首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spectrophotometric data show that major compositional groups among outer solar system (OSS) surfaces include bright ices and at least two distinct classes of blackish carbonaceous-like materials, called C-type and RD-type. VJHK colorimetry of asteroids, satellites, and laboratory samples shows that these three classes can be distinguished by VJHK colors. We define an “α index” that denotes the position of objects in VJHK color - color diagrams; it empirically increases with albedo and ice/dirt ratio. We use the above data to define color fields that may be useful in interpreting our observations of eight comets (1980–1981). All eight comets have colors generally resembling RD asteroids and are inconsistent with reflection off clean ice surfaces. The observations suggest that these comets' halos contain RD dirt or dirty ice grains colored by RD dirt, supporting J. Gradie and J. Veverka's [Nature283, 840–842 (1980)] prediction of RD, rather than C, material in comets. Remote Comet P/Schwassmann-Wachmann 1 was observed both during outburst and quiescence and had the highest α index of any observed comet. Comet α indices appear to be correlated with solar distance. Further work will be needed to clarify possible coloring effects due to particle size, dispersal, and composition. We suggest a number of physical interpretations based on a single two-component mixing model, which assumes that all OSS planetesimals formed primarily from bright ices and dark carboneceous-like dirt, consistent with condensation theory. We discuss differentiation processes that concentrated one component or the other at the surface. All measured OSS interplanetary bodies have surfaces of dark dirt or dark dirty ice colored by the dirt component. Comets, consistent with the Whipple dirty iceberg model, are such objects close enough to the Sun for volatilization to throw dirty ice grains into the coma. In remote comets, the ice component of the grains remains stable, and we see dirty ice grains; in near comets, the ice component vaporizes, and we see dirt grains. A volatile-depleted dusty regolith on P/Schwassmann-Wachmann 1 and other remote comets could explain their eruptive behavior by means of gas pressure buildup in the porous, weakly bonded dust.  相似文献   

2.
《Icarus》1986,66(3):468-486
The metal grains in chondritic meteorites from terrestrial collections are coated with an optically thick surface layer, probably composed of iron oxide and/or iron sulfide. This coat on the metal grains suppresses the spectral contribution of NiFe metal in the reflectance curves of these meteorites. Only if this surface layer is disrupted will the strongly reddened signature of metallic NiFe be seen in chrondritic spectra. While origin of this surface layer is not yet established, it is probable that it is either pre-terrestrial or formed by the weathering of an unstable mineral species, such as lawrencite (FeCl2), which was present as a thin, pre-terrestrial veneer on the chondritic metal grains. In either case, the surfaces of intact metal grains in asteroidal chondritic assemblages most probably will not resemble NiFe metal. Low-nickel metal grains, such as those in H-type chondrites, will be brittle at asteroid surface temperatures. High-nickel metal grains, such as those in LL-type chondrites, remain ductile down to at least 50°K, below even asteroid night side temperatures. The metal phase, even when brittle, will be at least as strong as the silicate phase in asteroid regoliths. Therefore, preferential fragmentation of brittle metal is not a viable mechanism to increase the spectral contribution of the NiFe phase in an asteroid regolith. Under plausible proposed regolith processes, only the metal-rich H-type subset of the ordinary chondrites can be expected to produce an S-type asteroid spectrum from an undifferentiated assemblage, and then only if optically thick metal grain coats are absent. Known regolith processes cannot reasonably produce an S-type spectrum from metal-poor L-, LL-, or C3-type assemblages. The strong NiFe signatures and the mafic silicate features in the reflectance spectra of the S-type asteroids appear to require that the most of them represent metal-rich, differentiated assemblages. The spectral properties of M-type asteroids do not require metal-rich or differentiated surface materials, although it is plausible that this is the case.  相似文献   

3.
JHK colors of 14 comets are correlated with cometary distance from the Sun. The correlation could be explained by (1) changes in coma particle size as comets approach the Sun, (2) decrease in the ice/dirt ratio in coma grains as comets approach the Sun, and/or (3) phase reddening. Short-term color changes in individual comets at fixed phase angles suggest that phase reddening does not explain all color changes. Short-term changes are consistent with jets injecting fresh (high ice/dirt) nuclear material into parts of the coma. All colorimetric data are consistent with pristine coma material being relatively low-albedo dirty ice grains colored by carbonaceous dirt like that in RD-type asteroids. Ice sublimation near the Sun may leave residual pure RD dirt grains, explaining the observed color changes.  相似文献   

4.
A.W. Harris 《Icarus》1979,40(1):145-153
A model for the evolution of the mean rotation rate of asteroids arising from mutual collisions yields reasonable agreement with observed rotation rates. The mean rotation rate of large asteroids for which gravitational binding energy exceeds material strength should be constant with respect to size. Since collisional erosion of small asteroids is more rapid than collisional spin-up, the onset of increased mean rotation rate occurs at a considerably smaller radius than the size at which material strength begins to dominate gravitational binding energy. For strong igneous rock, increased rotation rates are not expected among bodies larger than a few kilometers. If there is a real trend toward more rapid rotation among asteroids of ≈1?km radius (Degewij and Gehrels, (1976). Bull. Amer. Astron. Soc.8, 459), then a substantial population of strong asteroids in that size range is implied by this model. The slower mean rotation rate of C-type asteroids than other types (paper I) implies a ratio of densities of ≈2:3 between those types, in the context of this model.  相似文献   

5.
We report photometry for nine asteroids at wavelengths of 1.25, 1.65, and 2.22 μm. Three C-type objects (88, 129, and 511) seem slightly redder in H?K and J?H color indices than four S-type objects (5, 6, 7, and 116) and an E-type object (64). Eros has an unusually red J?H color index; its infrared spectral reflectance is consistent with an appreciable quantity of metallic iron plus some pyroxene and olivine on its surface. JHK photometry is less diagnostic of composition than either higher resolution spectrophotometry in the infrared or spectrophotometry at shorter wavelengths.  相似文献   

6.
Interpretation of reflectance spectra indicates that most belt asteroids are composed of materials similar to carbonaceous chondrites. Also, there is considerable evidence to support the origin of many, if not most, lunar and meteoritic chondrules by impact processes. The accretional histories of the carbonaceous asteroids must have influenced greatly their internal structures and textures. A model for this accretional history can be divided conveniently into three temporal stages that produce distinctly different lithologies: (1) low-velocity accretion of fine silicate and carbonaceous grains producing chondrule-free petrologic type 1 lithology; (2) continued accretion of low-velocity fine silicate and carbonaceous grains, but with a few larger, higher-velocity bodies also impacting the surface thereby producing both fluid drop and lithic chondrules (the resultant lithology would be that of petrologic type 2 and 3 carbonaceous chondrites); and (3) dominance of high-velocity low-mass meteoroid impacts, producing a sparse, thin, erosive lunar-like regolith. The lithologic product of stage 3 is not ideally represented among the presently described carbonaceous chondrites, but texturally analogous samples are known from the achondrites. The greater proportion of chondrules in the CV group meteorites, in contrast to the CM2 and CO3 groups, may be due to the origin of the CV chondrites on larger asteroid parent bodies that could withstand more numerous and higher-energy chondrule-producing impacts prior to fragmentation.  相似文献   

7.
The dependence of rotational frequency on diameter, taxonomic type, and family membership is analyzed for 217 main-belt asteroids with statistically useful periods extracted from the file published by Harris and Young ((1983). Icarus54, 59–109). It is shown that for asteroids with diameters ? 120 km, mean rotational frequency increases with increasing diameter. This trend is equally present in all subsets of M-, S-, and C-type asteroids, for both family and nonfamily members alike, and cannot be accounted for by observational selection. For asteroids with diameters ? 120 km, mean rotational frequency increases with decreasing diameter; however, within this group there is a subset of asteroids with exceptionally long rotational periods. This marked change in the distribution at diameter ~ 120 km could separate primordial asteroids from their collision products. However, it is probable that the sample is biased in favor of small asteroids with short rotational periods and that the apparent increase of mean rotational frequency with decreasing diameter for small asteroids is at least partly the product of observational selection. An observational program that could test this hypothesis is described. If asteroids of any one diameter are considered, then, on average, M asteroids rotate faster than S asteroids which in turn rotate faster than C asteroids. This shows that asteroids which have been classified by their surface properties alone have different bulk properties. There is also some evidence that for all asteroidal types, of all diameters, family members rotate faster than nonfamily members.  相似文献   

8.
By studying color variations between young and old asteroid families we find evidence for processes that modify colors of asteroids over time. We show that colors of aging surfaces of S-type asteroids become increasingly ‘redder’ and measure the rate of these spectral changes. We estimate that the mean spectral slope between 0.35 and 0.9 μm increases with time t (given in My) as ≈0.01 μm−1×log10t. This empirical fit is valid only for 2.5?t?3000 My (the time interval where we have data) and for the mean spectral slope determined from wide-wavelength filter photometry obtained by the Sloan Digital Sky Survey. We also find that Gy-old terrains of S-type asteroids reflect about 15% more light at ∼1-μm wavelengths than an ∼5-My-old S-type asteroid surface when the flux is normalized by the reflected light at 0.55 μm. We attribute these effects to space weathering. This result has important implications for asteroid geology and the origin of meteorites that reach the Earth. Our results also suggest that surfaces of C-type asteroids exhibit color alterations opposite to those of the S-type asteroids.  相似文献   

9.
Spectra of eleven asteroids (1, 2, 8, 10, 15, 16, 22, 83, 386, 433, 471) have been obtained in the 3- to 4-μm region. Of these, only 1 Ceres and 2 Pallas have previously been observed in this wave-length region. Spectra of the S- and M-type asteroids are generally featureless, but 8 Flora may be an exception. None of the three new C-type spectra show significant absorption.  相似文献   

10.
In the gravity field of an asteroid with the second order and degree harmonics C 20 and C 22, the attitude stability of a spacecraft with two flexible solar arrays on a stationary orbit subjected to the fourth-order gravity gradient torque is investigated in this paper. The sufficient conditions of attitude stability of the spacecraft are obtained, the effect of the direction of the flexible solar arrays and some special cases are discussed. Taking the asteroids 4769 Castalia, 25143 Itokawa and the imaginary asteroids as examples, the attitude stability domains, determined by the sufficient conditions, of the spacecrafts moving on stationary orbits around them are presented. It is found that the attitude stability domains of the spacecraft with two flexible solar arrays are evidently different when the solar arrays are installed in different directions; the effect of the harmonics C 20 and C 22 of the asteroids has the significant influence on the attitude stability domains of the spacecrafts with flexible appendages moving on stationary orbits; in the certain case, the effect of the harmonics C 20 and C 22 of the asteroids has no influence on the attitude stability domains of the rigid spacecrafts moving on stationary orbits, but in the other cases, the effect of the harmonics C 20 and C 22 of the asteroids has also the significant influence on the attitude stability domains of the rigid spacecrafts moving on stationary orbits; whether the harmonics C 20 and C 22 of the asteroids are considered or not, the effect of flexible appendages decreases the attitude stability domains.  相似文献   

11.
The surface compositions of 110 asteroids are analyzed from statistically representative data sets of polarimetry as a function of phase angle, broad-band radiometry near 10 and 20 μm, and visible and near-infrared spectrophotometry. A comparison of albedos and diameters determined by polarimetry and radiometry shows that a modest upward revision of the radiometric albedo scale is needed and that a single law relating the slope of the polarization-phase curve to geometric albedo may not hold for very dark asteroids. We present reliable adopted albedos and diameters for 56 objects. Roughdi ameters for 52 additional objects are obtained from spectrophotometry using a correlation between albedo and color. Corrections for sampling bias permit investigation of asteroid compositions as a function of diameter, orbit, and other parameters.More than 90% of the minor planets fall into two broad compositional groups, defined by several optical parameters, designated by the symbols C and S. Comparisons with meteorite spectral albedo curves suggest that the two groups are compositionally similar to carbonaceous and stony-metallic meteorites, respectively. C-type asteroids predominate in the belt, especially in the outer half. An unusual distribution of compositions is found between 2.77 and 3.0 AU. Many S-type objects have diameters of 100–200 km; C-type objects are much more common at both larger and smaller sizes. Vesta is unique, being apparently the only differentiated asteroid remaining intact in the belt. The largest C-type objects are compositionally distinct from smaller ones and possibly are metamorphosed. We sketch some implications for meteoritics and for the early history of the solar system and point to the need for further systematic sampling of smaller and fainter objects by these three observational techniques.  相似文献   

12.
The mechanism of ion-stimulated erosion of atmosphereless solar system bodies is suggested and investigated. A theoretical model for the brittle surface erosion resulting under the effect of multicharge ion cosmic rays is analyzed. It is shown that the thermoelastic waves originated in the energetic track of a very heavy ion can result in the near-surface stresses exceeding the dynamic tensile strength of the surface material for any atmosphereless solar system body. The thermoelastic wave surface arrival yields brittle erosion of the material and ejection of this latter fragments (the track-breaking process). Thus ejected dust grains have plano-oblong shape, average mass on the order of 10–17 g and velocity up to 400 m/sec providing the surface erosion rate of 10–1 ÷ 3 · 102 »/year (near the Earth orbit) which depends upon the surface material (rock or ice). Possible track-breaking consequences, in particular, presence of the dust fraction of ultramicron grains and their aggregates on the lunar surface are discussed. Near the bodies with the radii from 10 to 300 km predicted is the existence of extended dust cocoons consisting of ultramicron and submicron grains. Smaller objects (asteroids, comets, smallest satellites of planets, meteoroids, etc.) can serve sources of permanent dust wind of ultramicron and submicron sized grains escaping from their surfaces. The interplanetary dust yield owing to the ion-stimulated erosion of these bodies is not less than 1012 g/year. Possible interpreting in the frames of track-breaking process some observational data and effects, including existence of dust grains with the mass of 10–18 ÷ 10–17 g near the Halley's comet and the nature of 2060 Chiron dust coma is discussed. To prove the theory, observational identification and investigation of dust phenomena complex related to the ion-stimulated erosion of atmosphereless bodies, suggested is employing extreme ultraviolet and far infrared/submillimeter wavelengths, as well as polarimetric methods.  相似文献   

13.
We present optical broadband photometry for the satellites J6, J7, J8, S7, S9, U3, U4, N1, and polarimetry for J6, obtained between 1970 and 1979. The outer Jovian satellites resemble C-type asteroids; J6 has a rotational lightcurve with period ~9.5 hr. The satellites beyond Jupiter also show C-like colors with the exception of S7 Hyperion. S9 Phoebe has a rotational lightcurve with period near either 11.25 or 21.1 hr. For U4 and N1 there is evidence for a lightcurve synchronous with the orbital revolution. The seven brighter Saturnian satellites show a regular relation between the ultraviolet dropoff and distance to the planet, probably related with differences in the rock component on their surfaces.  相似文献   

14.
Photoelectric observations of 1915 Quetzalcoatl on March 2, 1981 show that this asteroid has a rotational period of 4.9 ± 0.3 hr and a lightcurve amplitude of 0.26 magnitudes. B-V and U-B colors are found to be 0.83 ± 0.04 and 0.43 ± 0.03, respectively, consistent with Quetzalcoatl being an S-type asteroid. Additional observations from March 31, 1981 give a linear phase coefficient of 0.033 mag deg?1 and a mean B(1,0) magnitude of 20.10. The resulting estimated mean diameter for Quetzalcoatl is only 0.37 km, making it one of the smallest asteroids for which physical observations have yet been made.  相似文献   

15.
This paper presents the results of a laboratory study of the limb darkening, near opposition, of the carbonaceous chondrites Orgueil (C1), Murchison (C2), and Allende (C3), the ordinary chondrite Bruderheim (L6), and a stainless-steel powder. These materials represent possible analogs for the surface materials of C, S, and M asteroids respectively. At low phase angles, the limb-darkening behavior of all materials studied is well represented by Minnaert's law. For carbonaceous chondrites, the Minnaert limb-darkening parameter k is nearly independent of wavelength for wavelengths between 0.4 and 0.9 μm, with a typical value of k = 0.55. The reflectance parameter, B0, varies from 0.045 to 0.065 over the same range of wavelengths. Both k and B0 are larger for the stainless-steel powder and the ordinary chondrite, due to the increased importance of multiple scattering in the surface layer. If no limb darkening were present, k would equal 12 and the geometric albedo (p) of an asteroid would equal the normal reflectance (rn ? B0) of its surface material. For bodies whose surface material is appreciably limb darkened, the geometric albedo measured at the telescope will be lower than the true normal reflectance of surface material; we estimate that for S and M objects rn ? 1.05 p. In the case of nonspherical asteroids, because the distribution of incidence and emission angles varies as the asteroid rotates, the geometric albedo must change with aspect. If limb darkening is not considered when interpreting asteroid light curves, the values of b/a derived will be too extreme. This effect is probably too small to be observed for C asteroids, because of their intrinsically low reflectances, but could be appreciable for S and M objects.  相似文献   

16.
Roger N. Clark 《Icarus》1982,49(2):244-257
Water ice has such a low absorption coefficient at visual wavelengths (~0.01 cm?1) that a very small amount of particulate material can significantly darken an icy surface. A variety of ice plus particle mixtures were studied to show that particulate contaminations of ~1% by weight (even 0.1% or less in some cases) in ice or frosts result in reflectance levels close to that of the contaminants. In a very clear ice (no bubbles) it is plausible to have a reflectance < 0.05 for particulate contaminations ~10?7 by weight for submicron dark particles, such as carbon lampblack. Scattering conditions compete for domination with contaminants for control of visual reflectance, implying that the apparent reflectivity level and color of a surface is a poor indicator of ice content. A dark surface (e.g., albedo 0.05) does not necessarily imply that there us very little water ice present. Infrared JHK colors of water ice and other minerals, including ice-mineral mixtures, show that some orthopyroxenes can have JHK colors very similar to fine-grained water frosts. In general, it is possible that the JHK colors of an ice plus particulate mixture can fall anywhere in the classical J-H versus H-K diagram, thus the diagram cannot be used to distinguish a predominately “rock” surface from one which is predominantely ice for one specific case. An important exception is the case where both the J-H and H-K colors are ??0.2. It appears that such colors indicate a relatively pure icy surface. In some cases, the diagram might be used as a statistical tool to distinguish between the compositions of surfaces within a class of objects, but the validity of such comparisons decreases for different classes, such as the main-belt asteroids when compared to outer solar system satellites, where water ice is more stable.  相似文献   

17.
B. Zellner  L. Andersson  J. Gradie 《Icarus》1977,31(4):447-455
Photoelectric magnitudes and colors on the UBV system are presented for 65 minor planets, including four Mars crossers, six Trojans, and main-belt objects down to 6 km in diameter. The Trojans all have very similar colors not characteristics of the main-belt population. A paucity of S-type asteroids at the smallest diameters, predicted from trends seen at larger sizes, is not observed. The newly available color data for small objects ranging from 1.0 to 5.2 AU in heliocentric distance show the main belt to be a transition zone between predominantly silicate and carbonaceous compositions.  相似文献   

18.
《Icarus》1987,69(1):33-50
Spectrophotometric data on groups of asteroids in different types of orbits reveal different distributions of spectral properties, depending on whether the orbits are cometary or noncometary. In a list of 10 asteroids frequently suggested on purely dynamical grounds to be extinct or dormant comets, all have properties suggestive of spectral classes D, P, or C. Preliminary IRAS albedo results support this. Objects in these classes are very dark, reddish-black to neutral-black, and prevalent among the Trojans and outer belt. Two comets observed at low activity (visible nuclei) also have properties more consistent with D asteroids than any other class (very low reported geometric albedos of 0.02 and red colors). Consistent with these results are very low albedos reported for materials in more than a dozen comets; they average 0.05. Also, sampled cometary dust particles appear to consist of dark carbonaceous materials. Dramatically different are a control group of 13 Aten/Apollo/Amor objects selected from noncometary orbits. Most are in moderate-albedo classes: 8 or 9 appear to be of class S, and only 1 is in a low-albedo class (C). These are probably mostly objects perturbed out of the inner asteroid belt. The preponderence of S's in the noncometary group, together with the preponderence of ordinary chondrites among meteorites, may be evidence that such meteorites came from S asteroids. The data indicate that extinct, dormant, inactive, and minimally active comet nuclei have low albedos (pv=a few percent) and very red to moderately red colors. As a group, their spectra are more similar to those of outer Solar System asteroids of classes D, P, and C, than to those of inner belt classes, though the observations are frequently not yet complete enough to assign definitively a spectral class. The results, taken together, support the view that dynamically identified “extinct comet candidates” are indeed outer Solar System objects probably of cometary origin. The results also support a scenario of Solar System formation in which dark carbonaceous dust dominated the spectrophotometric properties of planetesimals formed from about 2.7 AU out to at least the Trojan region at 5.2 AU. From 2.7 to at least 5.2 AU, and from class C to class D, the color of this dust reddens, apparently due to increasing amounts of red organic condensates. Comets are probably also colored to different degrees, by dust of this type, and may in some cases be even redder than D asteroids.  相似文献   

19.
20.
VJHK measurements of J6 Himalia and S9 Phoebe, using the new NASA IRTF telescope, show that these objects have carbonaceous chondritic type colors in the 0.5- to 2.2-μm region. For Phoebe, this is in contrast to the JHK colors published by Cruikshank (1980), which indicated that the satellite's surface was unlike the material found on asteroids and on the dark side of Iapetus. J6 is known to have a low albedo from thermal infrared studies (Cruikshank, 1977), and the new VJHK observations of S9 imply that it also has a low albedo. The H and K reflectances of S9 are slightly lower than those of J6, suggesting some slight difference in surface composition or a contamination by foreign material. The conjectured low albedo of S9 can be tested with measurements in the thermal infrared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号