首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Runoff and peak flows in three experimental catchments with different forest conditions were analysed in a rainy temperate climate in southern Chile. The hydrological effects of clearcutting a Pinus radiata plantation covering 79·4% of the La Reina catchment were studied by analysing runoff and peak flows in the pre‐ and post‐harvesting periods. Mean annual runoff increased 110% after timber harvesting. Clearcutting generated a 32% mean increase in peak flows. Peak flow and runoff were examined in two adjacent catchments with different forest conditions. The older plantation in Los Ulmos 1 increasingly consumed more water than the younger plantation established at Los Ulmos 2, whereas differences in peak flows between these two catchments were not significant. Runoff and peak flows comparisons not only reflected changes in forest cover, but also the effect of rainfall characteristics during the study periods and the basins' morphologies. Comparisons between pre‐ and post‐harvesting peak discharges must be undertaken with caution, because a previous analysis at La Reina using a partial set of data overestimated changes in peak flows after timber harvesting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Elevated wildfire activity in many regions in recent decades has increased concerns about the short- and long-term effects on water quantity, quality, and aquatic ecosystem health. Often, loss of canopy interception and transpiration, along with changes in soil structural properties, leads to elevated total annual water yields, peak flows, and low flows. Post-fire land management treatments are often used to promote forest regeneration and mitigate effects to terrestrial and aquatic ecosystems. However, few studies have investigated the longer-term effects of either wildfire or post-fire land management on catchment hydrology. Our objectives were to quantify and compare the short- and longer-term effects of both wildfire and post-fire forest management treatments on annual discharge, peak flows, low flows, and evapotranspiration (AET). We analyzed ten years of pre-fire data, along with post-fire data from 1 to 7 and 35 to 41 years after wildfire burned three experimental catchments in the Entiat Experimental Forest (EEF) in the Pacific Northwest, USA. After the fire, two of the catchments were salvage logged, aerially seeded, and fertilized, while the third catchment remained as a burned reference. We observed increases in annual discharge (150–202%), peak flows (234–283%), and low flows (42–81%), along with decreases in AET (34–45%), across all three study catchments in the first seven year period after the EEF wildfire. Comparatively, annual discharge, peak flows, lows flows, and AET had returned to pre-fire levels 35–41 years after the EEF fire in the two salvage logged and seeded catchments. Surprisingly, in the catchment that was burned but not actively managed, the annual discharge and runoff ratios remained elevated, while AET remained lower, during the period 35–41 years after the EEF fire. We posit that differences in long-term hydrologic recovery across catchments were driven by delayed vegetation recovery in the unmanaged catchment. Our study demonstrates that post-fire land management decisions have the potential to produce meaningful differences in the long-term recovery of catchment-scale ecohydrologic processes and streamflow.  相似文献   

4.
The runoff in Songhuajiang River catchment has experienced a decreasing trend during the second half of the 20th century. Serially complete daily rainfall data of 42 rainfall stations from 1959 to 2002 and daily runoff data of five meteorological stations from 1953 to 2005 were obtained. The Mann–Kendall trend test and the sequential version of Mann–Kendall test were employed in this study to test the monthly and annual trends for both rainfall and runoff, to determine the start point of abrupt runoff declining, and to identify the main driving factors of runoff decline. The results showed an insignificant increasing trend in rainfall but a significant decreasing trend in runoff in the catchment. For the five meteorological stations, abrupt runoff decline occurred during 1957–1963 and the middle 1990s. Through Mann–Kendall comparisons for the area‐rainfall and runoff for the two decreasing periods, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. Analysis of land use/cover shows that farmland is most related with runoff decline among all the land use/cover change in Nenjiang catchment. From 1986 to 1995, the area of farmland increased rapidly from 6.99 to 7.61 million hm2. Hydraulic engineering has a significant influence on the runoff decline in the second Songhuajiang catchment. Many large‐scale reservoirs and hydropower stations have been built in the upstream of the Second Songhuajiang and lead to the runoff decline. Nenjiang and the Second Songhuajiang are the two sources of mainstream of Songhuajiang. Decreased runoff in these two sub‐catchments then results in runoff decrease in mainstream of Songhuajiang catchment. It is, therefore, concluded that high percent agricultural land and hydraulic engineering are the most probable driving factors of runoff decline in Songhuajiang River catchment, China.  相似文献   

5.
Eight small steep south-west facing catchments (1-63-8-26 ha) have been monitored in Westland, New Zealand since 1974. Two catchments were retained in native mixed evergreen forest and the rest were subjected to various harvesting and land preparation techniques before being planted with Pinus radiata between 1977 and 1980. Stream temperatures were measured in all catchments for 11 years, including up to four years before harvesting. The streamwater temperature regime under the native forest cover has a seasonal cycle, with an annual mean of about 9°C and mean daily temperatures ranging between a winter minimum of about 5.8°C and a summer maximum of 12.S°C. After harvesting, the winter minimum stream temperatures in all trials were unchanged as topography exerts the major control over incoming solar radiation. The largest rises in mean summer stream temperatures, up to 5.5°C, were in the catchments that had been clearcut and burnt before planting. The maximum stream temperature recorded was 22.8°C in a clearcut catchment with no riparian reserve. Summer stream temperatures in this catchment were up to 11°C higher than in an adjacent control catchment. Summer stream temperature rises in catchments with riparian reserves were less than 1.5°C. Seven years after harvesting, stream temperatures were dropping towards pre-treatments levels in only two of the six treated catchments as revegetation of the riparian areas occurred and the plantations became established. As these small headwater streams discharge into streams with flows one or two orders of magnitude larger, the increases in summer stream temperatures will be rapidly dissipated. However, the cumulative impact of harvesting many small headwater catchments that discharge into a larger stream could have a noticeable effect on stream temperature if intact riparian reserves were not retained in both headwater and main streams.  相似文献   

6.
The impacts of historical land cover changes witnessed between 1973 and 2000 on the hydrologic response of the Nyando River Basin were investigated. The land cover changes were obtained through consistent classifications of selected Landsat satellite images. Their effects on runoff peak discharges and volumes were subsequently assessed using selected hydrologic models for runoff generation and routing available within the HEC‐HMS. Physically based parameters of the models were estimated from the land cover change maps together with a digital elevation model and soil datasets of the basin. Observed storm events for the simulation were selected and their interpolated spatial distributions obtained using the univariate ordinary Kriging procedure. The simulated flows from the 14 sub‐catchments were routed downstream afterwards to obtain the accrued effects in the entire river basin. Model results obtained generally revealed significant and varying increases in the runoff peak discharges and volumes within the basin. In the upstream sub‐catchments with higher rates of deforestation, increases between 30 and 47% were observed in the peak discharge. In the entire basin, however, the flood peak discharges and volumes increased by at least 16 and 10% respectively during the entire study period. The study successfully outlined the hydrological consequences of the eminent land cover changes and hence the need for sustainable land use and catchment management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A simple modelling framework for assessing the response of ungauged catchments to land use change in South‐Western Australia is presented. The framework uses knowledge of transpiration losses from native vegetation and pasture and then partitions the ‘excess’ water (resulting from reduced transpiration after land use change) between runoff and deep storage. The simple partitioning is achieved by using soft information (satellite imagery, previous mapping and field assessment) to delimit the spread of the permanently saturated area close to the stream. Runoff is then assumed to increase in proportion to the saturated area, with the residual difference going to deep storage. The model parameters to describe the annual water yield are obtained a priori and no calibration to streamflow is required. We tested the model using gauged records over 25 years from paired catchment experiments in South‐Western Australia. Very good estimates of runoff were obtained from high rainfall (>1100 mm yr−1) catchments (R2 > 0·9) and for low rainfall (<900 mm yr−1) catchments after clearing (R2 = 0·96) but results were poorer (R2 = 0·55) for an uncleared low rainfall catchment, although overall balances were reasonable. In the drier uncleared catchments, the within‐year distributions of rainfall may exert a substantial influence on runoff response that is not completely captured by the presented model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Frequent human activities and climate change in the karst region of southwest China since the 1950s have led to the investigation of response of runoff to climate and catchment properties. Runoff coefficient (Rc) as an expression variable of the catchment response to rainfall is important to describe runoff dynamics and to estimate available streamflow for utilization. In this study, the equations of Rc associated with its attributors of climate condition and catchment property were derived using the Budyko framework. The equations were used to estimate relationship between the Rc and the attributors in the karst catchments in Guizhou province of southwest China. Analysis in the selected 23 karst catchments demonstrates that the spatial distribution of Rc is dominated by the catchment properties, such as the catchment properties of geology, slope and land use and land cover, rather than climate condition of drought index. Correlation analysis indicates that the catchment with a large slope usually has a high value of Rc, and a large proportion of carbonate rock in a catchment reduces Rc in the study area. Temporal increasing trend of Rc during 1961–2000 was found for most catchments in the study area. This increasing trend was primarily resulted from changes of catchment properties, e.g. deforestation in large areas of Guizhou province during the 1950s–1980s. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The variability of rainfall-dependent streamflow at catchment scale modulates many ecosystem processes in wet temperate forests. Runoff in small mountain catchments is characterized by a quick response to rainfall pulses which affects biogeochemical fluxes to all downstream systems. In wet-temperate climates, water erosion is the most important natural factor driving downstream soil and nutrient losses from upland ecosystems. Most hydrochemical studies have focused on water flux measurements at hourly scales, along with weekly or monthly samples for water chemistry. Here, we assessed how water and element flows from broad-leaved, evergreen forested catchments in southwestern South America, are influenced by different successional stages, quantifying runoff, sediment transport and nutrient fluxes during hourly rainfall events of different intensities. Hydrograph comparisons among different successional stages indicated that forested catchments differed in their responses to high intensity rainfall, with greater runoff in areas covered by secondary forests (SF), compared to old-growth forest cover (OG) and dense scrub vegetation (CH). Further, throughfall water was greatly nutrient enriched for all forest types. Suspended sediment loads varied between successional stages. SF catchments exported 455 kg of sediments per ha, followed by OG with 91 kg/ha and CH with 14 kg/ha, corresponding to 11 rainfall events measured from December 2013 to April 2014. Total nitrogen (TN) and phosphorus (TP) concentrations in stream water also varied with rainfall intensity. In seven rainfall events sampled during the study period, CH catchments exported less nutrients (46 kg/ha TN and 7 kg/ha TP) than SF catchments (718 kg/ha TN and 107 kg/ha TP), while OG catchments exported intermediate sediment loads (201 kg/ha TN and 23 kg/ha TP). Further, we found significant effects of successional stage attributes (vegetation structure and soil physical properties) and catchment morphometry on runoff and sediment concentrations, and greater nutrients retention in OG and CH catchments. We conclude that in these southern hemisphere, broad-leaved evergreen temperate forests, hydrological processes are driven by multiple interacting phenomena, including climate, vegetation, soils, topography, and disturbance history.  相似文献   

10.
Lihua Xiong  Shenglian Guo 《水文研究》2004,18(10):1823-1836
Effects of the catchment runoff coefficient on the performance of TOPMODEL in simulating catchment rainfall–runoff relationships are investigated in this paper, with an aim to improve TOPMODEL's simulation efficiency in catchments with a low runoff coefficient. Application of TOPMODEL in the semi‐arid Yihe catchment, with an area of 2623 km2 in the Yellow River basin of China, produced a Nash–Sutcliffe model efficiency of about 80%. To investigate how the catchment runoff coefficient affects the performance of TOPMODEL, the whole observed discharge series of the Yihe catchment is multiplied with a larger‐than‐unity scale factor to obtain an amplified discharge series. Then TOPMODEL is used to simulate the amplified discharge series given the original rainfall and evaporation data. For a set of different scale factors, TOPMODEL efficiency is plotted against the corresponding catchment runoff coefficient and it is found that the efficiency of TOPMODEL increases with the increasing catchment runoff coefficient before reaching a peak (e.g. about 90%); after the peak, however, the efficiency of TOPMODEL decreases with the increasing catchment runoff coefficient. Based on this finding, an approach called the discharge amplification method is proposed to enhance the simulation efficiency of TOPMODEL in rainfall–runoff modelling in catchments with a low runoff coefficient. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This paper focuses on the problem of quantifying real world catchment response using a distributed model and discusses the ability of the model to capture that response. The rainfall–runoff responses of seven small agricultural catchments in the eastern wheatbelt region of south-western Australia are examined. The variability in runoff generation and the factors that contribute to that variability (i.e. rainfall intensity, soil properties and topography) are investigated to determine if their influence can be captured in a mathematical model. The spatially distributed rainfall–runoff model used in this study is based on the TOPMODEL concepts of Beven and Kirkby (1979), and simulates runoff generation by both the infiltration excess and saturation excess mechanisms. Simulations with the model revealed the highly complex nature of catchment response to rainfall events. Runoff generation was highly heterogeneous in both space and time, with the runoff response being governed by the spatial variability of soil properties and topography, and by the temporal variation in rainfall intensity. Although the model proved capable of simulating catchment response for many events, the investigation has demonstrated that not all aspects of the variability associated with agricultural catchments (particularly the effects of land management) can be captured using this relatively simple model. © 1997 by John Wiley & Sons, Ltd  相似文献   

12.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
14.
An integrated field and modelling study was carried out on the 35‐ha La Reina catchment, Chile, to test the hypothesis that the effect of forest cover on flood peaks becomes less important as the size of the hydrological event increases. Meteorological and discharge data were measured at the catchment before and after the pine plantation that covered 80% of the catchment area was logged. Analysis of the measured response of the catchment provides support for the hypothesis but is not conclusive. Therefore, modelling of the catchment using 1000 years of generated rainfall data representative of the current conditions was carried out for the forested and logged states. The simulations show that the absolute difference in discharge between the two cases remains approximately constant as the discharge increases: thus as a percentage of discharge it decreases. This relative convergence appears to become significant at return periods of greater than approximately 10 years. Tests with different hypothetical soil depths for the forested and logged catchments show an absolute convergence in discharge between the two cases for shallow soils and no convergence for deep soils. Sediment transport simulations show that forest cover provides a clear benefit in protecting the soil from erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Determining mean transit times in headwater catchments is critical for understanding catchment functioning and understanding their responses to changes in landuse or climate. Determining whether mean transit times (MTTs) correlate with drainage density, slope angle, area, or land cover permits a better understanding of the controls on water flow through catchments and allows first-order predictions of MTTs in other catchments to be made. This study assesses whether there are identifiable controls on MTTs determined using 3H in headwater catchments of southeast Australia. Despite MTTs at baseflow varying from a few years to >100 years, it was difficult to predict MTTs using single or groups of readily-measured catchment attributes. The lack of readily-identifiable correlations hampers the prediction of MTTs in adjacent catchments even where these have similar geology, land use, and topography. The long MTTs of the Australian headwater catchments are probably in part due to the catchments having high storage volumes in deeply-weathered regolith, combined with low recharge rates due to high evapotranspiration. However, the difficulty in estimating storage volumes at the catchment scale hampers the use of this parameter to estimate MTTs. The runoff coefficient (the fraction of rainfall exported via the stream) is probably also controlled by evapotranspiration and recharge rates. Correlations between the runoff coefficient and MTTs in individual catchments allow predictions of MTTs in nearby catchments to be made. MTTs are shorter in high rainfall periods as the catchments wet up and shallow water stores are mobilized. Despite the contribution of younger water, the major ion geochemistry in individual catchments commonly does not correlate with MTTs, probably reflecting heterogeneous reactions and varying degrees of evapotranspiration. Documenting MTTs in catchments with high storage volumes and/or low recharge rates elsewhere is important for understanding MTTs in diverse environments.  相似文献   

16.
The impacts of land use intensity, here defined as the degree of imperviousness, on stormwater volumes, runoff rates and their temporal occurrence were studied at three urban catchments in a cold region in southern Finland. The catchments with ‘High’ and ‘Intermediate’ land use intensity, located around the city centre, were characterized by 89% and 62% impervious surfaces, respectively. The ‘Low’ catchment was situated in a residential area of 19% imperviousness. During a 2‐year study period with divergent weather conditions, the generation of stormwater correlated positively with catchment imperviousness: The largest annual stormwater volumes and the highest runoff coefficients and number of stormwater runoff events occurred in the High catchment. Land use intensity also altered the seasonality of stormwater runoff: Most stormwater in the High catchment was generated during the warm period of the year, whereas the largest contribution to annual stormwater generation in the Low catchment took place during the cold period. In the two most urbanized catchments, spring snow melt occurred a few weeks earlier than in the Low catchment. The rate of stormwater runoff in the High and Intermediate catchments was higher in summer than during spring snow melt, and summer runoff rates in these more urbanized catchments were several times higher than in the Low catchment. Our study suggests that the effects of land use intensity on stormwater runoff are season dependent in cold climates and that cold seasons diminish the differences between land use intensities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Temporal patterns in specific runoff, dissolved organic carbon concentrations [DOC] and fluxes were examined during two periods: 1994–1997 (period 1) and 2007–2009 (period 2) in five adjacent tributary catchments of Lake Simcoe, the largest lake in southern Ontario, Canada. The catchments displayed similar patterns of land use change with increases in urbanization (5–16%) and forest cover (0.2–4%) and declines in agriculture (4–8%) between 1994 and 2008. Climate in the catchments was similar; temperature increased slightly, but no significant change in precipitation was observed. Despite similar pattern of climate and land use, runoff responses and tributary [DOC] were different across the catchments. Following a very dry year (i.e. 1999), runoff increased steadily until the end of record. We observed increased variability in tributary [DOC] and higher DOC exports in period 2. This led to ~10% increase in [DOC] and a 13% increase in flux between the two study periods. Between the two periods, [DOC] increased by 15% in spring and 25% in summer, whereas flux increased by 17% in spring and 48% in summer. [DOC] was consistently higher in the growing (summer + autumn) than the dormant (winter + spring, minus spring melt months) seasons, but no unique pattern or simple linear flow/concentrations relationships existed. This suggests complex spatial and temporal pattern to runoff controls on DOC and flow dynamics in adjacent catchments. We therefore caution against extrapolating from monitored to unmonitored catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Hydrometric and isotopic (oxygen-18) observations were used to delineate the runoff processes operating in several headwater catchments on the Precambrian Shield of Canada. The catchments comprise patches of conifer forest situated on thin soils among areas of lichen-covered granitic bedrock. Horton overland flow occurred from the lichen-bedrock areas in all precipitation events that exceeded 4–6 mm. Runoff from the forest stands occurred mainly as subsurface stormflow, but in some instances saturation overland flow was observed. The occurrence of saturation overland flow was controlled by the topography of the bedrock beneath the forest soils. The area contributing runoff and the pathway by which water was conveyed to the catchment outflow switched from the open lichen-bedrock areas producing overland flow on the rising limb of the storm hydrograph to the forest stands contributing subsurface stormflow on the recession limb of the hydrograph. The areal extent and position of the landscape units in the basin were important to the rate and magnitude of stormflow production. Runoff was generated from the catchments only during and immediately after snowmelt and/or rainfall events. The catchments were dry and/or frozen for about 70% of the year.  相似文献   

20.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号