首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In March 1979, the spectrum of Venus was recorded in the far infrared from the G.P. Kuiper Airborne Observatory when the planet subtended a phase angle of 62°. The brightness temperature was observed to be 275°K near 110 cm?1, dropping to 230°K near 270 cm?1. Radiance calculations, using temperature and cloud structure formation from the Pioneer Venus mission and including gaseous absorption by the collision-induced dipole of CO2, yield results consistently brighter than the observations. Supplementing the spectral data, Pioneer Venus OIR data at similar phase angles provide the constraint that any additional infrared opacity must be contained in the upper cloud, H2SO4 to the Pioneer-measured upper cloud structure serves to reconcile the model spectrum and the observations, but cloud microphysics strongly indicates that such a high particle density haze (N ? 1.6 × 107cm?3) is implausible. The atmospheric environment is reviewed with regard to the far infrared opacity and possible particle distribution modifications are discussed. We conclude that the most likely possibility for supplementing the far-infrared opacity is a population of large particles (r ? 1 μm) in the upper cloud with number densities less than 1 particle cm?3 which has remained undetected by in situ measurements.  相似文献   

2.
Paul G. Steffes 《Icarus》1985,64(3):576-585
Microwave absorption observed in the 35- to 48-km-altitude region of the Venus atmosphere has been attributed to the presence of gaseous sulfuric acid (H2SO4) in that region. This has motivated the laboratory measurement of the microwave absorption at 13.4- and 3.6-cm wavelengths from gaseous H2SO4 in a CO2 atmosphere under simulated conditions for that region. As part of the same experiments, upper limits on the saturation vapor pressure of gaseous H2SO4 have also been determined. The measurements for microwave absorption have been made in the 1- to 6-atm pressure range, with temperatures in the 500 to 575°K range. Using a theoretically derived temperature dependence, the best-fit expression for absorption from gaseous H2SO4 in a CO2 atmosphere at the 13.4-cm wavelength is 9.0 × 109 q(P)12T?3 (dB km?1), where q is the H2SO4 number mixing ratio, P is the pressure in atmospheres, and T is the temperature in degrees Kelvins. The best-fit expression for absorption at the 3.6-cm wavelength is 4.52 × 1010q(P)0.85T?3 (dB km?1). The inferred H2SO4 vapor pressure above liquid H2SO4 corresponds to ln p = 8.84 ? 7220/t where p is the H2SO4 vapor pressure (in atm) and T is the temperature in degrees Kelvins. These results suggest that abundances of gaseous H2SO4 on the order of 15 to 30 ppm could account for the microwave absorption observed by radio occultation experiments at 13.3- and 3.6-cm wavelengths. They also suggest that such abundances would correspond to saturation vapor pressure existing at or above the 46- to 48-km range, which correlates with the observed cloud base. It is suggested that future measurements of absorption in the 1- to 3-cm wavelength range will provide additional tools for monitoring variations in H2SO4 abundance via radio occultation and radio astronomical observations.  相似文献   

3.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

4.
Ground-based and spacecraft photometry covering phase angles from 2° to 179° has been acquired in wavelength bands from blue to near infrared. An unexpected brightness surge is seen in the B and V bands when the disk of Venus is less than 2% illuminated. This excess luminosity appears to be the result of forward scattering from droplets of H2SO4 (sulfuric acid) in the high atmosphere of Venus. The fully sunlit brightness of Venus, adjusted to a distance of one AU from the Sun and observer, was found to be V=−4.38, and the corresponding geometric albedo is 67%. The phase integral is 1.35 and the resulting spherical albedo is 90%. Comparison between our data and photometry obtained over the past 50 years indicates a bias in the older photoelectric results, however atmospheric abundance variations suggest that brightness changes may have occurred too.  相似文献   

5.
The rates and altitudes for the dissociation of atmospheric constituents of Titan are calculated for solar UV, solar wind protons, interplanetary electrons, Saturn magnetospheric particles, and cosmic rays. The resulting integrated synthesis rates of organic products range from 102–103 g cm?2 over 4.5 × 109 years for high-energy particle sources to 1.3 × 104 g cm?2 for UV at λ < 1550 A?, and to 5.0 × 105 g cm?2 if λ > 1550 A? (acting primarily on C2H2, C2H4, and C4H2) is included. The production rate curves show no localized maxima corresponding to observed altitudes of Titan's hazes and clouds. For simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at 2825 km. Such condensates comprise the principal cloud mass, with molecules of greater complexity condensing at higher altitudes. The scattering optical depths of the condensates of molecules produced in the Titanian mesosphere are as great as ~ 102/(particulate radius, μm) if column densities of condensed and gas phases are comparable. Visible condensation hazes of more complex organic compounds may occur at altitudes up to ~ 3060 km provided only that the abundance of organic products declines with molecular mass no faster than laboratory experiments indicate. Typical organics condensing at 2900 km have molecular masses = 100–150 Da. At current rates of production the integrated depth of precipitated organic liquids, ices, and tholins produced over 4.5 × 109 years ranges from a minimum ~ 100 m to kilometers if UV at λ > 1550 A? is important. The organic nitrogen content of this layer is expected to be ~ 10?1?10?3 by mass.  相似文献   

6.
A spacecraft penetrating into the dense cloud of ambient gas and dust particles in the coma of Halley's Comet, is exposed to a bombardment by these particles having a high kinetic energy due to the large velocity of the spacecraft relative to the cometary coma. The interaction of the spacecraft and cometary neutral particles was simulated by using neutral beams of different species directed towards various target materials such as aluminium, gold and the white conductive paint PCB-Z. The kinetic energy of the primary beam covered, depending on the species, the range from about 700 eV up to more than 3 keV and contained, except for H2O, the expected specific ram energy of 24eVamu. The highest achievable density corresponded to a distance of slightly less than 104 km off the nucleus. Upon impact on the surface of the target, emission of charged as well as neutral secondary particles was initiated. The yields of the charged particles were derived from measurements of the electrical current produced by secondary ions or electrons. The obtained results for the yields complement other measurements performed in parallel to this work. The derived floating potentials show somewhat lower voltages than obtained by model calculations. It was found that for the metallic targets, the acquired charging potential due to neutral gas impact lies between 4 and 6 V. In the case of PCB-Z, the averaged floating potential amounts to about 14 V.  相似文献   

7.
C. Devaux  M. Herman 《Icarus》1975,24(1):19-27
We have used the measurements of the solar flux obtained by the Venera 8 spacecraft inside the atmosphere of Venus and the values of the Venus spherical albedo to deduce the characteristics of the clouds and of the ground. The method used is the exponential kernel approximation and the results have been tested by exact computations with the spherical harmonics method.A cloud layer with an optical thickness τ1 ? 144, an albedo for single scattering ω0 = 0.9998 in the rear infrared, above a Rayleigh layer between 0 and 32 km and a ground of reflectivity ? = 0.4, gives a good agreement with the experimental results. A model with two cloud layers is also discussed.  相似文献   

8.
D.Chris Benner  Uwe Fink 《Icarus》1980,42(3):343-353
Laboratory band-model absorption coefficients of CH4 are used to calculate the Uranus spectrum from 5400 to 10,400 Å. A good fit of both strong and weak bands for the Uranus spectrum over the entire wavelength interval is achieved for the first time. Three different atmospheric models are employed: a reflecting layer model, a homogeneous scattering layer model, and a clear atmosphere sandwiched between two scattering layers. The spectrum for the reflecting layer model exhibits serious discrepancies but shows that large amounts of CH4 (5–10 km-am) are necessary to reproduce the Uranus spectrum. Both scattering models give reasonably good fits. The homogeneous model requires a particle scattering albedo (g?wp) ? 0.998 and an abundance per scattering mean free path (a?) ofa?1 km-am. The parameters derived from the sandwich layer model are: forsb the upper scattering layer a continuum single scattering albedo (g?w0) of 0.995 and a scattering optical depth variable with wavelength consistent with Rayleigh scattering; for the clear layer they are a CH4 abundance (a) of 2.2 km-am and an effective pressure (p) ? 0.1 atm; for the lower cloud deck a Lambert reflectivity (L) of 0.9 resulted. A severe depletion of CH4 in the upper scattering layer is required. An enrichment of CH4/H2 over the solar ratio by a factor of 4–14 in the lower atmosphere is, however, indicated.  相似文献   

9.
The role of SO2 in the chemistry of the clouds of Venus has been investigated by deducing its mixing ratio profile in the atmosphere through millimeter wavelength interferometric measurements of the planet's limb darkening. The first zero crossing of the Venus visibility function was measured to be β0 = 0.6221 ± 0.0007 at a wavelength of 3.4 mm using a reference radius for Venus of 6100 km. This measurement constrains the amount of limb darkening and shows that the high concentrations of SO2 found in the lower atmosphere do not persist above an altitude of 42 km. Thus, a sink for SO2 exists below the level of the lowest cloud deck.  相似文献   

10.
The expression for the zodiacal brightness integral is especially simple if the integrand contains the ‘directional scattering coefficient’, D, (a.u.?1), or equivalently the scattering cross-section per unit-volume. The two intersections of the terrestrial orbit with a line of sight lying in the ecliptic offer the possibility of isolating the contribution of the chord, with a conservative assumption of steadiness, but without the controversial assumption of a homogeneous zodiacal cloud. The zodiacal brightnesses between 60 and 120° elongation can be used to derive D0 and D, the value of D and its heliocentric radial derivative, both at 1 a.u. and at a scattering angle of 90°. A polarimetric treatment leads to the local polarization degree, P0, and to its heliocentric derivative, P. Applied to all three available observational sources, this method invalidates the assumption of homogeneity, leading to a rather high relative gradient PP0 near 1 a.u. (? 12, ? 16 or ? 24%, according to the source, as the Sun's distance decreases from 1.0 to 0.9 a.u.).The method is extended to Doppler spectrometry, taking advantage of the two equal projections on the line of sight of the Earth's velocity vector. The brightness Z0 and the Dopplershift Δλ0 observed at 90° elongation, together with the derivatives w.r.t. elongation ε, of the brightness, Z? and of the Dopplershift, Δλ, can be used to retrieve the mean orbital velocity, v, of the interplanetary scatterers in the region of the terrestrial orbit. The two most reliable observational sources lead, with fair agreement, to a relative excess (v ? V)V, over the terrestrial velocity, of the order of + 25%.  相似文献   

11.
In situ measurements of stratospheric H2SO4 and HSO3vapors using passive chemical ionization mass spectrometry were made in October 1982 after the eruption of volcano El Chichon. Data were obtained between about 20 and 41 km showing [H2SO4 + HSO3] sum concentrations between about 104 and 2 × 105 cm?3 below 29 km and a steep rise above this altitude. Maximum [H2SO4 + HSO3] values of about 3 × 106 cm?3 are reached above 35 km.Partial [HSO3] concentrations increase above 34 km reaching about 4 × 105cm?3 around 40 km. From the measurements it is concluded that H2SO4 and probably HSO3photolysis have an important influence above 34 km leading to the observed increase of [HSO3] and a depletion of H2SO4vapor.It also seems that the data support the view of heterogeneous HSO3 removal. If correct, this would imply that stratospheric aerosols are formed primarily from HSO3 rather than H2SO4vapor.  相似文献   

12.
Recent papers attributing the observed microwave opacity of the middle atmosphere of Venus to gaseous sulfur dioxide (SO2) and other cloud-related gases have motivated laboratory measurements of their microwave absorbing properties under simulated conditions for this region. In the pressure range from 1 to 5 atmospheres and in the temperature range from 297 to 355°K, the absorption of SO2 in a carbon dioxide (CO2) atmosphere, at 2.257 and 8.342 GHz, has been found to be approximately 50% larger than that calculated from Van Vleck-Weisskopf theory. The measured absorption is about 25 × 106 q?2p1.20 T?3.1 (dB km?1), where q is the sulfur dioxide number mixing ratio, ? is frequency in gigahertz, p is pressure in atmospheres, and T is temperature in degrees Kelvin. This represents the best-fit expression to the observed pressure dependence, while theoretical values of frequency and temperature dependence are accepted as being consistent with the measurements. Another cloud-related gas, sulfur trioxide (SO3), was also tested in a CO2 atmosphere and found to be relatively transparent. These results reduce the amount of SO2 in the Venus middle atmosphere required to explain the opacity measured by radio occulatation, but this amount still exceeds the abundance measured in situ by atmospheric probes, suggesting that there must be another important source of opacity. Preliminary measurements of the 13-cm absorptivity of gaseous sulfuric acid (H2SO4) show it to be a strong microwave absorber, and thus likely to be responsible for a significant and possibly major part of the observed opacity.  相似文献   

13.
G. Leonard Tyler 《Icarus》1979,37(1):29-45
Quasi-specular radar data used to determine apparent surface roughness σχ of geologic surfaces displays a variable wavelength λ dependence ranging between σχ ~ λ0and σχ ~ λ?13 for 0.01 ? λ ? 1 m. The strongest changes in σχ with wavelength are observed in lunar mare, while scatter from lunar highlands is nearly wavelength independent. Commonly used, gently undulating surface models for electromagnetic scatter predict no wavelength dependence. Wavelength dependence occurs whenever a significant fraction of the surface has local radii of curvature comparable to the observing wavelength. This condition can be determined by comparison of the value of the integrated surface curvature spectrum with the radar wavenumber, multiplied by a constant that depends on the geometry. Variations in curvature statistics calculated from photogrammetric reduction of lunar images are consistent with the observed variations in quasi-specular scatter between λ = 13 and 116 cm at the same locations. Variations in the strength of the wavelength dependence are correlated with the sizes of lunar craters that lie near the upper size limit for the local steady-state distribution. This correlation is also consistent with variations in the curvature spectrum calculated from crater size-frequency distributions.  相似文献   

14.
Values of plasma temperature and vertical temperature gradient were obtained by fitting theoretical models to 60,000 observed electron density profiles, at heights of 400–1000 km. Results show the diurnal and seasonal changes in temperature from 75°S to 85°N near solar minimum. At night the temperature and temperature gradient are both low inside the plasmapause and high outside. Day-time temperatures increase almost linearly with latitude, from 1500 K at the magnetic equator to a maximum of 3500 K at the plasmapause. There is also a sharp peak at 77° latitude, beneath the magnetospheric cleft. Mean vertical temperature gradients are ca. 0.5 Kkm at night, and 1–4 K/km during the day. The downwards flow of heat, during the day, increases from about zero at 10° latitude to a maximum of 4 × 109eVcm2sec at the plasmapause. Night-time flows are 5–20 times less, inside the plasmasphere. Increases in magnetic activity cause a temperature increase at 400 km, of about 70 K per unit increase in Kp at all latitudes greater than 65°. The temperature peaks at the plasmapause and the magnetospheric cleft show little increase with magnetic activity, but move equatorwards by ca. 2° in latitude per unit Kp.  相似文献   

15.
High spatial resolution infrared and visible data obtained by the Voyager 1 spacecraft have been analyzed simultaneously to infer properties of the deep cloud structure of the Jovian troposphere in the 1- to 4-bar pressure range. Influence of the ammonia upper cloud layer, in the 5μm Jovian window, has been investigated through a cloud model derived from far ir Voyager IRIS measurements. The attenuation, computed with an anisotropic scattering formulation, is too weak to explain 5-μm measurements and provides evidence for existence of a cloud structure at deeper levels. The main conclusions derived from the present analysis are summarized below: (1) the deep cloud structure appears to be vertically associated with the NH3 upper layer; (2) the ammonia cloud is mainly responsible for the visible appearance of the Jovian equatorial region; (3) the deep cloud structure exhibits a grey opacity in the 5-μm window; (4) coldest 5-μm spectra can be interpreted by the existence of a thick cloud layer located at levels in the 180–195°K temperature range. Implications of these results are discussed in conjunction with predictions of dynamical and thermochemical models. NH4SH is shown to be a likely candidate for the main deep cloud constituent. An even deeper thick H2O cloud may be present too, but should not be responsible for the observed spread in 5-μm brightness temperatures.  相似文献   

16.
An attempt to observe radar echoes from the comet Kohoutek was made at a radio frequency of 7840 MHz (λ ~- 3.8 cm) on 12 January 1974 using the Haystack Observatory radar in Massachusetts. A search for an echo over a range of band-widths covering 2Hz to 66kHz yielded no positive result. The upper limit on the radar cross section is therefore approximately 104B12km2, where B is the (unknown) bandwidth of the echo in Hertz. For B ? 100 Hz, it follows that (i) the nucleus, if a perfect spherical reflector, must be less than 250 km in diameter, and (ii) the density of any millimeter-sized particles must be less than 1m?3 for a coma of diameter 104km.  相似文献   

17.
An analysis of Titan's solar phase variation as a function of wavelength together with the continuum geometric albedo makes it possible to set limits on the real part of the refractive index and on the average particle size of the aerosol component of Titan's atmosphere: 1.5 ?nr< 2.0 and 0.20 μm <r?0.35 μm. If nris known r can be determined to within a few percent, and varies inversely with nr. Using this information in a two-layer model of a methane-aerosol atmosphere and comparing the result with Titan's visible and near-infrared methane spectrum leads to the conclusion that the top layer of Titan's atmosphere contains 0.01 km atm of methane and 2.5 extinction optical depths of aerosol, while the data are consistent with a bottom layer containing 2.2 km atm of methane and about 7.5 aerosol optical depths for nr = 1.7, r = 0.25 μm.  相似文献   

18.
V.S. Safronov 《Icarus》1978,33(1):3-12
The thermal state of the Earth accumulating from solid bodies is investigated. The conductivity equation is deduced for a growing spherically symmetrical planet which takes into account heating by impacts of bodies, by radioactivity, and by compression of its material. The cooling is produced mainly by impact mixing, which is approximated by extrapolating the parameters from known impact craters to larger sizes. The solution of a more simple conductivity equation for a uniformly heated plane parallel layer with moving boundaries is found. It can be considered as an approximate quasi-stationary solution for the temperature distribution in the outer parts of the growing Earth. The result depends substantially on the sizes of impacting bodies but almost not at all on the time scale of the accumulation. The latter only weakly affects the surface temperature and does not affect the temperature distribution in the layer. For bodies of small radii, r′ < r1, where the size of the crater is not affected appreciably by gravitation (for the present mass of the Earth r1 ≈ 1 km), the heating is small. For bodies with r′ > r1, the heating of the layer is roughly proportional to the ratio r′r1. Toward the end of the Earth's accumulation the melting point can be reached in the outer layer at rM ? 60 km, where rM is the radius of the largest body in the power law size spectrum of falling bodies. The estimates of the initial temperature of the Earth can vary within wide limits depending on the mass distribution of large protoplanetary bodies, which at the present time is not known correctly. The initial melting of an upper layer of the Earth a few hundred kilometers thick seems to be possible.  相似文献   

19.
More than 500 images of Io in eclipse were acquired by the Cassini spacecraft in late 2000 and early 2001 as it passed through the jovian system en route to Saturn (Porco et al., 2003, Science 299, 1541-1547). Io's bright equatorial glows were detected in Cassini's near-ultraviolet filters, supporting the interpretation that the visible emissions are predominantly due to molecular SO2. Detailed comparisons of laboratory SO2 spectra with the Cassini observations indicate that a mixture of gases contribute to the equatorial emissions. Potassium is suggested by new detections of the equatorial glows at near-infrared wavelengths from 730 to 800 nm. Neutral atomic oxygen and sodium are required to explain the brightness of the glows at visible wavelengths. The molecule S2 is postulated to emit most of the glow intensity in the wavelength interval from 390 to 500 nm. The locations of the visible emissions vary in response to the changing orientation of the external magnetic field, tracking the tangent points of the jovian magnetic field lines. Limb glows distinct from the equatorial emissions were observed at visible to near-infrared wavelengths from 500 to 850 nm, indicating that atomic O, Na, and K are distributed across Io's surface. Stratification of the atmosphere is demonstrated by differences in the altitudes of emissions at various wavelengths: SO2 emissions are confined to a region close to Io's surface, whereas neutral oxygen emissions are seen at altitudes that reach up to 900 km, or half the radius of the satellite. Pre-egress brightening demonstrates that light scattered into Jupiter's shadow by gases or aerosols in the giant planet's upper atmosphere contaminates images of Io taken within 13 minutes of entry into or emergence from Jupiter's umbra. Although partial atmospheric collapse is suggested by the longer timescale for post-ingress dimming than pre-egress brightening, Io's atmosphere must be substantially supported by volcanism to retain auroral emissions throughout the duration of eclipse.  相似文献   

20.
Two coherently related radio signals transmitted from Voyager 1 at wavelengths of 13 cm (S-band) and 3.6 cm (X-band) were used to probe the equatorial atmosphere of Titan. The measurements were conducted during the occultation of the spacecraft by the satellite on November 12, 1980. An analysis of the differential dispersive frequency measurements did not reveal any ionization layers in the upper atmosphere of Titan. The resolution was approximately 3 × 103 and 5 × 103 electrons/cm3 near the evening and morning terminators, respectively. Abrupt signal changes observed at ingress and egress indicated a surface radius of 2575.0 ± 0.5 km, leading to a mean density of 1.881 ± 0.002 g cm?3 for the satellite. The nondispersive data were used to derive profiles in height of the gas refractivity and microwave absorption in Titan's troposphere and stratosphere. No absorption was detected; the resolution was about 0.01 dB/km at the 13-cm wavelength. The gas refractivity data, which extend from the surface to about 200 km altitude, were interpreted in two different ways. In the first, it is assumed that N2 makes up essentially all of the atmosphere, but with very small amounts of CH4 and other hydrocarbons also present. This approach yielded a temperature and pressure at the surface of 94.0 ± 0.7°K and 1496 ± 20 mbar, respectively. The tropopause, which was detected near 42 km altitude, had a temperature of 71.4 ± 0.5°K and a pressure of about 130 mbar. Above the tropopause, the temperature increased with height, reaching 170 ± 15°K near the 200-km level. The maximum temperature lapse rate observed near the surface (1.38 ± 0.10°K/km) corresponds to the adiabatic value expected for a dry N2 atmosphere—indicating that methane saturation did not occur in tbis region. Above the 3.5-km altitude level the lapse rate dropped abruptly to 0.9 ± 0.1°K/km and then decreased slowly with increasing altitude, crossing zero at the tropopause. For the N2 atmospheric model, the lapse rate transition at the 3.5-km level appears to mark the boundary between a convective region near the surface having the dry adiabatic lapse rate, and a higher stable region in radiative equilibrium. In the second interpretation of the refractivity data, it is assumed, instead, that the 3.5 km altitude level corresponds to the bottom of a CH4 cloud layer, and that N2 and CH4 are perfectly mixed below this level. These assumptions lead to an atmospheric model which below the clouds contains about 10% CH4 by number density. The temperature near the surface is about 95°K. Arguments concerning the temperature lapse rates computed from the radio measurements appear to favor models in which methane forms at most a limited haze layer high in the troposphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号