首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ITCZ的季节内振荡及其与热带气旋发生阶段性的关系   总被引:4,自引:0,他引:4  
刘舸  孙淑清  张庆云 《大气科学》2009,33(4):879-889
利用中国气象局提供的热带气旋资料和NCEP/NCAR再分析等资料, 研究了热带辐合带(Intertropical Convergence Zone, 简称ITCZ)上对流强度的季节内振荡特征及其与热带气旋生成频数阶段性变化的关系, 并进一步研究了它与越赤道气流、 赤道西风和ITCZ北侧偏东风季节内振荡的关系。研究发现: (1) ITCZ对流强度的变化有明显的30~60 d振荡, 西太平洋 (5°N~20°N, 120°E~150°E) 范围内的热带气旋约有2/3发生在30~60 d振荡的活跃位相。(2) ITCZ季节内振荡在热带地区表现为向东传播的特征, 而在副热带地区 (25°N~35°N) 表现出清晰的西传特征。在ITCZ季节内振荡较强年, 振荡在由赤道传播至15°N左右时, 与北面向南传播的振荡在该纬度附近汇合, 对流强度增强, 使热带气旋在此期间频繁发生。而在弱年, 振荡由赤道一直向北传播至30°N附近, 15°N附近的ITCZ对流较弱, 热带气旋生成偏少。(3) 赤道西风、105°E~110°E越赤道气流和ITCZ北侧的偏东风气流本身也存在30~60 d振荡。这三支气流的30~60 d振荡与ITCZ的季节内强弱变化密切相关。然而, 相比之下偏东风气流的30~60 d振荡和ITCZ对流强弱的30~60 d振荡对应关系略差。  相似文献   

2.
热带低层大气30~60天低频动能的年际变化与ENSO循环   总被引:17,自引:7,他引:10  
龙振夏  李崇银 《大气科学》2001,25(6):798-808
利用NCEP再分析资料,通过统计相关及合成分析研究了热带大气季节内振荡(ISO)的年际变化与ENSO循环之间的关系.结果表明,热带大气季节内振荡(也称30~60天低频振荡)的年际变化在热带中西太平洋地区最强.在ElNino成熟之前的春夏季,热带西太平洋的30~60天振荡异常活跃,其动能明显增加且逐渐东移;在E1Nino成熟以后,热带西太平洋大气30~60天低频振荡迅速减弱.与这种加强的30~60天振荡相伴随,在赤道北侧为异常的气旋式环流,赤道地区出现偏西风异常.相反,在LaNina成熟之前的春夏季,热带西太平洋大气30~60天振荡偏弱.进一步的分析还发现,东亚冬季风的年际变化是引起热带大气30~60天振荡的年际变化的主要机制:强东亚冬季风导致热带西太平洋积云对流加强,从而引起热带西太平洋大气30~60天振荡加强;相反,对应于弱的东亚冬季风,热带西太平洋地区积云对流偏弱,大气30~60天振荡偏弱.作者的资料分析还证实,热带大气30~60天低频振荡的年际变化,作为一种外强迫,对ElNino的形成起着十分重要的作用.  相似文献   

3.
关于ENSO本质的进一步研究   总被引:28,自引:5,他引:23  
基于ENSO是热带太平洋海气相互作用产物的科学观点,一系列的分析研究表明:赤道太平洋次表层海温异常(SOTA)有明显的年际变化(循环),并且与ENSO发生密切相关;ENSO的真正源区在赤道西太平洋暖池,赤道西太平洋暖池正(负)SOTA沿赤道温跃层东传到东太平洋,导致El Nino(La Nina)的爆发;在暖池正(负)SOTA沿赤道温跃层东传的同时,将有负(正)SOTA沿10°N和10°S两个纬度带向西传播,从而构成SOTA的循环;热带太平洋SOTA年际循环的驱动者主要是由异常东亚季风所引起的赤道西太平洋纬向风的异常.进而,可以提出关于ENSO本质的一种新理论,即ENSO实质上主要是由异常东亚季风引起的赤道西太平洋异常纬向风所驱动的热带太平洋次表层海温距平的年际循环.    相似文献   

4.
Heat content anomalies are analyzed to understand subsurface variability on both aparticular focus on the evolving basinwide patterns and oceanic connections between the extratropics and tropics. Various analyses indicate two distinct modes, one interannual and the other decadal, that involve the tropics and the North Pacific subtropical gyre, respectively. Interannual variability is associated with El Niño in the tropics, with a prominent “see-saw” pattern alternately on and off the equator, and in the east and west, respectively. The interannual cycle features a coherent propagation of subsurface signals around the tropical Pacific, eastward along the equator but westward off the equator at 10–15?°N. Decadal signals are dominant in the subtropics and midlatitudes but also have a tropical component that appears to be independent of interannual variations. An oceanic connection can be seen between subsurface anomalies in the midlatitudes, in the subtropics and tropics on decadal time scales. Subsurface thermal anomalies associated with midlatitude decadal variability can propagate through the subtropics into the tropics, which may modulate the intensity of interannual variability in the tropics. For example, in the middle and late 1970s, a significant warm temperature anomaly appeared to penetrate into the western and central tropics at depth, warming the tropical upper ocean and depressing the thermocline. During the development of El Niño, therefore, an extratropically preconditioned subsurface state (e.g., an enhanced positive heat content anomaly) in the western and central tropical Pacific would favor a warmer sea surface temperature anomaly in the eastern equatorial Pacific, potentially increasing the intensity of ocean-atmosphere coupling. These changes in the thermocline structure and possibly in the coupling strength can further alter the very character of tropical air-sea interactions. This may help to explain decadal variability of El Niño evolution in the tropical Pacific as observed in the 1980s. Our subsurface variability analysis presents observational evidence for the detailed space-time structure of decadal oceanic links between the extratropics and the tropics.  相似文献   

5.
We examine the mean and transient state of the intertropical convergence zone (ITCZ) by analyzing data and using simple theory. We concentrate on the tropical eastern Pacific Ocean noting that there exists in this region a well-developed mean ITCZ. Furthermore, it is a region where there has been considerable discussion in the literature of whether easterly waves develop in situ or propagate westwards from the Atlantic Ocean. The region is typical of tropical regions where there is a strong cross-equatorial pressure gradient (CEPG): mean convection well removed from the equator but located equatorward of the maximum sea-surface temperature (SST) and minimum sea level pressure (MSLP). Further to the west, near the dateline where the CEPG is much smaller, convection is weaker and collocated with SST and MSLP extrema. It is argued that in regions of significant CEPG that the near-equatorial tropical system is inertially unstable and that the rectification of the instability for a given CEPG determines the location and intensity of the climatological ITCZ. Using simple theoretical arguments, we develop an expression for the mean latitude of the ITCZ as a function of the CEPG. We note on a day-by-day basis that the ITCZ is highly transient state with variability occurring on 3–8 day time scales. Transients with amplitudes about half of the mean ITCZ, propagate northwards from the near-equatorial southern hemisphere as anomalous meridional oscillations, eventually amplifying convection in the vicinity of the mean ITCZ. It is argued that in these longitudes of strong CEPG the mean ITCZ is continually inertially unstable with advections of anticylonic vorticity across the equator resulting in the creation of an oscillating divergence–convergence doublet. The low-level convergence produces convection and the resultant vortex tube stretching generates cyclonic vorticity which counteracts the northward advection of anticylonic vorticity. During a cycle, the mid-troposphere heating near 10oN oscillates between 6 and 12 K/day at the inertial frequency of the latitude of the mean convection. As a result, there exists an anomalous and shallower, oscillating meridional circulation with a magnitude about 50% of the mean ITCZ associated with the stable state following the generation of anticylonic vorticity. Further, it is argued that the instabilities of the ITCZ are directly associated with in situ development of easterly waves which occur with the inertial period of the latitude of the mean ITCZ. The dynamical sequences and the genesis of easterly waves are absent in the regions further to the east where the CEPG is much weaker or absent altogether. In a companion study (Part II), numerical experiments are conducted to test the hypothesis raised in the present study.  相似文献   

6.
Summary This study investigates the circulation anomalies associated with the intraseasonal evolution of wet and dry years over western Tanzania (29–37° E, 11.5–4.75° S) and how the onset and withdrawal of the rainy season as well as its wet spell characteristics are modified. It is found that for wet years, the rains begin earlier and end later, with strong wet spells occurring during the season, and there tend to be a greater number of moderate wet spells (although not necessarily more intense wet spells) than in dry years. In dry years, late onset and early cessation of the rainy season occur, often with an extended dry spell soon after the onset, and there tend to be a greater number of dry spells within the season. Large negative outgoing long wave radiation (OLR) anomaly values tend to be located between 20° and 40° E with anomalous westerly flow at 850 hPa occurring across the continent from 10° E to the tropical western Indian Ocean during wet spells in the anomalously wet seasons. Anomalously dry seasons are characterised by large positive OLR anomalies over 30–50° E as well as easterly anomalies at 850 hPa and westerly anomalies at 200 hPa. Eastward propagating intraseasonal anomalies are slower during the wet years implying that the convection remains over Tanzania longer. On the intraseasonal scale, Hovmoeller analyses of OLR and 850 and 200 hPa zonal wind indicate that convection over western Tanzania may be associated with a flux of moisture from the tropical southeast Atlantic and Congo basin followed by weak easterlies from the tropical western Indian Ocean.On interannual scales, wet (dry) years are characterized over the Indian Ocean by weaker (stronger) equatorial westerlies and weaker (stronger) trades that lead to less (more) export of equatorial moisture away from East Africa and increased (decreased) low-level moisture flux convergence over southern Tanzania, respectively. These anomalies arise from an anticyclonic (cyclonic) anomaly over the tropical western Indian Ocean during wet (dry) austral summers that may be related to cool (warm) SST anomalies there. Large scale modulation of the Indian Ocean Walker cell is also evident in both cases, but particularly for the dry years.Current affiliation: Tanzania Meteorological Agency, P.O. Box 3056, Dar es Salaam, Tanzania  相似文献   

7.
利用美国NOAA提供的向外长波辐射(OLR)资料、NCEP/NCAR再分析资料以及上海台风所提供的热带气旋(TC)资料等,通过定义一个描写南海范围内(5°N~20°N,105°E~120°E)的热带辐合带(Intertropical Convergence Zone,简称ITCZ)强度指数,研究了南海ITCZ年际和年代际异常变化特征及其对非移入性南海TC[South China Sea-generated tropical cyclone(SCS-G TC)]活动的可能影响,并从异常强、弱南海ITCZ年份的大气环流背景和海表温度等变化特征来尝试揭示南海TC的活动规律。结果表明:在年际和年代际时间尺度上,南海ITCZ强度指数与南海TC的生成频数存在显著的负相关关系,长期趋势变化间的关系存在不同。南海ITCZ的强、弱显著地影响到南海TC的生成频数。强南海ITCZ年,南海TC频数偏多;弱南海ITCZ年,南海ITCZ频数偏少。强、弱南海ITCZ年对于南海TC的生成源地、TC的维持时间以及路径和强度的影响不显著。进一步分析表明,动力和环境条件方面,强、弱南海ITCZ年可能差异较大。异常偏强年,对流层低层出现气旋性环流,上层出现反气旋性环流;季风槽在南海区域偏强、位置偏南。与OLR表示的深对流区相配合,存在暖的海表温度和低层强烈的正涡度和强辐合,在高层存在相应的强的气流辐散,形成了极有利于南海TC发生发展的条件。弱南海ITCZ年则相反。另外,ITCZ强年,太平洋异常SST(Sea Surface Temperature)出现为La Ni?a特征,南海ITCZ区对流活跃,强度偏强。反之,ITCZ弱年则表现为El Ni?o特征,南海ITCZ关键区的对流强度偏弱。这些结果可为深刻认识南海TC的生成规律以及对南海TC的预报提供线索。  相似文献   

8.
热带太平洋年代际平均气候态变化与ENSO循环   总被引:20,自引:0,他引:20  
张勤  丁一汇 《气象学报》2001,59(2):157-172
文中用观测的热带太平洋海表温度资料、风应力资料和OLR资料,通过多时间尺度分析,将与ENSO有关的变化分为3个主要的分量,一是2~7a的ENSO循环尺度,二是8~20a的年代际尺度,三是20a以上的平均气候态变化。讨论了热带太平洋这种平均气候态变化的主要特征以及与ENSO循环的关系,并用耦合模式的数值试验来研究平均气候态的变化对ENSO循环的影响。结果表明热带太平洋的平均气候态在20世纪70年代后期发生了一次由冷态向暖态的变化,主要增暖区是沿赤道以及热带东太平洋的,海表温度变化最大中心可以达到0.6℃。伴随着海表温度的变化,赤道西太平洋的西风距平加强,赤道东太平洋的东风距平也加强,在赤道中太平洋形成了一个加强的辐合中心。年代际平均气候冷暖态的变化对ENSO最直接的线性影响是使ElNio位相增加,而形成ENSO冷位相和暖位相的不对称。另一方面较暖的平均气候态可能引起海洋和大气之间的耦合加强,导致ENSO循环振荡有所加强。  相似文献   

9.
本文对南海至西太平洋一带夏季低空越赤道气流的情况和西南季风的来源,进行了初步研究。发现:(1)就气候平均而言,东非低空急流的影响范围,包括印度南部、孟加拉湾南部直到中南半岛南部和南海南部。在这一范围内,夏季月平均西南季风强度的年际变化十分一致;(2)夏季在中南半岛南部、南海南部,西南季风的主要来源是上游印度、孟加拉湾地区,直接来自南半球的气流比重不大。而热带西北太平洋的西南季风,则主要来自南半球;(3)在110-140°E 的赤道地区,并不存在一支主要的越赤道气流;(4)在150°E 附近的新几内亚东岸,有一条越赤道气流的通道。热带西北太平洋的西南季风,主要就是这支越赤道气流转向而成(但似乎要求这支气流的南风分量强度超过某一下限,即存在一阈值,才能对西北太平洋的西南季风变化有影响)。新几内亚岛上的山脉,对南半球东南信风的阻挡,是形成这支越赤道气流的重要原因之一;(5)大致在15°N 以南的南亚至西北太平洋地区,其西南季风主要由二支气流构成:一支在非洲东岸附近越过赤道,成为东非低空急流,经印度南部,往下游一直影响到南海南部;另一支在新几内亚东岸附近越过赤道,转向成西南气流影响西北太平洋。  相似文献   

10.
The interannual variability of climate in the Amazon basin is studied using precipitation and river level anomalies observed near the March/April rainy season peak for the period 1980–86, supported by satellite imagery of tropical convection. Evaluation of this data in conjunction with the corresponding circulation and sea-surface temperature (SST) anomaly patterns indicates that abundant rainy seasons in Northern Amazonia are characterized by anomalously cold surface waters in the tropical eastern Pacific, and negative/positive SST anomalies in the tropical North/South Atlantic, accelerated Northeast trades and a southward displaced Intertropical Convergence Zone (ITCZ) over the Atlantic sector. Years with deficient rainfall show broadly opposite patterns.General circulation model (GCM) experiments using observed SST in three case studies were aimed at testing the teleconnections between SST and Amazon climate implied by the empirical analysis. The GCM-generated surface fields resemble the corresponding observers fields most closely over the tropical Pacific and, with one exception, over the tropical Atlantic as well. The modeled precipitation features, along the Northwest coast of South America, anomalies of opposite sign to the North and South of the equator, in agreement with observations and results from a different GCM. Similarities in simulations run from different initial conditions, but using the same global SST, indicate broad consistency in response to common boundary forcing.  相似文献   

11.
A 10-year simulation with a coupled ocean-atmosphere general circulation model (CGCM) is presented. The model consists of the climate version of the Météo-France global forecasting model, ARPEGE, coupled to the LODYC oceanic model, OPA, by the CERFACS coupling package OASIS. The oceanic component is dynamically active over the tropical Pacific, while climatological time-dependent sea surface temperatures (SSTs) are prescribed outside of the Pacific domain. The coupled model shows little drift and exhibits a very regular seasonal cycle. The climatological mean state and seasonal cycle are well simulated by the coupled model. In particular, the oceanic surface current pattern is accurately depicted and the location and intensity of the Equatorial Undercurrent (EUC) are in good agreement with available data. The seasonal cycle of equatorial SSTs captures quite realistically the annual harmonic. Some deficiencies remain including a weak zonal equatorial SST gradient, underestimated wind stress over the Pacific equatorial band and an additional inter-tropical convergence zone (ITCZ) south of the equator in northern winter and spring. Weak interannual variability is present in the equatorial SST signal with a maximum amplitude of 0.5°C.  相似文献   

12.
This paper examines the performances of various cumulus convective parameterization schemes in the tropical atmosphere using an aqua-planet atmospheric General Circulation Model forced by zonally symmetric but latitudinally varying sea surface temperature (SST) and solar angle. The intertropical convergence zone (ITCZ) is represented by intense precipitation. The assigned Control experiment with a specific SST distribution, as designated by the Aqua Planet Experiment, yields a single ITCZ when Zhang’s scheme or Manabe’s scheme is employed, whereas a double ITCZ occurs when Tiedtke’s scheme is used. The key to the occurrence of a double ITCZ is latitudinal variation in evaporation within the boundary layer. Such variation is induced mainly by latitudinal variation in the zonal wind speed, with the existence of a calm belt at the equator and a maximum wind speed located off the equator, arising from the evaporation–wind feedback (EWF) mechanism. The latitudinal distribution of evaporation results in a decrease in the height of the lifting condensation level in areas off the equator and an increase at the equator. The occurrence of a single ITCZ in Zhang’s scheme is attributed to the use of a Convective Available Potential Energy criterion by which convection occurs more readily at the equator. As a result, a precipitation maximum is maintained at the equator via a prevailing Conditional Instability of the Second Kind mechanism.  相似文献   

13.
Summary This study has used low Outgoing Longwave Radiation (OLR) values to study the structure and evolution of the active convection across Equatorial Eastern Africa (EEA) region (5° N to 10° S, 28° E to 42° E) during the northern hemisphere spring season. This involved the examination of the map patterns and cross-sections of OLR data as derived from once-daily NOAA's Operational Polar Orbiting satellites within the period June 1974 to May 1991.The results from the study indicated that before March the mean ITCZ was active over the west Indian Ocean and Central Africa. The migration northwards of the zone of active ITCZ was associated with pre-season evolution patterns over the extratropics. The time-longitude cross-sections further indicated evidence that low OLR values were already occurring over central Africa to the west of 35° E before March. Such low OLR values penetrated to the east of 35° E in some occasions. Theresults from the study suggest that behind the surges of extratropical frontal systems strong meridional flow does occur and that these are associated with the advance of the ITCZ further northwards from extratropical regions of southern Africa. Then, active convection occurred over EEA region and this extended westwards to cover West Africa as well. The withdrawal of the ITCZ from the EEA region was however associated with the establishment of a centre of low OLR values to the southwest of Peninsula India.The results from the study further revealed that the years 1981/1984 has the lowest/highest mean OLR values in the region within the period 1974 to 1991. The time-latitude cross-sections of the anomalous years indicated that active convection crossed the EEA region from south to north of the equator early/late during the anomalous wet/dry years of 1981/1984. The number of pentads with low OLR were also more/less during 1981/1984 respectively.With 9 Figures  相似文献   

14.
Summary The structure and variability of the inter-tropical convergence zone (ITCZ) in the SW Indian Ocean in the austral summer is investigated. The ITCZ is identified by satellite microwave (SSMI) precipitable water (PW) values > 5 g cm–2, minimum outgoing longwave radiation (OLR) values < 220 W m–2 and the pattern of convergence in the low level (850 hPa) winds. According to OLR climatology, the ITCZ lies over 15°S latitude to the west of Madagascar (40–50°E), but near 10°S to the east of 60°E. Inter-annual and intra-seasonal variability is induced by the interaction of the convective NW monsoon and subsident easterly trades. Symptoms of the structure and variability are presented using tropical cyclone (TC) tracks, axes of PW exceedences and OLR, 850hPa wind and PW fields in the period 1988–1990. The shape and intensity of the ITCZ is modulated by the strength of the NW monsoon off east Africa and by standing vortices in the SW Indian Ocean. The topography of Madagascar imparts a distinctive break in convective characteristics, and distinguishes the SE African ITCZ from its maritime counterpart.With 6 Figures  相似文献   

15.
Based on the satellite data from the National Oceanic and Atmospheric Administration and the NCEP/NCAR reanalysis data, the variation of the intensity of convection over the Intertropical Convergence Zone(ITCZ) in summer and its impacts on tropical cyclones are studied. In this paper, an intensity index of the ITCZ is proposed according to Outgoing Longwave Radiation(OLR) in the region of(5°–20°N, 120°–150°E) in the western North Pacific(WNP). Then strong and weak ITCZ years are classified and different variables during the strong/weak ITCZ years are analyzed. The composite results show that the ITCZ anomaly is connected to the general atmospheric circulation and SST distribution. In the strong ITCZ years, the subtropical anticyclone weakens and shifts northward. Besides, there is salient cyclonic anomaly at the low level and anticyclonic anomaly at the high level. SST patterns in the preceding winter resemble to those of La Nina. It could persist into the succeeding summer. However, it is opposite in the weak ITCZ years. The impact of the ITCZ anomaly on the tropical cyclone(TC) formation and track is also discussed. There are more TCs over the WNP(5°–20°N, 120°–150°E) in the strong ITCZ years and there is a significant increase in the northward recurving TCs. In the weak ITCZ years, fewer TCs occur and the frequency of the northwestward track is higher.  相似文献   

16.
—Upper ocean thermal data and surface marine observations are used to describe the three-dimensional, basinwide co-evolution of interannual variability in the tropical Pacific climate system. The phase propagation behavior differs greatly from atmosphere to ocean, and from equatorial to off-equatorial and from sea surface to subsurface depths in the ocean. Variations in surface zonal winds and sea surface temperatures (SSTs) exhibit a standing pattern without obvious zonal phase propagation. A nonequilibrium ocean response at subsurface depths is evident, characterized by coherent zonal and meridional propagating anomalies around the tropical North Pacific: eastward on the equator but westward off the equator. Depending on geographic location, there are clear phase relations among various anomaly fields. Surface zonal winds and SSTs in the equatorial region fluctuate approximately in-phase in time, but have phase differences in space. Along the equator, zonal mean thermocline depth (or heat content) anomalies are in nonequilibrium with the zonal wind stress forcing. Variations in SSTs are not in equilibrium either with subsurface thermocline changes in the central and western equatorial Pacific, with the former lagging the latter and displaced to the east. Due to its phase relations to SST and winds, the basinwide temperature anomaly evolution at thermocline depths on an interannual time scale may determine the slow physics of ENSO, and play a central role in initiating and terminating coupled air-sea interaction. This observed basinwide phase propagation of subsurface anomaly patterns can be understood partially as water discharge processes from the western Pacific to the east and further to high latitudes, and partially by the modified delayed oscillator physics. Received: 17 January 1997 / Accepted: 10 March 1998  相似文献   

17.
The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.  相似文献   

18.
Global features of the Pacific-Japan Oscillation   总被引:2,自引:0,他引:2  
Summary Global features of tropical convection, sea surface temperature (SST) and atmospheric circulation associated with the Pacific-Japan Oscillation (PJO) are examined by using monthly mean global data for 6 years (1979–1984). It is shown that the PJO is not a local phenomena limited to the western-Pacific but related to global-scale atmosphere-ocean variations.The PJO highly correlates with interannual variations of SST in the tropical Pacific. During summers in which positive SST anomaly occurs in the tropical western Pacific, convective activity in the western Pacific especially near Philippines is strongly enhanced but that in the whole equatorial eastern Pacific is greatly suppressed due to negative SST anomaly in these areas.The Walker circulation is intensified in the equatorial Pacific and twin cyclonic cells at 200 mb are generated in the subtropical Pacific of both hemispheres. Strong anticyclonic circulations take place in the northern middle latitudes extending from East China to Northwest Pacific. Anomalous circulations are also generated in the other extratropical regions in the both Northern and Southern Hemispheres.With 7 Figures  相似文献   

19.
We investigated the seasonal march of the Intertropical Convergence Zone (ITCZ) shown by the 22 coupled general circulation models of the 20th Century Climate in Coupled Models experiment in seven regions (Africa, Indian Ocean, western Pacific, central Pacific, eastern Pacific, South America, and Atlantic Ocean). Inter-model differences in the seasonal march of the ITCZ over Africa (10?C40°E) were significantly smaller than those over other regions. This finding indicates that the seasonal march of the ITCZ over Africa is insensitive to differences in model physics and resolution and suggests that the seasonal march of the African ITCZ is controlled by robust and simple mechanisms. Motivated by this result, we tried to understand the process of the seasonal march of the ITCZ over central Africa (15?C30°E) based on an analysis of ERA-40 data. The analysis results revealed the following features of the ITCZ in this region: (1) The ITCZ itself produces large convective available potential energy that generates deep convection. (2) The abundant water vapor within the ITCZ is maintained by horizontal moisture flux. (3) Outside but near the ITCZ, shallow convection exists and may act to pre-moisten deep convection in spring and autumn. (4) The seasonal change of the ITCZ is preceded by that of the vertical moist instability in the lower free atmosphere caused by the seasonal change in insolation.  相似文献   

20.
The interannual variability of occurrence of multiple tropical cyclone(MTC) events during June-October in the western North Pacific(WNP) was examined for the period 1979-2006.The number of the MTC events ranged from 2 to 9 per year,exhibiting a remarkable year-to-year variation.Seven active and seven inactive MTC years were identified.Compared to the inactive years,tropical cyclone genesis locations extended farther to the east and in the meridional direction during the active MTC years.A composite analysis shows that inactive MTC years were often associated with the El Nin o decaying phase,as warm SST anomalies in the equatorial eastern-central Pacific in the preceding winter transitioned into cold sea surface temperature(SST) anomalies in the concurrent summer.Associated with the SST evolution were suppressed low-level cyclonic vorticity and weakened convection in the WNP monsoon region.In addition to the mean flow difference,significant differences between active and inactive MTC years were also found in the strength of the atmospheric intraseasonal oscillation(ISO).Compared with inactive MTC years,ISO activity was much stronger along the equator and in the WNP region during active MTC years.Both westward-and northward-propagating ISO spectrums strengthened during active MTC years compared to inactive years.The combined mean state and ISO activity changes may set up a favorable environment for the generation of MTC events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号