首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the technique of determining the sum of the masses of double stars, we have estimated the mass of the central object in the globular cluster M15. The radial velocities of stars at distances up to 1″ from the cluster center have been used. The parameters of circular orbits and the space velocities of 11 selected field stars relative to the cluster center have been determined from the calculated velocity dispersions with respect to the mean radial velocity. Based on the mean space velocity V, 14 km s?1, and using the energy integral, we have estimated the mass of the central object to be within the range (1?9) × 103 M . We have estimated the kinetic power of the outflow of matter from the region surrounding the black hole in M15 and the specific angular momentum of the black hole.  相似文献   

2.
Empirical evidence for both stellar mass black holes (M <102M ) and supermassive black holes (SMBHs, M >105M ) is well established. Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is correlated with the bulge mass, and even more strongly with the central stellar velocity dispersion σ c , the M σ relation. On the other hand, evidence for “intermediate-mass” black holes (IMBHs, with masses in the range 100–105 M ) is relatively sparse, with only a few mass measurements reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We explore the question of whether globular clusters extend the M σ relationship for galaxies to lower black hole masses and find that available data for globular clusters are consistent with the extrapolation of this relationship. We use this extrapolated M σ relationship to predict the putative black hole masses of those globular clusters where existence of central IMBH was proposed. We discuss how globular clusters can be used as a constraint on theories making specific predictions for the low-mass end of the M σ relation.  相似文献   

3.
Population synthesis is used to model the number of neutron stars in globular clusters that are observed as low-mass X-ray sources and millisecond radio pulsars. The dynamical interactions between binary and single stars in a cluster are assumed to take place only with a continuously replenished “background” of single stars whose properties keep track of the variations in parameters of the cluster as a whole and the evolution of single stars. We use the hypothesis that the neutron stars forming in binary systems from components with initial masses of ~8–12 M during the collapse of degenerate O-Ne-Mg cores through electron captures do not acquire a high space velocity. The remaining neutron stars (from single stars with masses >8 M or from binary components with masses >12 M ) are assumed to be born with high space velocities. According to this hypothesis, a sizeable fraction of the forming neutron stars remain in globular clusters (about 1000 stars in a cluster with a mass of 5 × 105 M ). The number of millisecond radio pulsars forming in such a cluster in the case of accretion-driven spinup in binary systems is found to be ~10, in agreement with observations. Our modeling also reproduces the observed shape of the X-ray luminosity function for accreting neutron stars in binary systems with normal and degenerate components and the distribution of spin periods for millisecond pulsars.  相似文献   

4.
The characteristics of gravitational bursts from active galactic nuclei, and globular clusters are obtained for three astrophysical situations:(i) scattering of stars by massive black holes residued at the centers of galaxies and globular clusters; (ii) the close encounters of stars in the nuclear regions of these objects; (iii) scattering of stars by black holes of stellar mass containing in the stellar population of galactic nuclei and clusters. The most effective source of gravitational bursts appears to be a scattering of stars by the massive central black holes which produces the bursts with dimensionless amplitudeh10–19–10–21 and frequencies from 10–1 to 10–5 Hz. The characteristics obtained correspond to the possiblities of a future gravitational-wave experiment with use of laser Doppler tracking of interplanetary spacecrafts.  相似文献   

5.
The population synthesis method is used to study the possibility of explaining the appreciable fraction of the intergalactic type-Ia supernovae (SN Ia), 20 −15 +12 %, observed in galaxy clusters (Gal-Yam et al. 2003) when close white dwarf binaries merge in the cores of globular clusters. In a typical globular cluster, the number of merging double white dwarfs does not exceed ∼10−13 per year per average cluster star in the entire evolution time of the cluster, which is a factor of ∼3 higher than that in a Milky-Way-type spiral galaxy. From 5 to 30% of the merging white dwarfs are dynamically expelled from the cluster with barycenter velocities up to 150 km s−1. SN Ia explosions during the mergers of double white dwarfs in dense star clusters may account for ∼1% of the total rate of thermonuclear supernovae in the central parts of galaxy clusters if the baryon mass fraction in such star clusters is ∼0.3%.  相似文献   

6.
In this paper we consider effects of the general relativity and an accreting black hole in a globular cluster by studying the evolution of a globular cluster core as a whole, i.e., without the partition of the core into the so-called cusp and isothermal core regions. The globular cluster core is assumed to contain a massive black hole at its center. We show that the final fate of the evolution of a globular cluster core depends on the mass of the black hole at its center. When the massM of the black hole is greater than 3×103 M , there will be a contraction of the core. On the other hand, if the mass of the black hole is smaller (102 M M3×103 M ) in the center, the core will expand until complete dissolution.  相似文献   

7.
We have obtained and analyzed UBVRI CCD frames of the young, 4–10 Myr, open cluster NGC 3293 and the surrounding field in order to study its stellar content and determine the cluster’s IMF. We found significantly fewer lower mass stars, M≤2.5M , than expected. This is particularly so if a single age for the cluster of 4.6 Myr is adopted as derived from fitting evolutionary models to the upper main sequence. Some intermediate-mass stars near the main sequence in the HR diagram imply an age for the cluster of about 10 Myr. When compared with the Scalo (The stellar initial mass function. ASP conference series, vol. 24, p. 201, 1998) IMF scaled to the cluster IMF in the intermediate mass range, 2.5≤M/M ≤8.0 where there is good agreement, the high mass stars have a distinctly flatter IMF, indicating an over abundance of these stars, and there is a sharp turnover in the distribution at lower masses. The radial density distribution of cluster stars in the massive and intermediate mass regimes indicate that these stars are more concentrated to the cluster core whereas the lower-mass stars show little concentration. We suggest that this is evidence supporting the formation of massive stars through accretion and/or coagulation processes in denser cluster cores at the expense of the lower mass proto-stars. R.W. Slawson and E.P. Horch are guest investigators at the University of Toronto Southern Observatory, Las Campanas, Chile.  相似文献   

8.
From strip counts in 20 open star clusters the characteristic parameters of their structure are derived. At the boundaries of the clusters the relative potential amounts to 0.32 on the average. The effective mean distance of the stars from the centre of the cluster introduced by SCHWARZSCHILD corresponds nearly to the radius of the cluster. The counts in two clusters allow to continue the cumulative mass functions up to Mv ≈ 8, and their exponential convergence is used for the determination of the cluster masses. The same has been done for the Pleiades and seven clusters according to the counts of VAN DEN BERGH and SHER . The mean velocities and the mean periods of revolution T of the cluster stars are of the order 0.90 km/s and 12 · 106 years respectively. Between the latter and the mean (mass) density the relation T ≈≈ 20 · 106 is valid. During 1 · 109 years the mean cluster loses 50% of its stars by relaxation.  相似文献   

9.
A prolonged timing of millisecond pulsars has revealed low-frequency uncorrelated (infrared) noise, presumably of astrophysical origin, in the pulse arrival time (PAT) residuals for some of them. Currently available pulsar timing methods allow the statistical parameters of this noise to be reliably measured by decomposing the PAT residual function into orthogonal Fourier harmonics. In most cases, pulsars in globular clusters show a low-frequency modulation of their rotational phase and spin rate. The relativistic time delay of the pulsar signal in the curved spacetime of randomly distributed and moving globular cluster stars (the Shapiro effect) is suggested as a possible cause of this modulation. Extremely important (from an astrophysical point of view) information about the structure of the globular cluster core, which is inaccessible to study by other observational methods, could be obtained by analyzing the spectral parameters of the low-frequency noise caused by the Shapiro effect and attributable to the random passages of stars near the line of sight to the pulsar. Given the smallness of the aberration corrections that arise from the nonstationarity of the gravitational field of the randomly distributed ensemble of stars under consideration, a formula is derived for the Shapiro effect for a pulsar in a globular cluster. The derived formula is used to calculate the autocorrelation function of the low-frequency pulsar noise, the slope of its power spectrum, and the behavior of the σz statistic that characterizes the spectral properties of this noise in the form of a time function. The Shapiro effect under discussion is shown to manifest itself for large impact parameters as a low-frequency noise of the pulsar spin rate with a spectral index of n = −1.8 that depends weakly on the specific model distribution of stars in the globular cluster. For small impact parameters, the spectral index of the noise is n = −1.5.  相似文献   

10.
The knowledge of mass loss rates due to thermal winds in cool dwarfs is of crucial importance for modeling the evolution of physical parameters of main sequence single and binary stars. Very few, sometimes contradictory, measurements of such mass loss rates exist up to now. We present a new, independent method of measuring an amount of mass lost by a star during its past life. It is based on the comparison of the present mass distribution of solar type stars in an open cluster with the calculated distribution under an assumption that stars with masses lower than Mlim have lost an amount of mass equal to ΔM. The actual value of ΔM or its upper limit is found from the best fit. Analysis of four clusters: Pleiades, NGC 6996, Hyades and Praesepe gave upper limits for ΔM in three of them and the inconclusive result for Pleiades. The most restrictive limit was obtained for Praesepe indicating that the average mass loss rate of cool dwarfs in this cluster was lower than 6 × 10–11 M/yr. With more accurate mass determinations of the solar type members of selected open clusters, including those of spectral type K, the method will provide more stringent limits for mass loss of cool dwarfs. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The migration of binary systems of compact massive objects in galactic nuclei owing to encounters with globular clusters is studied. A binary moves in the field of a galactic bulge with a fixed potential. An empirical relationship between the masses of the binary and bulge of the form M b = 1000(M 1+M 2) is used, where M 1 and M 2 are the masses of the components of the binary. The amplitude of the drift of the binary components is found as a function of the initial binary orbit parameters, the size of the bulge, and the initial velocity and mass of the globular cluster. It is shown that the amplitude of the drift depends to a greater extent on the parameters of the cluster, while the magnitude of the perturbation in the binary orbit depends weakly on the bulge size and the eccentricity and major semiaxis of the binary orbit. The amplitude of the drift of the center of mass also decreases on the average as the difference between the masses of the components becomes larger.  相似文献   

12.
The current knowledge of the evolution of Population II stars, as observed in galactic halos and globular clusters, is outlined. The recent theoretical results provided by an improved physical understanding of the stars are reported, with a particular emphasis upon those stellar evolutionary phases which are the keystones of the interpretation of globular cluster stars. Within the up–to–date theoretical scenario, the luminosity of the turn–off stars and horizontal branch stars, which are of fundamental importance for distance and age determinations, turns out to be fainter and brighter, respectively, in comparison with previous theoretical computations. The predicted absolute magnitude of RR Lyrae stars is consistent with the bright values suggested from the long distance scale (Sandage 1993), but the slope of the relation between and metallicity ([Fe/H]) agrees with that suggested from the short distance scale (see, e.g., Carney et al. 1992, Clementini et al. 1995), at least with [Fe/H]-1.3. As to the globular cluster ages, the new computations provide younger ages ( 10 Gyr–13 Gyr), weakening the conflict with current cosmological estimates. The recent results derived from the fitting of HIPPARCOS parallaxes of field subdwarfs to the fiducial main sequence of globular clusters are consistent with the up–to–date theoretical models. However, the direct determinations of , which are based on the HIPPARCOS proper motions and trigonometric parallaxes of field RR Lyrae stars, give fainter absolute magnitudes than those obtained from the improved evolutionary models. This seems to suggest that the problem of the globular cluster distance and age is still open. Received 6 April 1998  相似文献   

13.
We obtained various sets of near infrared observations of the prototypical merger, NGC 4038/4039 (‘the Antennae’). Integral field spectroscopy and broad- and narrow band imaging aimed at obtaining age and extinction estimates of the young star clusters seen in large numbers distributed throughout the disks of the interacting galaxies. High resolution spectroscopy led to estimates of the dynamical masses of the clusters. The clusters have ages ranging from 3.7 to ≈ 20 Myrs. Those in the ‘overlap region’ are very young (below 8 Myrs), while in the nothwestern loop ages are above that limit, and the nuclear starbursts are much older (∼ 100 Myrs). Some photometric cluster masses lie above 106 M. The stellar velocity dispersions determined from the medium- to high resolution spectra yielded virial cluster masses again up to a few 106 M. Large differences in the estimated photometric and virial masses suggest a variation of the IMF between the clusters. At least some of the clusters have masses, concentrations and IMFs that could allow them to evolve into globular clusters. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

14.
Expected characteristics of RR Lyrae stars as a function of the evolutive parameters are reported. Results from both evolutionary and pulsational investigations are collected in a suitable form, to show the general constraints to any interpretative analysis of the observations. It is shown that the spread in luminosity among the RR Lyrae stars results a function of the original chemical composition. On this basis a set of independent indications is found, suggesting that the globular cluster ω Cen is more He-rich than M 3; agreement with the whole observational frame is attained ifY ωCen~0.35,Z ωCen~5×10?4 andY M3~0.25,Z M3~10?3. No mass loss is needed to account for the RR Lyrae stars observed in ω Cen. The results are discussed, and it is shown that M 13-type clusters can be just characterized by a larger value ofZ in comparison with ω Cen. It is suggested that variations in the original helium content of the order of ΔY~0.1 and a correlationZ=Z(t) can account for some well-observed galactic globular clusters, without allowing for mass loss in the redder HB stars belonging to each cluster.  相似文献   

15.
Dynamical evolution of globular clusters in the Large Magellanic Cloud (LMC) is investigated by means of N-body simulations; particular attention is paid to time evolution in the ellipticitical figure of globular clusters. The simulations were started with a binary globular cluster. It merged into a single cluster with ellipticity of about 0.3. The simulations were continued until the cluster became rounder due to the effects of two body relaxation and of tidal field of LMC. It is found that the outward angular momentum transport due to the gravothermal contraction makes the inner region rounder; the ellipticity at about the initial half-mass radius (r h) decreases with the e-folding time of 20 relaxation times. On the other hand, the outer region becomes rounder due to the stripping of stars by the tidal field; the ellipticity at about 3r h decreases with the e-folding time of 80 crossing times therein, though the time scale depends on the direction of the tidal field relative to the spin of the cluster. These two effects are comparable at about the half-mass radius. Taking account of such theoretical results we reanalyzed observed data for the ellipticity at about the half-mass radius of LMC clusters. We estimated the relaxation time and crossing time for each of the observed clusters, from which we calculated the effective time of getting round of the cluster. We plotted the observed ellipticity of the clusters against their non-dimensional age — i.e., the age normalized by the effective time. We found that observed ellipticity distribution is consistent with our picture.  相似文献   

16.
The oldest open clusters in our Galaxy set the lower limit to the age of the Galactic Disk (9–10 Gyr). Although they appear to be very rich now, it is clear that their primordial populations were much larger. Often considered as transitional objects, these populous open clusters show structural differences with respect to globular clusters so their dynamics and characteristic evolutionary time scales can also be different. On the other hand, their large membership lead to different dynamical evolution as compared with average open clusters. In this paper, the differential features of the evolution of rich open clusters are studied using N-body simulations, including several of the largest (104 stars) published direct collisional N-body calculations so far, which were performed on a CRAY YMP. The disruption rate of rich open clusters is analysed in detail and the effect of the initial spatial distribution of the stars in the cluster on its dynamics is studied. The results show that cluster life-time depends on this initial distribution, decreasing when it is more concentrated. The effect of stellar evolution on the dynamical evolution of rich clusters is an important subject that also has been considered here. We demonstrate that the cluster's life-expectancy against evaporation increases because of mass loss by evolving high-mass stars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We consider the possibility of detecting intermediate-mass (103–104 M ) black holes, whose existence at the centers of globular clusters is expected from optical and infrared observations, using precise pulse arrival timing for the millisecond pulsars in globular clusters known to date. For some of these pulsars closest to the cluster centers, we have calculated the expected delay times of pulses as they pass in the gravitational field of the central black hole. The detection of such a time delay by currently available instruments for the known pulsars is shown to be impossible at a black hole mass of 103 M and very problematic at a black hole mass of 104 M . In addition, the signal delay will have a negligible effect on the pulsar periods and their first derivatives compared to the current accuracy of their measurements.  相似文献   

18.
The possibility of identifying some of Galactic gamma-ray sources as clusters of primordial black holes is discussed. The known scenarios of supermassive black hole formation indicate the multiple formation of lower-mass black holes. Our analysis demonstrates that due to Hawking evaporation the cluster of black holes with masses about 1015 g could be observed as a gamma-ray source. The total mass of typical cluster is ∼10 M. Detailed calculations have been performed on the basis of specific model of primordial black hole formation.  相似文献   

19.
A catalog of massive (⩾10 M ) stars in binary and multiple systems with well-known masses and luminosities has been compiled. The catalog is analyzed using a theoretical mass-luminosity relation. This relation allows both normal main-sequence stars and stars with peculiarities: with clear manifestations of mass transfer, mass accretion, and axial rotation, to be identified. Least-squares fitting of the observational data in the range of stellar masses 10M M ≲ 50 M yields the relation LM 2.76. An erratum to this article is available at .  相似文献   

20.
In the present paper we combine an N-body code that simulates the dynamics of young dense stellar systems with a massive star evolution handler that accounts in a realistic way for the effects of stellar wind mass loss. We discuss two topics.
  1. The formation and the evolution of very massive stars (with masses >120 M) is followed in detail. These very massive stars are formed in the cluster core as a consequence of the successive (physical) collisions of the 10–20 most massive stars in the cluster (this process is known as ‘runaway merging’). The further evolution is governed by stellar wind mass loss during core hydrogen and core helium burning (the WR phase of very massive stars). Our simulations reveal that, as a consequence of runaway merging in clusters with solar and supersolar values, massive black holes can be formed, but with a maximum mass ≈70 M. In low-metallicity clusters, however, it cannot be excluded that the runaway-merging process is responsible for pair-instability supernovae or for the formation of intermediate-mass black holes with a mass of several 100 M.
  2. Massive runaways can be formed via the supernova explosion of one of the components in a binary system (the Blaauw scenario), or via dynamical interaction of a single star and a binary or between two binaries in a star cluster. We explore the possibility that the most massive runaways (e.g. ζ Pup, λ Cep, BD+43°3654) are the product of the collision and merger of two or three massive stars.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号