首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes variations in the insolation on Mercury resulting from fluctuations of the orbital eccentricity (0.11≤e≤0.24) of the planet. Equations for the instantaneous and the daily insolation are briefly discussed and several numerical examples are given illustrating the sensitivity of the solar radiation to changes ine. Special attention is paid to the behavior of the solar radiation distribution curves near sunrise and sunset which at the warm pole of Mercury (longitudes ±90°) occur as the planet goes through perihelion. It has been found that for eccentricities larger than about 0.194 there exists two permanent thermal bulges on opposite sides of the Mercurian surface that alternately point to the Sun at every perihelion passage. The critical value ofe past which the Sun shortly sets after perihelion is near 0.213.  相似文献   

2.
Formulae are derived for the transformation of the secular perturbations of the elements giving the position of the orbit of a planet, produced by a solar quadrupole moment and related to the equator of the Sun, to perturbations related to the ecliptic. For Mercury, Venus, and Earth the numerical values of the coefficients of the transforming equations are given.  相似文献   

3.
Calculations of the daily solar radiation incident at the top of the atmospheres of Jupiter, Saturn, Uranus, and Neptune, with and without the effect of the oblateness, are presented in a series of figures illustrating the seasonal and latitudinal variation of the ratio of both insolations. It is shown that for parts of the summer, the daily insolation of an oblate planet is increased, the zone of enhanced solar radiation being strongly dependent upon the obliquity, whereas the rate of increase is fixed by both the flattening and the obliquity. In winter, the oblateness effect results in a more extensive polar region, the daily solar radiation of an oblate planet always being reduced when compared to a spherical planet. In addition, we also numerically studied the mean daily solar radiation. As previously stated by A.W. Brinkman and J. McGregor (1979, Icarus, 38, 479–482), it is found that in summer the horizon plane is tilted toward the Sun for latitudes less than the subsolar point, but is titled away from the Sun beyond this latitude. It follows that the mean summer daily insolation is increased between the equator and the subsolar point, but decreased poleward of the above-mentioned limit. In winter, however, the horizon plane is always tilted away from the Sun, causing the mean winter daily insolation to be reduced. The partial gain of the mean summertime insolation being much smaller than the loss during winter season evidently yields a mean annual daily insolation which is decreased at all latitudes.  相似文献   

4.
The possibility that Mercury might once have been satellite of a Venus, suggested by a number of anomalies, is investigated by a series of numerical computer experiments. Tidal interaction between Mercury and Venus would result in the escape of Mercury into a solar orbit. Only two escape orbits are possible, one exterior and one interior to the Venus orbit. For the interior orbit, subsequent encounters are sufficiently distant to avoid recapture or large perturbations. The perihelion distance of Mercury tends to decrease, while the orientation of perihelion librates for the first few thousand revolutions. If dynamical evolution or nonconservative forces were large enough in the early solar system, the present semimajor axes could have resulted. The theoretical minimum quadrupole moment of the inclined rotating Sun would rotate the orbital planes out of coplanarity. Secular perturbations by the other planets would evolve the eccentricity and inclination of Mercury's orbit through a range of possible configurations, including the present orbit. Thus the conjecture that Mercury is an escaped satellite of Venus remains viable, and is rendered more attractive by our failure to disprove it dynamically.  相似文献   

5.
Anthony Mallama 《Icarus》2009,204(1):11-499
The empirically derived phase curves of terrestrial planets strongly distinguish between airless Mercury, cloud-covered Venus, and the intermediate case of Mars. The function for Mercury is steeply peaked near phase angle zero due to powerful backscattering from its surface, while that for Venus has 100 times less contrast and exhibits a brightness excess near 170° due to Mie scattering from droplets in the atmosphere. The phase curve of Mars falls between those of Mercury and Venus, and there are variations in luminosity due to the planet’s rotation, seasons, and atmospheric states. The phase function and geometric albedo of the Earth are estimated from published albedos values. The curves for Mercury, Venus and Mars are compared to that of the Earth as well as theoretical phase functions for giant planets. The parameters of these different phase functions can be used to characterize exoplanets.  相似文献   

6.
Suzuki  Miyosi 《Solar physics》1998,178(2):259-265
The solar rotation rate derived from the measurements of daily sunspot positions during activity cycle 22 (1988–1996) are presented. The averaged differential rotation is nearly symmetric with respect to the equator. The comparisons of our measurement with those for previous cycles show that the equatorial rotation rate gradually increases from cycle 18 to 22.  相似文献   

7.
E. Van Hemelrijck 《Icarus》1982,52(3):560-564
Calculations of the daily solar radiation incident at the top of Pluto's atmosphere and its variability with latitude and season and of the latitudinal variation of the mean annual daily insolation are presented. The large eccentricity of Pluto produces significant north-south seasonal asymmetries in the daily insolation. As for Uranus, having a similarly large obliquity, the equator receives less annual average energy than the poles.  相似文献   

8.
Ambrož  P. 《Solar physics》2001,198(2):253-277
The structure of the large-scale background magnetic field evolves in time and space. The large-scale horizontal transport velocity field of the magnetic flux patterns was inferred over the whole solar photosphere in the course of two solar activity cycles from year 1976 to 1999. The method of velocity determination and the testing procedures of the velocity accuracy are presented. The non-axially symmetric component of the horizontal velocity was found and both zonal and meridional velocity regions were described. The horizontal large-scale transport velocity regions vary in shape and the intensity during different phases of the 11-year solar activity cycle. The total horizontal transport velocity is characterized by the presence of variable amounts of the vector field vortices with symmetric orientation relative to the solar equator. The zonal velocity regions, distributed inside of the zonal belt limited by latitudes ± 35°, are persistent for about 4 Carrington rotations. Recurrent structures of similar velocity distributions are not coherent over the whole solar photosphere.  相似文献   

9.
The time series of total solar irradiance (TSI) satellite observations since 1978 provided by ACRIM and PMOD TSI composites are studied. We find empirical evidence for planetary-induced forcing and modulation of solar activity. Power spectra and direct data pattern analysis reveal a clear signature of the 1.09-year Earth-Jupiter conjunction cycle, in particular during solar cycle 23 maximum. This appears to suggest that the Jupiter side of the Sun is slightly brighter during solar maxima. The effect is observed when the Earth crosses the Sun-Jupiter conjunction line every 1.09 years. Multiple spectral peaks are observed in the TSI records that are coherent with known planetary harmonics such as the spring, orbital and synodic periods among Mercury, Venus, Earth and Jupiter: the Mercury-Venus spring-tidal cycle (0.20 year); the Mercury orbital cycle (0.24 year); the Venus-Jupiter spring-tidal cycle (0.32 year); the Venus-Mercury synodic cycle (0.40 year); the Venus-Jupiter synodic cycle (0.65 year); and the Venus-Earth spring tidal cycle (0.80 year). Strong evidence is also found for a 0.5-year TSI cycle that could be driven by the Earth’s crossing the solar equatorial plane twice a year and may indicate a latitudinal solar-luminosity asymmetry. Because both spring and synodic planetary cycles appear to be present and the amplitudes of their TSI signatures appear enhanced during sunspot cycle maxima, we conjecture that on annual and sub-annual scales both gravitational and electro-magnetic planet-sun interactions and internal non-linear feedbacks may be modulating solar activity. Gravitational tidal forces should mostly stress spring cycles while electro-magnetic forces could be linked to the solar wobbling dynamics, and would mostly stress the synodic cycles. The observed statistical coherence between the TSI records and the planetary harmonics is confirmed by three alternative tests.  相似文献   

10.
Two Struve-Ertel instruments were used for the daytime observations of the Sun, Mercury, Venus and Mars at Pulkovo from 1956 to 1976. The FK4 equinox and equator corrections were derived. Both the instruments were installed in 1983–1986 at the Kislovodsk Station of the Pulkovo Observatory. The atmospheric dispersion and lateral refraction have been estimated at the Station.  相似文献   

11.
The condition of minimum total dissipation is used to derive stationary rotation and azimuthal magnetic field distributions in the bulk of the solar convection zone with an upper boundary at which the relative radius is r/R=0.95. General equilibrium con figurations with symmetric and antisymmetric (about the equator) angular-velocity and field components are determined. The calculated rotation law matches the observed one in general parameters, but the decrease in angular velocity at high latitudes in theory is larger than that in observations. Besides, there are additional sharp variations in the rotation and field distributions in the theoretical curves near the generation zone of solar torsional waves. The possible cause of the latter discrepancy is discussed. The change in equilibrium distributions due to the presence of an inverse molecular-weight gradient at the base of the convection zone is also studied. This gradient is known to be produced by accelerated gravitational helium settling in the convection zone.  相似文献   

12.
Robert Landau 《Icarus》1982,52(1):202-204
E. Van Hemelrijck and J. Vercheval [Icarus48, 167–179 (1981)] presented calculations of the insolation at Mercury and Venus which neglect the finite angular size of the Sun. To determine the temperature structure in the subsurface a more accurate calculation is needed, especially at longitudes ±90° on Mercury, where the Sun takes 18 days to rise or set. These calculations are presented here.  相似文献   

13.
《Icarus》1986,68(2):284-312
Recent Pioneer Venus observations have prompted a return to comprehensive hydrodynamical modeling of the thermosphere of Venus. Our approach has been to reexamine the circulation and structure of the thermosphere using the framework of the R. E. Dickinson an E. C. Ridley (1977, Icarus 30, 163–178), symmetric two-dimensional model. Sensitivity tests were conducted to see how large-scale winds, eddy diffusion and conduction, and strong 15-μm cooling affect day-night contrasts of densities and temperatures. The calculated densities and temperatures are compared to symmetric empirical model fields constructed from the Pioneer Venus data base. We find that the observed day-to-night variation of composition and temperatures can be derived largely by a wave-drag parameterization that gives a circulation system weaker than predicted prior to Pioneer Venus. The calculated mesospheric winds are consistent with Earth-based observations near 115 km. Our studies also suggest that eddy diffusion is only a minor contributor to the maintenance of observed day and nightside densities, and that eddy coefficients are smaller than values used by previous one-dimensional composition models. The mixing that occurs in the Venus thermosphere results from small-scale and large-scale motions. Strong CO2 15-μm cooling buffers solar perturbation such that the response by the general circulation to solar cycle variation is relatively weak.  相似文献   

14.
The thermal infrared maps of Venus published by Murray, Wildey, and Westphal (1963) and Westphal, Wildey, and Murray (1965) have been analyzed systematically in order to separate the observed intensity into a limb-darkening component and a solar-associated component representing fixed patterns of intensity corotating with the earth and sun, respectively. Interesting new results are obtained for the solar-associated component. Regions near the subsolar point and the poles are not covered in the original maps or in the analysis.The solar-associated pattern of intensity is very nearly symmetric about the equator. In both northern and southern hemispheres, an intensity minimum seems to occur near the morning terminator at middle to high latitudes, slightly beyond the limit of the maps. An intensity maximum occurs on the equator slightly to the east of the antisolar point. Three broad ridges of relatively high intensity radiate away from this point, one pointing to the west along the equator, the others pointing to the northeast and southeast, respectively. The eastward tilt of the latter two ridges may indicate that horizontal exchange is important in maintaining the equatorial maximum of zonal momentum which is associated with the 4-day circulation of the Venus atmosphere.  相似文献   

15.
A model has been developed for the currents induced in the ionospheres of Venus and Mars by the flowing magnetized solar wind in a previous paper (Cloutier and Daniell, 1973). The altitudes of the ionopauses on both planets, determined from the electrodynamical models of the previous paper, are used here to calculate the total rates of atmospheric mass loss to the solar wind for Venus and Mars. These loss rates are compared to the rates calculated by Michel (1971) based upon the limit of mass loading of the solar wind flow determined from hydrodynamic constraints. The distributions of planetary ions in the downstream wakes of Venus and Mars are calculated, and the interpretation of ion spectrometer measurements from close planetary encounters is discussed.  相似文献   

16.
Robert Howard 《Solar physics》1983,82(1-2):437-437
A series of digitized synoptic observations of solar magnetic and velocity fields has been carried out at the Mount Wilson Observatory since 1967. In recent studies (Howard and LaBonte, 1980; LaBonte and Howard, 1981), the existence of slow, large-scale torsional (toroidal) oscillations of the Sun has been demonstrated. Two modes have been identified. The first is a travelling wave, symmetric about the equator, with wave number 2 per hemisphere. The pattern-alternately slower and faster than the average rotation-starts at the poles and drifts to the equator in an interval of 22 years. At any one latitude on the Sun, the period of the oscillation is 11 years, and the amplitude is 3 m s-1. The magnetic flux emergence that is seen as the solar cycle occurs on average at the latitude of one shear zone of this oscillation. The amplitude of the shear is quite constant from the polar latitudes to the equator. The other mode of torsional oscillation, superposed on the first mode, is a wave number 1 per hemisphere pattern consisting of faster than average rotation at high latitudes around solar maximum and faster than average rotation at low latitudes near solar minimum. The amplitude of the effect is about 5 m s-1. For the first mode, the close relationship in latitude between the activity-related magnetic flux eruption and the torsional shear zone suggests strongly that there is a close connection between these motions and the cycle mechanism. It has been suggested (Yoshimura, 1981; Schüssler, 1981) that the effect is caused by a subsurface Lorentz force wave resulting from the dynamo action of magnetic flux ropes. But, this seems unlikely because of the high latitudes at which the shear wave is seen to originate and the constancy of the magnitude of the shear throughout the life time of the wave.  相似文献   

17.
Calculations of the daily solar radiation incident at the tops of the atmospheres of Mars and the outer planets and its variability with latitude and season are presented in a series of figures and tables similar to those for Earth in The Smithsonian Meteorological Tables. The changes in the latitudinal and seasonal distributions of daily surface insolation during the great Martian dust storm of 1971 (when Martian atmospheric optical depth increased from about τ = 0.1 to 2.0 were significant and dramatically illustrate the effect of atmospheric aerosols on surface insolation; i.e., the mean annual daily insolation at the poles decreased by more than a factor of 100 as τ increased from 0.1 to 2.0.  相似文献   

18.
A method due to Schuster is used to test the hypothesis that solar activity is influenced by tides raised in the Sun's atmosphere by planets. We calculate the distribution in longtitude of over 1000 flares occurring in a 61/2 yr segment of solar cycle 19, referring the longitude system in turn to the orbital positions of Jupiter and Venus. The resulting distributions show no evidence for a tidal effect.  相似文献   

19.
Historically, the visual manifestation of the “Black Drop effect,” the appearance of a band linking the solar limb to the disk of a transiting planet near the point of internal tangency, had limited the accuracy of the determination of the Astronomical Unit and the scale of the Solar System in the 18th and 19th centuries. This problem was misunderstood in the case of Venus during its rare transits due to the presence of its atmosphere. We report on observations of the 15 November 1999 transit of Mercury obtained, without the degrading effects of the Earth's atmosphere, with the Transition Region and Coronal Explorer spacecraft. In spite of the telescope's location beyond the Earth's atmosphere, and the absence of a significant mercurian atmosphere, a faint Black Drop effect was detected. After calibration and removal of, or compensation for, both internal and external systematic effects, the only radially directed brightness anisotropies found resulted from the convolution of the instrumental point-spread function with the solar limb-darkened, back-lit, illumination function. We discuss these effects in light of earlier ground-based observations of transits of Mercury and of Venus (also including the effects of atmospheric “seeing”) to explain the historical basis for the Black Drop effect. The methodologies we outline here for improving upon transit imagery are applicable to ground-based (adaptive optics augmented) and space-based observations of the 8 June 2004 and 5-6 June 2012 transits of Venus, providing a path to achieving high-precision measurements at and near the instants of internal limb tangencies.  相似文献   

20.
R.F. Stein  R.S. Wolff 《Icarus》1982,51(2):296-301
The effects on the upper dayside Venus ionosphere of a slow increase in solar wind dynamic pressure are simulated numerically with a 1-dimensional (spherically symmetric) Lagrangian hydrodynamical code. The simulation is started with an extended ionosphere in pressure equilibrium with the solar wind at the ionopause. The pressure at the ionopause is gradually increased to five times the initial pressure with rise times of 5, 15, and 30 min. It is found that, for rise times greater than about 10 min, the compression of the ionopause is nearly adiabatic, with the ionopause moving downward at velocities of ~1?2 km/sec until it reaches a maximally compressed states, at which time the motion reverses. For short rise times the compression produces a shock wave similar to that occuring in the case of a sudden increase in pressure. The global implications of these processes are discussed within the context of Pioneer Venus observations and future theoretical work on this problem is outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号