cooling of the Early Jurassic progenitor porphyry system and/or meteoric fluid circulation driven by Late Cretaceous plutonism.  相似文献   

11.
Emerald deposits in Swat, northwestern Pakistan, occurring in talc-magnesite and quartz-magnesite assemblages, have been investigated through stable isotope studies. Isotopic analyses were performed on a total of seven emeralds, associated quartz (seven samples), fuchsite (three samples) and tourmaline (two samples) from the Mingora emerald mines. The oxygen isotopic composition ( 18O SMOW) of emeralds shows a strong enrichment in18O and is remarkably uniform at + 15.6 ± 0.4 (1,n = 7). Each of the two components of water in emerald (channel and inclusion) has a different range of hydrogen isotopic composition: the channel waters being distinctly isotopically heavier (D = –51 to –32 SMOW) than the other inclusion waters (D = –96 to –70 SMOW). Similarly the oxygen isotopic compositions of tourmaline and fuchsite are relatively constant ( 18O = + 13 to + 14 SMOW) and show enrichment in18O. The 18O values of quartz, ranging from + 15.1 to + 19.1 SMOW, are also high (+ 16.9 ± 1.4 1, n = 7). The meanD of channel waters measured from emerald (–42 ± 6.6 SMOW) and that of fluid calculated from hydrous mineralsDcalculated (–47 ± 7.1 SMOW) are consistent with both metamorphic and magmatic origin. However, the close similarity between the measuredD values of the hydroxyl hydrogen in fuchsite (–74 to –6 SMOW) and tourmaline (–84 and –69 SMOW) with pegmatitic muscovite and tourmaline suggests that the mineralization was probably caused by modified (18O-enriched) hydrothermal solutions derived from an S-type granitic magma. The variation in the carbon and oxygen isotopic composition of magnesite, locally associated with emerald mineralization, is also very restricted ( 13 –3.2 ± 0.7%, PDB; 18O + 17.9 ± 1.27 SMOW). On the basis of the isotopic composition of fluid ( 13C –1.8 ± 0.7 PDB; 18O + 13.6 ± 1.2 SMOW calculated for the 250-550 °C temperature), it is proposed that the Swat magnesites formed due to the carbonation of previously serpentinized ultramafic rocks by a CO2-bearing fluid of metamorphic origin.  相似文献   

12.
The Rosita Hills volcanic centre is an alkalicalcic, mid-Tertiary complex overlying orthoand paragneissic basement, on the eastern margin of the Rio Grande Rift in south central Colorado, USA. The centre contains vein-hosted, adularia-sericite type, epithermal Ag and base-metal mineralisation with minor Au. Stable isotope studies (O and H) of whole rock and mineral separate (quartz and sericite) samples from veins and hydrothermal eruption breccias show that the hydrothermal fluid had both magmatic and meteoric components. The D and 18O values of the hydrothermal fluid, calculated from mineral values, range from -22 to -103 and 0.5 to 5.9 respectively. Fluid inclusion data from vein minerals (quartz, baryte and sphalerite) and from an advanced argillic lithocap overlying the veins again show that the hydrothermal system had more than one component fluid. Fluid inclusions have salinities which range from 1.7 to 25.1 wt% NaCl equivalent and show evidence of boiling in the advanced argillic lithocap. Homogenisation temperatures range from 135°C to 298°C. Liquid CO2 is present in some inclusions. These data indicate that a saline, isotopically heavy fluid mixed with a dilute, isotopically light fluid to precipitate the ore. We argue that the saline, isotopically heavy fluid is magmatic and derived from a resurgent rhyolitic magma below the mineralisation.  相似文献   

13.
The carbon and oxygen isotopic composition of Fe-carbonate ore and its calcitic to dolomitic Devonian host rocks at the Steirischer Erzberg siderite deposit (Greywacke zone, Upper Austroalpine Unit) were determined in order to constrain the source and nature of the Fe-rich mineralizing fluid. The 18O-values obtained for various Fe-carbonate generations and the carbonate host lie within a similar range between + 14.6 and + 21.6 (V-SMOW). No good correlation exists between the relative ages of the carbonate phases and their O isotopic composition. The variation in 18O-values is due to metamorphic recrystallization with locally variable fluid/rock ratios. The average 13C-value of the carbonate host is +0.5 ± 1.2 (PDB) which corresponds well to worldwide Phanerozoic marine carbonate values. The first Fecarbonate generation has slightly lower 13C-values, on average -1.4 ± 0.8 (PDB). Recrystallization of both the carbonate host minerals and the ankerite/siderite led to significantly lower 13C-values of -4.2 ± 0.6 and-4.7 ± 0.7, respectively. Within the basal breccia of the post-Hercynian transgression series matrix calcite/ dolomite shows an average 13C-value of -2.9 ± 0.7, and matrix siderite/ankerite an average value of-4.1 ± 0.4. These data, together with Sr isotope data published previously, strongly support a late-diagenetic or epigenetic first Fe-mineralization from convecting formation waters. They ascended along extension faults and were driven by an increased heat flow caused by crustal thinning during a Devonian rifting phase that initiated the separation of the Noric terrane from Africa. A potential source of the Fe could have been the underlying Ordovician acid volcanics. Regional metamorphism related to collision tectonics in the Late Carboniferous (Hercynian) and later during the Alpine orogeny, caused intensive recrystallization and partial mobilization of the various carbonate phases.  相似文献   

14.
Sea water basalt interaction in spilites from the Iberian Pyrite Belt   总被引:2,自引:0,他引:2  
Low grade hydrothermally metamorphosed mafic rocks from the Iberian Pyrite Belt are enriched in 18O relative to the oxygen isotopic ratio of fresh basalt (+6.5±1). The observed 18O whole rock values range from +0.87 to +15.71 corresponding to positive isotopic shifts of +5 to +10, thus requiring isotopic exchange with fluids under conditions of high water:rock ratios at low temperatures. The lowest 18O observed corresponds to an albitized dolerite still and is compatible with independent geochemical data suggesting lower water: rock ratios for the alteration of these rocks.The isotope data are consistent with the hypothesis that the spilites from the Pyrite Belt were produced by interaction of basaltic material with sea water.Significant leaching of transition metals from the mafic rocks during alteration coupled with available sulphur isotopic data for the sulphide ores also suggest that sea water may have played an important role in the formation of ore deposits in the Iberian Pyrite Belt.  相似文献   

15.
Isotopic compositions of carbon and oxygen are studied in different (rhodochrosite, calcareous-rhodochrosite, and chlorite–rhodochrosite) types of manganese carbonate ores from the Usa deposit (Kuznetskii Alatau). The 13C value varies from –18.4 to –0.7, while the 18O value ranges between 18.4 and 23.0. Host rocks are characterized by higher values of 13C (–1.9 to 1.0) and 18O (21.2 to 24.3). The obtained isotope data suggest an active participation of oxidized organic carbon in the formation of manganese carbonates. Manganese carbonate ores of the deposit are probably related to metasomatic processes.  相似文献   

16.
Oxygen and carbon isotope compositions were determined for calcites from the Green Tuff formations of Miocene age in Japan. Values of 18O from 24 calcites in altered rocks from 5 districts range from –2 to +16SMOW, in most cases from 0 to +8SMOW. The low 18O values rule out the possibility of their low-temperature origin or any significant contribution of magmatic fluid in the calcite precipitation. These values, coupled with their mineral assemblages, suggest that the calcites formed from meteoric hydrothermal solutions which caused propylitic alteration after the submarine strata became emergent.Values of 13C from the calcites show a wide variation from –17 to 0PDB. Calcites from different districts have different ranges of 13C values, indicating that there was no homogeneous reservoir of carbon at the time the calcite formed, and that the carbon had local sources. Carbon isotopic compositions of calcite within ore deposits in the Green Tuff formations range from –19 to 0PDB, similar to those of calcite in the altered rocks in the same district, suggesting that the carbon in ore calcites was likely supplied from the surrounding rocks through activity of meteoric hydrothermal solutions.  相似文献   

17.
The Ordovician volcano-sedimentary succession of Erquy (northern Brittany) is made of immature sediments thermally metamorphosed at the contact of intruding basic sills. Pillow lavas constitute the upper part of the sequence. The trace element geochemistry of sills and pillow lavas suggests that they were derived from a tholeiitic source located beneath a passive margin. This volcanic sequence was metamorphosed under low to moderate greenschist facies conditions. In this study the direction and amplitude of chemical and isotopic fluxes in the basalt-sediment-water system were established and the oxygen and hydrogen isotope compositions of the aqueous fluid that reacted with the volcanic rocks were characterized. Cationic thermometry on chlorites and isotopic thermometry on plagioclase-chlorite pairs indicate closure metamorphic temperatures in the range 200–250°C for the basaltic sills. Stable isotope compositions of iron-rich chlorites (18O-5.5; D from-60 to-50) and plagioclases (18O from +9 to +10) reveal that the source of the fluid was certainly seawater. The 18O variations within the sills are strongly correlated with the rate of progress of the main metamorphic reaction:clinopyroxene+plagioclase+ilmenite chlorite+albite+epidote+quartz+sphene that produced major element mobility at the scale of the volcanosedimentary sequence. Calculation of elemental fluxes by mass balance combined with oxygen isotopic compositions of basalts shows that the highest water-rock ratios (1) were at sill-sediment boundaries and within pillow lavas at the top of the pile. The volcanosedimentary sequence of Erquy was a net sink for Na and a source for Ca. No Mg uptake could be detected whereas the hydrothermal alteration of the sediments released Fe, Si, and K trapped by the volcanic rocks. The 18O value of the fluid reacting with sills appears to have shifted no more than +4 after percolation at low temperature through immature sediments (18O12). The Erquy volcano-sedimentary sequence represents a marine hydrothermal system dominated by low-temperature exchange which allowed a general 18O-enrichment of the volcanic rocks and a 18O-depletion of sediments.  相似文献   

18.
New sulphur and sulphate-oxygen isotope measurements for the main discordant and stratiform lead-zinc-barite orebodies at Silvermines Co. Tipperary, allow reappraisal of previously offered differing interpretations (Graham, 1970; Greig et al., 1971) of the bearing of sulphur isotopes on the genesis of this important Irish deposit. The following aspects of the data are confirmed: barite 34 S-values range from 17–21, similar to lower Carboniferous seawater sulphate: stratiform sulphide lens pyrites have 34 S-values ranging from –13 to –36; vein sulphide 34 S-values range from –8 to 4; sulphide 34 S-values increase upwards and outwards respectively in the related discordant and stratiform G orebodies; galena-sphalerite isotope palaeotemperatures are not too consistent, ranging from 40 to 430°C (using the calibration of Czamanske and Rye (1974). New facts are as follows: barite 18O-values range from –13 to –17, stratiform barites ranging from 13 to 14.5; sulphides separated from a single stratiform ore lens hand specimen usually have 34 Ssl > 34 Sga > 34 Spy; the outward decrease in 34 S-values in the stratiform G orebody is confined to the first few hundred feet only; pyrite 34 S-values progressively increase downwards through one stratiform sulphide orebody; yet variations of 13 occur within a single colloform pyrite structure from another stratiform orebody. It is concluded that there were at least two sources of sulphur, seawater sulphate and deep-seated sulphur. The former was the dominant source of all sulphate and, via biogenic reduction, of the sulphur in the bulk of the stratiform sulphide. The latter was the source of the sulphur in the vein sulphides. There was minimal isotopic interaction between the cool seawater sulphate and the warm unwelling ore fluid sulphur species, even though the latter precipitated under near isotopic equilibrium conditions when the temperature dropped and/or the pH and Eh increased. The lack of isotopic equilibrium between pyrite and ore sulphides in the stratiform ore lenses may result from the latter having precipitated slightly later than the former because of solubility relationships. Overall the present isotopic evidence supports considerable geological evidence favoring a syngenetic origin for the stratiform Silvermines orebodies.  相似文献   

19.
Peak metamorphic temperatures for the coesite-pyrope-bearing whiteschists from the Dora Maira Massif, western Alps were determined with oxygen isotope thermometry. The 18O(smow) values of the quartz (after coesite) (18O=8.1 to 8.6, n=6), phengite (6.2 to 6.4, n=3), kyanite (6.1, n=2), garnet (5.5 to 5.8, n=9), ellenbergerite (6.3, n=1) and rutile (3.3 to 3.6, n=3) reflect isotopic equilibrium. Temperature estimates based on quartz-garnet-rutile fractionation are 700–750 °C. Minimum pressures are 31–32 kb based on the pressure-sensitive reaction pyrope + coesite = kyanite + enstatite. In order to stabilize pyrope and coesite by the temperature-sensitive dehydration reaction talc+kyanite=pyrope+coesite+H2O, the a(H2O) must be reduced to 0.4–0.75 at 700–750 °C. The reduced a(H2O) cannot be due to dilution by CO2, as pyrope is not stable at X(CO2)>0.02 (T=750 °C; P=30 kb). In the absence of a more exotic fluid diluent (e.g. CH4 or N2), a melt phase is required. Granite solidus temperatures are 680 °C/30 kb at a(H2O)=1.0 and are calculated to be 70°C higher at a(H2O)=0.7, consistent with this hypothesis. Kyanite-jadeite-quartz bands may represent a relict melt phase. Peak P-T-f(H2O) estimates for the whiteschist are 34±2 kb, 700–750 °C and 0.4–0.75. The oxygen isotope fractionation between quartz (18O=11.6) and garnet (18O=8.7) in the surrounding orthognesiss is identical to that in the coesitebearing unit, suggesting that the two units shared a common, final metamorphic history. Hydrogen isotope measurements were made on primary talc and phengite (D(SMOW)=-27 to-32), on secondary talc and chlorite rite after pyrope (D=-39 to -44) and on the surrounding biotite (D=-64) and phengite (D=-44) gneiss. All phases appear to be in nearequilibrium. The very high D values for the primary hydrous phases is consistent with an initial oceanicderived/connate fluid source. The fluid source for the retrograde talc+chlorite after pyrope may be fluids evolved locally during retrograde melt crystallization. The similar D, but dissimilar 18O values of the coesite bearing whiteschists and hosting orthogneiss suggest that the two were in hydrogen isotope equilibrium, but not oxygen isotope equilibrium. The unusual hydrogen and oxygen isotope compositions of the coesite-bearing unit can be explained as the result of metasomatism from slab-derived fluids at depth.  相似文献   

20.
Summary The stable isotope geochemistry of native gold-bearing quartz veins contained within low-grade metasedimentary strata in the central Canadian Rocky Mountains, British Columbia is examined. The data augment previous geological and geochemical studies.Vein pyrite 34S values cluster between + 14.2 and + 16.3 (CDT). Coeval galenas exhibit 34S values between + 11.4 and 13.3. Pyrite-galena geothermometry reveals a mean temperature of mineralization of 300 ± 43°C. Comparison of 34S values for the vein pyrites, with values for pyrite porphyroblasts in country rocks suggests that vein sulfur was probably derived from the host rocks.18O(SMOW) values of host quartzites and pelites cluster between + 12.0 and + 13.5, and + 9.5 and + 10.5, respectively. Auriferous vein quartz exhibits 18O values between + 13.0 and + 15.0. Veins were likely deposited from fluids undergoing post-peak metamorphic cooling.Vein inclusion fluids exhibit values between –105 and –124 (SMOW). Combined O-H-isotope data are most compatible with a source fluid involving chemically- and isotopically-evolved meteoric waters.The critical role of H-isotope data in the evaluation of source fluids for such mesothermal gold lodes is stressed. The paucity of H-isotope data pertaining to the study of lode gold deposits in similar low-grade metasedimentary domains suggests that the involvement of meteoric waters may at times be overlooked.
Der Ursprung metamorphogener Gold-Ganglagerstätten: Bedeutung stabiler Isotopendaten aus den zentralen Rocky Mountains, Kanada
Zusammenfassung Die vorliegende Arbeit befaßt sich mit der Untersuchung der Geochemie stabiler Isotope goldführender Quarzgänge in schwach metamorphen Sedimenten der zentralen Rocky Mountains in Britisch Kolumbien, Kanada. Die Resultate ergänzen früher publizierte geologische und geochemische Daten.Die 34S-Werte von Gang-Pyrit liegen zwischen + 14.2 und + 16.3 (CDT); gleichzeitig gebildeter Bleiglanz hat 34S-Werte von + 11.4 bis + 13.3. Die Isotopengeothermo metrie des Pyrits und Bleiglanzes ergibt eine mittlere Mineralisationstemperatur von 300°C + 43° für diese beiden Minerale. Vergleiche der 8345-Werte des Gang-Pyrits mit denen von Pyrit-Porphyroblasten des Nebengesteins lassen für die Gang-Pyrite eine Herkunft des Schwefels aus dem Nebengestein als wahrscheinlich erscheinen.Die 18O-Werte von Quarziten und Peliten, die als Nebengesteine auftreten, streuen von + 12.0 bis + 13.5 (SMOW), beziehungweise von +9.5 bis + 10.5 Quarz goldführender Gänge hat 18O-Werte, die zwischen + 13.0 und + 15.0 (SMOW) liegen. Er wurde als Gangfüllung wahrscheinlich bei sinkenden Temperaturen aus post metamorphen wäßrigen Lösungen abgesetzt.Flüssigkeitseinschlüsse von Gangmineralien zeigen D-Werte von -105 bis -124 (SMOW). Die H-O-Isotope sind deshalb ein Hinweis dafür, daß als mineralisierende Lösungen isotopisch veränderte meteorische Wässer in Betracht zu ziehen sind. Bei der Deutung der Herkunft der mineralisierenden wäßrigen Lösungen von mesothermalen Goldgängen muß die Kenntnis der H-Isotope als kritisch betrachtet werden. Die Seltenheit mit der H-Isotopendaten dieses Lagerstättentyps in der Literatur diskutiert werden, dürfte ein wesentlicher Grund dafür sein, daß die Rolle meteorischer Wässer bei der Genese mesothermaler, in Metasedimenten liegender Goldgänge, vielfach übersehen wurde.


With 4 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号