首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allan Hills 85085 is a unique chondrite with affinities to the Al Rais-Renazzo clan of carbonaceous chondrites. Its constituents are less than 50 μm in mean size. Chondrules and microchondrules of all textures are present; nonporphyritic chondrules are unusually abundant. The mean compositions of porphyritic, nonporphyritic and barred olivine chondrules resemble those in ordinary chondrites except that they are depleted in volatile elements. Ca-, Al-rich inclusions are abundant and largely free of nebular alteration; they comprise types similar to those in CM and CO chondrites, as well as unique types. Calcium dialuminate occurs in several inclusions. Metal, silicate and sulfide compositions are close to those in CM-CO chondrites and Al Rais and Renazzo. C1-chondrite clasts and metal-rich “reduced” clasts are present, but opaque matrix is absent. Siderophile abundances in ALH85085 are extremely high (e.g., Fe/Si= 1.7 × solar), and volatiles are depleted (e.g., Na/Si= 0.25 × solar, S/Si= 0.03 × solar). Nonvolatile lithophile abundances are similar to those in Al Rais, Renazzo, and CM and CO chondrites.ALH85085 agglomerated when temperatures in the nebula were near 1000 K, in the same region where Renazzo, Al Rais and the CI chondrites formed. Agglomeration of high-temperature material may thus be a mechanism by which the fractionation of refractory lithophiles occurred in the nebula. Chondrule formation must have occurred at high temperatures when clumps of precursors were small. After agglomeration, ALH85085 was annealed and lightly shocked. C1 and other clasts were subsequently incorporated during late-stage brecciation.  相似文献   

2.
Allan Hills 85085 is a chemically and mineralogically unique chondrite whose components have suffered little metamorphism or alteration. This chondrite is unique because it has fewer and smaller chondrules (4 wt. %; mean diameter 16 μm) than any other chondrite, more metallic Fe,Ni (36%) and lithic and mineral silicate fragments (56%), and a lower abundance of troilite (2%) and volatiles. Most chondrules are cryptocrystalline or glassy and are depleted in volatiles, some small chondrules are also very depleted in refractory lithophiles. Matrix lumps (4%) partly resemble CI and CM matrices and may be foreign to the parental asteroid. Despite these differences, the components of ALH 85085 have some features common to most type 2 and the least metamorphosed type 3 chondrites: metallic Fe,Ni grains that contain 0.1–1 wt.% Cr, Si and P; Fe/(Fe + Mg) values of olivines, pyroxenes and chondrules are concentrated in the range 1–6 at.% with a few percent in the range 7–30%; porphyritic chondrules are chondritic in composition (except for their low volatile abundances). Thus the components of ALH 85085 probably have similar origins to those of components in other chondrites, and their properties largely reflect nebular, not asteroidal, processes.The bulk composition of ALH 85085 fits none of the nine groups of chondrites: it is richer in Fe (1.4 × CI levels when normalized to Si) and poorer in Na and S (0.1–0.2 × CI) than other chondrites. Low volatile concentrations are due to a low matrix abundance and loss of volatiles during or prior to chondrule formation, not to volatile loss during metamorphism. Chondrule textures imply extensive heating of chondrule melts above the liquidus, consistent with loss of volatiles from small volumes of melt during chondrule formation. The small size of chondrules is partly due to extensive fragmentation by impacts, which may have occurred on the parent asteroid or in the solar nebula. Collisions between chondrule precursor aggregates in the nebula could also be responsible for the small sizes of chondrules.Assuming that ALH 85085 is a representative sample of an asteroid, its properties lend support to models for the origins of the Earth, eucrite parent body and volatile-poor iron meteorites that invoke chondritic planetesimals depleted in volatiles. The existence of ALH 85085 and Kakangari suggests that the nine chondrite groups may provide a remarkably poor sample of the primitive chondritic material from which the asteroids formed. Certain similarities between ALH 85085 and Bencubbin and Weatherford suggest that the latter two primitive meteorites may actually be chondrites with even higher metal abundances (50–60 wt.%) and very large, partly fragmented chondrules.  相似文献   

3.
The Adhi Kot EH4 enstatite chondrite breccia consists of silica-rich clasts (12+mn; 5 vol.%), chondrule-rich clasts (55+mn; 10 vol.%) and matrix (35+mn; 10 vol.%). The silica-rich clasts are a new kind of enstatite chondritic material, which contains more cristobalite (18–28 wt.%) than enstatite (12–14 wt.%), as well as abundant niningerite and troilite. The bulk atomic Mg/Si ratios of the clasts (0.22–0.40) are much lower than the average for enstatite chondrites (0.79). Kamacite and martensite (with 8–11 wt.% Ni and a martensitic structure) occur in all three breccia components. The clasts have kamacite-rich rims, and kamacite-rich aggregates occur in the matrix.A unidirectional change in the ambient pS2/pO2 ratio in the region of the solar nebula where Adhi Kot agglomerated can explain many of the breccia's petrologic features. If this region initially had a very high pS2/pO2 ratio in a gas of non-cosmic composition, sulfurization of enstatite and metallic Fe (e.g., MgSiO3 + 2Fe + C + 3H2S = MgS + SiO2 + 2FeS + H2O + CH4) may have occurred, producing abundant niningerite, free silica and troilite at the expense of enstatite and metallic Fe. The Ni content of the residual metal would have increased, perhaps to ~ 8–10 wt.%. The silica-rich clasts agglomerated under these conditions; a significant fraction of the originally produced niningerite was lost (perhaps by aerodynamic size-sorting processes), lowering the clasts' bulk Mg/Si ratios.The pS2/pO2 ratio then decreased (perhaps because of infusion of additional H2O) and sulfurization of metallic Fe and enstatite ceased. The chondrule-rich clasts agglomerated under these conditions, acquiring little free silica and niningerite. An episode of chondrule formation occurred at this time (by melting millimeter-sized agglomerates of this relatively silica-poor enstatite chondrite material and concomitant fractionation of an immiscible liquid of metallic Fe,Ni and sulfide). The chondrule-rich clasts agglomerated many such chondrules. Subsequently, the matrix agglomerated, acquiring the few remaining chondrules. Kamacite-rich aggregates formed, after the cessation of metal sulfurization, and agglomerated with the matrix. The kamacite-rich clast rims were acquired at this time.The components of Adhi Kot accreted to the EH chondrite parent body, where the breccia was assembled, buried beneath additional accreting material, and metamorphosed at temperatures of ? 700°C. Impact-excavation of the breccia and deposition onto the surface caused the formation of martensite from taenite inside the clasts and the matrix. At the surface, impact-melting produced an albite glass spherule, which was incorporated into the matrix. However, the absence of solar-wind-implanted rare gases in bulk Adhi Kot indicates that the breccia spent little time in a regolith.  相似文献   

4.
We studied the fine-grained matrices (< 150 μm) of 14 gas-rich ordinary chondrite regolith breccias in an attempt to decipher the nature of the lithification process that converted loose regolith material into consolidated breccias. We find that there is a continuous gradation in matrix textures from nearly completely clastic (class A) to highly cemented (class C) breccias in which the remaining clasts are completely surrounded by interstitial, shock-melted material. We conclude that this interstitial material formed by shock melting in the porous regolith. In general, the abundances of solar-wind-implanted 4He and 20Ne are inversely correlated with the abundance of interstitial, shock-melted, feldspathic material. Chondrites with the highest abundance of interstitial, melted material (class C) experienced the highest shock pressures and temperatures and suffered the most extensive degassing. It is this interstitial, feldspathic melt that lithifies and cements the breccias together; those breccias with very little interstitial melt (class A) are the most porous and least consolidated.  相似文献   

5.
Seven samples of the unique St. Mesmin meteorite have been analyzed by instrumental and radiochemical neutron activation analysis for Na, Ca, Sc, Cr, Mn, Fe, Co, Ni, Zn, Ga, Ge, Se, In, Sm, Yb, Ir and Au. St. Mesmin is unique in being the only ordinary chondrite known to contain an unmelted xenolith of another ordinary chondrite. Data for two host matrix samples and three light clasts are consistent with their classification as LL chondrite material. The composition of the large dark xenolith confirms earlier evidence that it is an H chondrite; volatile abundances are consistent with it being highly shocked, petrologic type-4 material. In an olivine microporphyry, siderophile abundances are mostly about 0.13 times LL abundances, an apparent indication of metal loss during the shock melting which produced the clast. As in other regolithic chondrites, the dark host has higher contents of highly volatile elements than do the light clasts. We suggest that this results from a combination of differences in intensity of preexisting metamorphism as well as a redistribution of volatiles during regolith gardening.The H-group xenolith in St. Mesmin is a relatively recent addition to the parent body (< 1.4 Ga ago), but it is argued that this does not require regolith activity at that time. Rather the view is supported that the regolith period occurred very early in the meteorite's history (&gsim;4.0 Ga ago) and may have been related to the growth of the parent body. The H-group fragment may be part of the projectile whose impact excavated the St. Mesmin meteoroid from the LL parent body.  相似文献   

6.
Chondritic meteorites and their components formed in the protoplanetary disk surrounding the nascent sun. We show here that the two volumetrically dominating components of carbonaceous chondrites, chondrules and matrix did not form independently. They must have been derived from a single, common source. We analyzed Ca and Al in chondrules and matrix of the CV type carbonaceous chondrites Allende and Y-86751. The Ca/Al-ratios of chondrules and matrix of both chondrites are complementary, but in case of Allende chondrules have sub-chondritic and matrix super-chondritic Ca/Al-ratios and in case of Y-86751 chondrules have super-chondritic and matrix sub-chondritic Ca/Al-ratios. This rules out the redistribution of Ca between chondrules and matrix during parent body alteration. Tiny spinel grains in the matrix produce the high Al in the matrix of Y-86751. In Allende these spinels were most probably included in chondrules. The most plausible explanation for this Ca- and Al-distribution in the same type of chondrite is that both chondrules and matrix formed from the same chemical reservoir. Tiny differences in nebular conditions during formation of these two meteorites must have led to the observed differences. These are severe constraints for all models of chondrule formation. Any model involving separate formation of chondrules and matrix, such as the X-wind model can be excluded.  相似文献   

7.
Foliations defined by alignment of elongated chondrules have been noted previously in chondrites, but none displays this effect so well as Leoville (CV3). The shapes of Leoville chondrules were produced by deformation in situ, as indicated by inclusions and clasts with similar shapes and preferred orientations to those of chondrules. Similarities in the aspect ratios of apparent strain ellipses measured for chondrules alone (1.9 and 2.0 by several methods) and for the whole meteorite (2.0) indicate either that Leoville deformed homogeneously or that it deformed as a framework of touching chondrules. This amount of strain corresponds to approximately 33% uniaxial shortening, assuming constant volume. Because the strain ellipse was measured in only one orientation, this strain value is a minimum estimate for the meteorite. Lack of correlation between foliation and either shock or thermal effects argues that impact or metamorphism are unlikely to have produced this deformation. Compaction due to overburden from progressive accretion on the chondrite parent body is suggested to have been its cause.Estimates of maximum deviatoric stresses in the interiors of asteroid-sized bodies and constraints on maximum temperatures for CV3 chondrites are consistent with diffusional flow as the deformation mechanism for olivine in these chondrules. Diffusional flow is also suggested by the scarcity of observed lattice dislocations. Deformation of Leoville olivines by this mechanism at geologically reasonable strain rates appears to require higher temperatures than those believed to have been experienced by this meteorite (< 600°C). However, differences in olivine grain size, the presence of water, or a more complex deformation history might explain this discrepancy.  相似文献   

8.
Optically “striated” orthopyroxenes in two ordinary chondrites, Allegan (H5) and Quenggouk (H4), are compared with shock-affected orthopyroxenes in Saint-Sévérin (LL6) and Ambapur Nagla (H5) by high-voltage transmission electron microscopy. The striated orthopyroxenes have very many, thin, evenly distributed lamellae of clinopyroxene. They are undeformed and also lack evidence of partial inversion from clinopyroxene to orthopyroxene. Striated orthopyroxene does not seem to be a reliable indicator of prograde metamorphism. Instead, it is interpreted as inverted protopyroxene, produced during the cooling of chondrules at slower rates than the rapid quenching of Type 3 chondrules. The conclusions are consistent with retrograde models for the evolution of H-group chondrites, in which the higher Petrologic Types are attributed to retarded cooling due to accretionary processes leading to the growth of the parent body. The thermal histories of ordinary chondrites could be greatly clarified by further experimental work on inversions in bronzitic pyroxenes.  相似文献   

9.
Ten whole chondrules separated from the Dhajala (H3, 4), Hallingeberg (L3), and Semarkona (LL3) chondrites were individually analyzed for bulk element composition by instrumental neutron activation with half of each chondrule subsequently sacrificed for oxygen isotopic analysis and half retained for petrographic and electron microprobe analysis. On a three-isotope plot (δ17O vs. δ18O), the chondrules neither cluster near their respective chondrite hosts nor in the vicinities of previously recognized chondrite group averages. Instead, they define a trend resolvable into mixing and fractionation components but dominated by mixing in a manner similar to that previously observed for clasts from the LL3 chondrite ALHA76004. Covariations of chondrule isotopic mixing and fractionation parameters with petrological parameters were sought by two-variable linear least-squares regression analyses. However, the only two isotopic/petrological correlations significant at the 95% confidence level were δ17O vs. total bulk Fe (r = ?0.68) and mixing parameter,m18, vs. bulk weight ratio (CaO + Al2O3)/MgO (r = +0.67). Other correlations of apparent statistical significance were found by treating the chondrules as separate porphyritic (3 porphyritic olivine-pyroxene, 1 porphyritic olivine, 1 barred olivine) and non-porphyritic (4 radial pyroxene, 1 granular pyroxene/cryptocrystalline) textural subgroups. The reliability of the trends, based on so few samples, is not clear but the results at least indicate that possible existence of distinct isotopic/petrological subgroups of chondrules should be further investigated. Absence of certain isotopic/petrological trends expected as condensation effects argues against direct nebular condensation as the dominant process of chondrule formation. Instead, a model involving melting of heterogeneous solids, followed by various degrees of liquid/gas exchange, is favored. In any case, chondrule oxygen isotopic evolution was dominated by two-component mixing; fractional vaporization was, at most, a second-order effect. In addition to chondrules, parent bodies of unequilibrated ordinary chondrites must have also incorporated a16O-rich component which might have been fine-grained “matrix”.  相似文献   

10.
Chondrules are the major high temperature components of chondritic meteorites which accreted a few millions years after the oldest solids of the solar system, the calcium–aluminum-rich inclusions, were condensed from the nebula gas. Chondrules formed during brief heating events by incomplete melting of solid dust precursors in the protoplanetary disk. Petrographic, compositional and isotopic arguments allowed the identification of metal-bearing Mg-rich olivine aggregates among the precursors of magnesian type I chondrules. Two very different settings can be considered for the formation of these Mg-rich olivines: either a nebular setting corresponding mostly to condensation–evaporation processes in the nebular gas or a planetary setting corresponding mostly to differentiation processes in a planetesimal. An ion microprobe survey of Mg-rich olivines of a set of type I chondrules and isolated olivines from unequilibrated ordinary chondrites and carbonaceous chondrites revealed the existence of several modes in the distribution of the ?17O values and the presence of a large range of mass fractionation (several ‰) within each mode. The chemistry and the oxygen isotopic compositions indicate that Mg-rich olivines are unlikely to be of nebular origin (i.e., solar nebula condensates) but are more likely debris of broken differentiated planetesimals (each of them being characterized by a given ?17O). Mg-rich olivines could have crystallized from magma ocean-like environments on partially molten planetesimals undergoing metal–silicate differentiation processes. Considering the very old age of chondrules, Mg-rich olivine grains or aggregates might be considered as millimeter-sized fragments from disrupted first-generation differentiated planetesimals. Finally, the finding of only a small number of discrete ?17O modes for Mg-rich olivines grains or aggregates in a given chondrite suggests that these shattered fragments have not been efficiently mixed in the disk and/or that chondrite formation occurred in the first vicinity of the breakup of these planetary bodies.  相似文献   

11.
The textures and chemical compositions of the constituent minerals of the fine-grained aggregates (FGA's) of L3 chondrites were studied by the backscattered electron image technique, electron probe microanalysis, and transmission electron microscopy. Plagioclase and glass in the interstices between fine grains of olivine and pyroxene indicate that the FGA's once partly melted. Compositional zoning and decomposition texture of pyroxenes are similar to those observed in chondrules, indicating a common cooling history of the FGA's and chondrules. Therefore, the mechanism that caused melting of the FGA's is considered to be the same as for chondrules. Bulk compositions of the FGA's are within the range of those of chondrules, so some chondrules probably were produced by complete melting of the same precursor materials as those of the FGA's. The precursor materials must have included fine olivine and other grains that probably are condensates.  相似文献   

12.
Enstatite achondrites (aubrites) were not derived from known enstatite chondrites by melting and fractionation on one and the same parent body, for these and other reasons: (1) There is no satisfactory mechanism for fractionating metal plus troilite in enstatite chondrites to form these phases in different proportions and with different Ti contents in aubrites. (2) Many enstatite chondrites and aubrites are regolith or fragmental breccias, but clasts of one within the other have not been found. (3) Cosmic ray exposure ages of the two groups are difficult to explain if they are from the same parent body, but are easy to explain if they are from different parent bodies.Siderophile element abundances in metal from the Mt. Egerton meteorite, which consists of enstatite and metallic Fe,Ni, preclude it from being a complementary differentiate of the aubrites. Rather, it appears that Mt. Egerton was formed from the same source material as enstatite chondrites, but the components were mixed in different proportions.  相似文献   

13.
The association between agglutinates and chondrule-like spherules, which characterizes the assemblage of impact-derived melt products in lunar regolith samples and some gas-rich achondrites, is not found in primitive chondrites. This observation suggests that impacts into a parent-body regolith are unlikely to have produced the chondrules. We believe that if chondrules were formed from impact melt, it was probably generated by jetting during particle-to-particle collisions, presumably in the nebula.  相似文献   

14.
Two cross-cutting veins in the Chantonnay (L6f) chondrite illustrate different patterns of fractionation of total chondritic shock melts. The earlier vein, which is dark-colored and bears abundant host rock xenoliths, is strongly reduced and sodium-poor relative to the bulk meteorite. It resembles and may be cogenetic with melt pockets in Chantonnay. The later vein, which is lighter-colored and somewhat vesicular, lacks evidence of either Na loss or reduction but shows modest internal differentiation. Its metal and total iron contents (26.5 wt.%) are higher than normal for L-group chondrites.The trend of chemical fractionation recorded in the earlier Chantonnay vein resembles that reported for chondrules in ordinary chondrites, suggesting that chemical variations among chondrules in part reflect variations among their parental shock melts.  相似文献   

15.
A fragment found in soil from the Apollo 12 site (12037, from the rim of Bench Crater) appears to be a unique type of chondrite, petrologically and chemically distinct from other chondrites and lunar rocks. Inclusions consisting of shocked pyroxene rimmed by euhedral troilite crystals are set in a black aphanitic matrix. Abundant magnetite in the matrix exhibits microscopic morphologies (framboids and plaquets) characteristic of C1 chondrites. The bulk composition of this sample has high Mg/Si and low Fe/Si relative to other chondrites, and P and S are strongly enriched. Most compositional differences between this meteorite and other chondrites may be explained by fractionation of Fe phases, such as magnetite and troilite. Low refractory element contents preclude mixing with lunar materials. This sample may be a surviving fragment of the meteoritic component present in the lunar regolith. Its characteristics suggest that ancient meteoritic debris sampled by the moon may be significantly different from that captured by the present-day earth.  相似文献   

16.
High-voltage electron microscopy has been used to study the fine structure of four gas-rich meteorites, with particular reference to the cementation and compaction processes that have affected the fine-grained matrix. The observed features are compared with similar effects in lunar breccias. Lithification is attributed to the passage of shock waves through porous aggregates, causing deformation whose intensity varied spatially on a small scale, the most intense deformation and heating effects being concentrated at the edges of large grains and in the matrix between them. It is inferred that relatively mild shocks have produced amorphous cement between matrix grains in the achondrite Khor Temiki and the chondrite Weston. Relatively intense shock is inferred for specimens of the chondrites St. Mesmin and Pantar. These have non-porous, completely crystalline matrices, and fine-grained black veins which fill cracks in relatively large deformed grains. Recrystallization of some deformed material is attributed to shock-heating, which was not sustained long enough to erase the irradiation record from all the relatively large grains. Matrix recrystallization without extensive melting constitutes a metamorphic event, and the observations indicate that shock was responsible for the metamorphism experienced by these chondrites at relatively late stages of the evolution of their parent bodies.  相似文献   

17.
Microscopic investigations have been done on the chondrites Sena and Nadiabondi (H5, not shocked), Ste. Marguerite en Comines (H4, very slightly shocked), Allegan (H5, slightly shocked). Only in such cases can the matrix be easily observed and compared to those of type 3 chondrites. The <100 μm debris found in types 4 and 5 that we have observed are not the result of the metamorphism of type 3 fines.The abundance of tiny debris is in direct relation with the intensity of the shock though this shock was insufficient to provoke either the induration of the stones or a significant loss of rare gases. The bulk of the fines are the result of local disaggregation of the most brittle parts from chondrules and fragments.A low-temperature matrix has not been observed in these meteorites but only in H3 chondrites, as a coating around the chondrules. The accretion modelists should take into account the absence or the scarcity of fine particles in their calculations.  相似文献   

18.
The origin of olivine grains isolated in the matrix of C2 carbonaceous chondrites is an important problem. If these grains are condensates from a solar nebular gas, they contain compositional, isotopic and physical features that further elucidate that process. If, however, they are grains released by the breakup of chondrules, then many important condensation features have been lost during the melting that took place to form chondrules.In evaluating these two possibilities, care must be taken to determine which inclusions in C2 meteorites are actual chondrules and which are aggregates of grains that have never undergone melting. The two main types of aggregates, pyroxene-rich and pyroxene-poor, are forty to fifty times more abundant than chondrules. Four scenarios are presented to account for the kinds of aggregates and isolated grains seen in the Murchison C2 meteorite. An analysis of these scenarios is made in light of olivine crystal morphology, comparison of composition of glass inclusions inside olivine grains with interstitial glass in true chondrules and size distributions of olivines, isolated, in aggregates and in chondrules.It is concluded that no scenario that includes a chondrule-making step can account for the observed population of isolated olivine grains. An origin by direct condensation, partial comminution, aggregation and accretion best accounts for the sizes and morphological features observed.  相似文献   

19.
The majority (26/37) of the largest chondrules (d ≥ 1400 μm) exposed in a thin section of the Manych chondrite are more or less rounded fragments of microporphyry, most of which contain from 50 to 80 vol.% olivine. Modal and phase analyses were used to calculate the approximate bulk compositions of nine such chondrules. Six vary modestly around the mean composition of L-group chondrites less most of their metal and troilite and are thought to have formed by bulk melting of L-group material with loss of an immiscible Fe-Ni-S liquid. Two other chondrules, which are olivine-rich and Na- and Si-poor, formed in the same way but with some loss of volatile constituents to a vapor phase. The ninth chondrule, an olivine-poor microporphyry, may be a non-representative sample of a coarser microporphyritic rock.Comparison of these microporphyritic chondrules with the products of controlled cooling experiments and with chemically similar olivine microporphyry in the St. Mesmin chondrite (LL-breccia) suggests that the microporphyritic chondrules are fragments of magmatic rocks which crystallized from masses of liquid no less than 10 cm across.  相似文献   

20.
《Geofísica Internacional》2014,53(3):343-363
Meteorites represent the earliest records of the evolution of the solar system, providing information on the conditions, processes and chronology for formation of first solids, planetesimals and differentiated bodies. Evidence on the nature of magnetic fields in the early solar system has been derived from chondritic meteorites. Chondrules, which are millimeter sized silicate spherules formed by rapid melting and cooling, have been shown to retain remanent magnetization records dating from the time of chondrule formation and accretion of planetesimals. Studies on different meteorite classes, including ordinary and carbonaceous chondrites, have however provided contrasting results with wide ranges for protoplanetary disk magnetic fields. Developments on instrumentation and techniques for rock magnetic and paleointensity analyses are allowing increased precision. Micromagnetic and an array of geochemical, petrographic and electronic microscopy analyses provide unprecedented resolution, characterizing rock magnetic properties at magnetic domain scales. We review studies on chondrules from the Allende meteorite that reveal relationships among hysteresis parameters and physical properties. Coercivity, remanent and saturation remanence parameters correlate with chondrule size and density; in turn related to internal chondrule structure, mineralogy and morphology. Compound, fragmented and rimmed chondrules show distinct hysteresis properties, related to mineral composition and microstructures. The remanent magnetization record and paleointensity estimates derived from the Allende and other chondrites support remanent acquisition under influence of internal magnetic fields within parent planetesimals. Results support that rapid differentiation following formation of calcium-aluminum inclusions and chondrules gave rise to differentiated planetesimals with iron cores, capable of generating and sustaining dynamo action for million year periods. The Allende chondrite may have derived from a partly differentiated planetesimal which sustained an internal magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号