首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2001, the Hong Kong government implemented the Harbor Area Treatment Scheme (HATS) under which 70% of the sewage that had been formerly discharged into Victoria Harbor is now collected and sent to Stonecutters Island Sewage Works where it receives chemically enhanced primary treatment (CEPT), and is then discharged into waters west of the Harbor. The relocation of the sewage discharge will possibly change the nutrient dynamics and phytoplankton biomass in this area. Therefore, there is a need to examine the factors that regulate phytoplankton growth in Hong Kong waters in order to understand future impacts. Based on a historic nutrient data set (1986-2001), a comparison of ambient nutrient ratios with the Redfield ratio (N:P:Si=16:1:16) showed clear spatial variations in the factors that regulate phytoplankton biomass along a west (estuary) to east (coastal/oceanic) transect through Hong Kong waters. Algal biomass was constrained by a combination of low light conditions, a rapid change in salinity, and strong turbulent mixing in western waters throughout the year. Potential stoichiometric Si limitation (up to 94% of the cases in winter) occurred in Victoria Harbor due to the contribution of sewage effluent with high N and P enrichment all year, except for summer when the frequency of stoichiometric Si limitation (48%) was the same as P, owing to the influence of the high Si in the Pearl River discharge. In the eastern waters, potential N limitation and N and P co-limitation occurred in autumn and winter respectively, because of the dominance of coastal/oceanic water with low nutrients and low N:P ratios. In contrast, potential Si limitation occurred in spring and a switch to potential N, P and Si limitation occurred in eastern waters in summer. In southern waters, there was a shift from P limitation (80%) in summer due to the influence of the N-rich Pearl River discharge, to N limitation (68%) in autumn, and to N and P co-limitation in winter due to the dominance of N-poor oceanic water from the oligotrophic South China Sea. Our results show clear temporal and spatial variations in the nutrient stoichiometry which indicates potential regulation of phytoplankton biomass in HK waters due to the combination of the seasonal exchange of the Pearl River discharge and oceanic water, sewage effluent inputs, and strong hydrodynamic mixing from SW monsoon winds in summer and the NE monsoon winds in winter.  相似文献   

2.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

3.
This study presents water quality parameters such as nutrients, phytoplankton biomass and dissolved oxygen based on 11 years of water quality data in Victoria Harbor and examined how the Pearl River estuary discharge in summer and year round sewage discharge influenced these parameters. Nutrients in Victoria Harbor were strongly influenced by both the Pearl River and sewage effluent, as indicated by the high NO(3) inputs from the Pearl River in summer and higher NH(4) and PO(4) in Victoria Harbor than both its sides. N:P ratios were low in the dry season, but increased to >16:1 in the wet season, suggesting that P is potentially the most limiting nutrient in this area during the critical period in the summer. Although there were generally high nutrients, the phytoplankton biomass was not as high as one would expect in Victoria Harbor. In fact, there were high concentrations of chl near the bottom well below the photic zone. Salinity near the bottom was lower in Victoria Harbor than at the two entrances to Victoria Harbor, suggesting strong vertical mixing within Victoria Harbor. Therefore, strong vertical mixing and horizontal advection appear to play an important role in significantly reducing eutrophication impacts in Victoria Harbor. Consequently, dissolved oxygen near the bottom was low in summer, but only occasionally dipped to 2 mgL(-1) despite the high organic loading from sewage effluent.  相似文献   

4.
Hong Kong is surrounded by estuarine, coastal and oceanic waters. In this study, monthly averages over a 10 year time series of salinity, temperature, chlorophyll a (chl a), dissolved oxygen (DO), dissolved inorganic nitrogen (DIN), silicate (SiO4) and orthophosphate (PO4) at three representative stations around Hong Kong were used to examine if excess nitrogen in estuarine influenced waters is due to P limitation. The monthly distribution clearly shows the dominant influence of the seasonal change in river discharge in the Pearl River estuary and adjacent coastal waters. In winter, the river discharge is small and more oceanic waters are dominant and as a result, salinity is high, and chlorophyll and nutrients are low. In summer, when the river discharge is high, salinity decreases and nutrients increase. DIN is very high, reaching 100 μM in the estuary. This indicates over enrichment of nitrogen relative to P and consequently there is an excess of N in coastal waters of Hong Kong. P remains low (∼1 μM) and can potentially limit both phytoplankton biomass and N utilization which was demonstrated in field incubation experiments. P limitation would result in excess N being left in the estuarine influenced waters south of Hong Kong. Phosphate concentration is lower in the Pearl River estuary than in many other eutrophied estuaries. Therefore, this relatively low PO4 concentration should be a significant factor limiting a further increase in the magnitude of algal biomass and in the degree of eutrophication in the Pearl River estuary. The export of the excess N offshore into the northern South China Sea may result in an increase in the size of the region that is P limited in summer.  相似文献   

5.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

6.
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO(3) and SiO(4) concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH(4) and PO(4) in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally > 9 microL(-1) in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO(4) in the most productive southern waters and it seldom decreased to limiting levels ( approximately 0.1 microM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained > 3.5 mg L(-1) at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH(4) and PO(4) and an increase in bottom DO. In contrast, there were an increase in chl a and NO(3), and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

7.
《Continental Shelf Research》2005,25(9):1081-1095
The mesoscale distribution and seasonal variation of the size structure of phytoplankton biomass, as measured by chlorophyll a (chl a), was studied in the Ebro shelf area (NW Mediterranean) during three different seasons: autumn, winter and summer. In autumn and summer, when the water column was, respectively, slightly or strongly stratified and nutrient concentrations were low at surface, average total chl a values were 0.31 and 0.29 mg m−3, respectively. In winter, the intrusion of nutrients into the photic zone by intense vertical mixing and strong riverine inputs, produced an increase of the total autotrophic biomass (0.76 mg m−3). In the three seasons, the main contributor to total chl a was the picoplanktonic (<2 μm) size fraction (42% in winter and around 60% in autumn and summer). The nanophytoplankton (2–20 μm) contribution to total chl a showed the lowest variability amongst seasons (between 29% and 39%). The microplanktonic (>20 μm) chl a size fraction was higher in winter (27%) than in the other seasons (less than 13%). The maximum total chl a concentrations were found at surface in winter, at depths of 40 m in autumn and between 50 and 80 m in summer. The relative contribution of the <2 μm size fraction at these levels of the water column tended to be higher than at other depths in autumn and winter and lower in summer. In autumn and winter, nutrient inputs from Ebro river discharge and mixing processes resulted in an increase on the >2 μm contribution to total chl a in the coastal zone near the Ebro Delta area. In summer, the contribution of the <2 and >2 μm chl a size fractions was homogeneously distributed through the sampling area. In autumn and summer, when deep chl a maxima were observed, the total amount of the autotrophic biomass in the superficial waters (down to 10 m) of most offshore stations was less than 10% of the whole integrated chl a (down to 100 m or to the bottom). In winter, this percentage increased until 20% or 40%. The >2 μm chl a increased linearly with total chl a values. However, the <2 μm chl a showed a similar linear relationship only at total chl a values lower than 1 mg m−3 (in autumn and summer) or 2 mg m−3 (winter). At higher values of total chl a, the contribution of the <2 μm size fraction remained below an upper limit of roughly 0.5 mg m−3. Our results indicate that the picoplankton fraction of phytoplankton may show higher seasonal and mesoscale variability than is usually acknowledged.  相似文献   

8.
《Marine pollution bulletin》2014,78(1-2):274-281
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m−2) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m−2). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m−2 and the macroalgal biomass between 1 and 296.0 g m−2. The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.  相似文献   

9.
The seasonal pattern of size-fractionated phytoplankton biomass, primary production and respiration was investigated along the longitudinal axis of the Nervión–Ibaizabal estuary (Bay of Biscay) from April 2003 to September 2004. Environmental factors influencing phytoplankton dynamics were also studied. Chlorophyll a biomass showed a longitudinal pattern of increase from the outer Abra bay to the inner estuary. On a seasonal scale, in the intermediate and inner estuary phytoplankton biomass maxima were registered in summer, the warmest and driest season, whereas in the outer bay chlorophyll a peaks occurred in May 2004, but were delayed to August 2003, likely due to a very rainy spring. Data suggest that river flow exerts a marked influence on the timing of phytoplankton biomass maxima in this estuary, decreased river flows providing a lowering of turbidity and an increase in water residence time needed for chlorophyll a to build up. Nutrient concentrations were high enough not to limit phytoplankton growth throughout the annual cycle, except silicate and occasionally phosphate in the outer bay during summer. Silicate concentration correlated positively with river flow, whereas ammonium and phosphate maximum values were generally measured in the mid-estuary, suggesting the importance of allochthonous anthropogenic sources. In the intermediate and inner estuary phytoplankton biomass was generally dominated by >8 μm size-fraction (ca. 60%), but in August 2003 <8 μm size-fraction increased its contribution in the intermediate estuary. It is argued that the lower nutrient concentrations measured in August 2003 than in August 2004 could have played a role. This is the first study in which phytoplankton primary production rates have been measured along the longitudinal axis of the Nervión–Ibaizabal estuary. Throughout the annual cycle these rates ranged from 0.001 to 3.163 g C m?3 d?1 and were comparable to those measured in nearby small estuaries of the Basque coast and other larger estuaries on the Bay of Biscay. Surface plankton community respiration rate maxima were measured during the spring 2004 chlorophyll a peak in the Abra bay and in summer months at the mid and inner estuary, coinciding with chlorophyll a biomass and primary production maxima. In general, respiration rates showed a positive correlation with temperature. In order to compare results from the Nervión–Ibaizabal estuary with other nearshore coastal and estuarine ecosystems within the Bay of Biscay a review of existing information on phytoplankton biomass and primary production dynamics was performed.  相似文献   

10.
The coastal waters of Hong Kong constitute a transition from estuarine conditions in the west to more oceanic conditions in the east, with a major discharge of untreated sewage located at the mid-point. Chlorophyll a was determined and net phytoplankton was sampled at 45 stations throughout this transition. Over a period of 20 months, chlorophyll a values rarely exceeded 2 μg l.?1 in unpolluted coastal waters. Estuarine waters generally contained 2–6 μg l.?1 and, in waters influenced by sewage discharge, values sometimes exceeded 20 μg l.?1. There was no evidence of a reduction in taxonomic diversity in polluted areas except in summer, when the net phytoplankton was dominated by Chaetoceros spp. In the autumn and early winter, Skeletonema costatum was abundant in the central polluted areas.  相似文献   

11.
《Continental Shelf Research》1999,19(14):1755-1770
Ammonium regeneration by size-fractionated plankton was measured for 1 year at a coastal station in the shallow well-mixed waters of the western English Channel. Rates of ammonium regeneration in the <200 μm fraction varied from 0.6 to 27 nmol N l−1 h−1. On the seasonal scale, these rates were relatively low (<7 nmol N l−1 h−1) in autumn and winter, increased steadily from March to attain a maximum (27 nmol N l−1 h−1) at the end of May and thereafter decreased steadily to the seasonal minimum in December. This pattern is distinctly different from that observed in deep well-mixed waters where the peak ammonium regeneration occurs in summer (Le Corre et al., 1996, Journal of Plankton Research, 18, 355–370). Total ammonium regenerated in a year by the microheterotrophs was 15 g N m−2, equivalent to about 60% of the total nitrogen uptake. Microplankton (200–15 μm) accounted for about 50% of the regeneration measured between early spring and late summer. Percent contribution of nanoplankton to total ammonium regeneration varied considerably between the seasons, from very high (83–88%) levels in winter to very low (2–13%) levels in summer. Contribution by picoplankton (<1 μm) was high (20–45%) in summer but was less than 20% in other seasons. Ammonium regeneration in micro- and nanoplankton fractions was mainly associated with ciliates and in the picoplankton fraction with bacteria. Macrozooplankton dynamics appears to regulate ammonium regeneration by ciliates and bacteria. Low macrozooplankton biomass in spring may favour a high growth of ciliates and an associated high in ammonium regeneration. In summer, the increase in macrozooplankton may exert a grazing pressure on ciliates. This, coupled with the fact that most of the flagellates are autotrophs, would, in turn, lower the grazing pressure on the bacteria, thus favouring their development and increasing the importance of their role in ammonium regeneration. This situation, where the macrozooplankton dynamics apparently regulates ammonium regeneration in nano- and picoplankton fractions, appears to be different from that in deep well-mixed waters. Here, the relative contribution of ciliates and bacteria to ammonium regeneration shows little variation with an increase in macrozooplankton biomass.  相似文献   

12.
Mixotrophy, the combination of autotrophic and heterotrophic nutrition in the same organism, is widespread in planktonic algae. Several reports from temperate and high-latitude fjords in Scandinavia suggest the occurrence of a niche in late summer and autumn during post-bloom conditions in which mixotrophic algae can become important grazers in pelagic ecosystems, accessing the nutrients bound in their prey to overcome nutrient limitation. Here, we experimentally determined the trophic modes and bacterivory rates for the nanoplankton community (2–20 μm) in Aysén Fjord located in the Chilean Northern Patagonia during two contrasting seasons: winter and spring. While mixotrophic nanoplankton was virtually absent from the system in spring, in winter at occasions it even constituted the dominant trophic group of the nanoplankton with abundances of >900 cells mL?1. This indicates a second niche for mixotrophs in winter, when mixotrophy allows overcoming light limitation.  相似文献   

13.
《Continental Shelf Research》2007,27(10-11):1399-1407
The annual cycle of nutrient-phytoplankton dynamics in Bohai Sea (BS) is simulated using a coupled physical–biological model in this study. By comparison, the modeled seasonal variations of nutrients and primary productivity agree with observations rather well. Although the annual cycles of chlorophyll a and primary production are both characterized by a double-peak configuration, a structural difference is still apparent: the phytoplankton biomass reaches the highest value in spring while summer is characterized by the most productivity in the BS, which can be ascribed to the combined impact of seawater temperature and zooplankton-grazing pressure on the growth of algae. Based on the validated simulations, the annual budgets of carbon, nitrogen and phosphorus are estimated, and are about 0.82 mt C surplus, 39 kt N deficit and 12 kt P surplus, respectively, implying that the BS ecosystem is somewhat nitrogen limited. The contribution of two external nutrient sources, namely river discharges and resuspended sediments, to the growth of algae is also examined numerically, and it is found that the influence of river-borne nutrients mainly concentrates in estuaries, whereas the reduction of sediment-borne nutrients may significantly inhibit the onset of algae bloom in the whole BS.  相似文献   

14.
Sixteen years (1997–2013) of physicochemical, nutrient and phytoplankton biomass (Chlorophyll-a (Chl-a)) data and a decade (2003-2013) of phytoplankton composition and abundance data were analyzed to assess how the algal community in a temperate southeastern Australian estuary has responded to decreased chronic point source nitrogen loading following effluent treatment upgrade works in 2003. Nitrogen concentrations were significantly lower (P < 0.05) following enhanced effluent treatment and Chl-a levels decreased (P < 0.05) during the warmer months. Temperature and nutrient concentrations significantly influenced temporal changes of Chl-a (explaining 55% of variability), while salinity, temperature, pH and nutrient concentrations influenced phytoplankton abundance and composition (25% explained). Harmful Algal Bloom (HAB) dynamics differed between sites likely influenced by physical attributes of the estuary. This study demonstrates that enhanced effluent treatment can significantly decrease chronic point source nitrogen loading and that Chl-a concentrations can be lowered during the warmer months when the risk of blooms and HABs is greatest.  相似文献   

15.
During the 2005 Layered Organization in the Coastal Ocean (LOCO) field program in Monterey Bay, California, we integrated intensive water column surveys by an autonomous underwater vehicle (AUV) with satellite and mooring data to examine the spatiotemporal scales and processes of phytoplankton thin-layer development. Surveying inner to outer shelf waters repeatedly between August 18 and September 6, the AUV acquired 6841 profiles. By the criteria: [(1) thickness ≤3 m at the full-width half-maximum, (2) peak chlorophyll at least twice the local background concentrations, and (3) a corresponding peak in optical backscattering], thin layers were detected in 3978 (58%) of the profiles. Average layer thickness was 1.4 m, and average intensity was 13.5 μg l?1 above (3.2x) background. Thin layers were observed at depths between 2.6 and 17.6 m, and their depths showed diurnal vertical migration of the layer phytoplankton populations. Horizontal scales of thin-layer patches ranged from <100 m to>10,000 m. A thin-layer index (TLI), computed from layer frequency, intensity and thinness, was highest in mid-shelf waters, coincident with a frontal zone between bay waters and an intrusion of low-salinity offshore waters. Satellite observations showed locally enhanced chlorophyll concentrations along the front, and in situ observations indicated that phytoplankton may have been affected by locally enhanced nutrient supply in the front and concentration of motile populations in a convergence zone. Minimum TLI was furthest offshore, in the area most affected by the intrusion of offshore, low-chlorophyll waters. Average thin-layer intensity doubled during August 25–29, in parallel with warming at the surface and cooling within and below the thermocline. During this apparent bloom of thin-layer populations, density oscillations in the diurnal frequency band increased by an order of magnitude at the shelfbreak and in near-bottom waters of the inner shelf, indicating the role of internal tidal pumping from Monterey Canyon onto the shelf. This nutrient transport process was mapped by the AUV. Peak TLI was observed on August 29 during a nighttime survey, when phytoplankton were concentrated in the nutricline. Empirical orthogonal function decomposition of the thin-layer particle size distribution data from this survey showed that throughout the inner to outer shelf survey domain, the layers were dominated by phytoplankton having a cross-section of ~50 μm. This is consistent with the size of abundant Akashiwo sanguinea cells observed microscopically in water samples. During a subsequent and stronger intrusion of low-salinity offshore waters, spatially-averaged vertical density stratification decreased by > 50%, and phytoplankton thin layers disappeared almost completely from the AUV survey domain.  相似文献   

16.
Meteorological extreme events (heavy rainfall, heat waves) may lead to fast changes in nutrient load and water temperature in temperate lakes. We conducted laboratory experiments with an artificial phytoplankton community to mimic a rapid temperature increase (from 21 °C to 29 °C) at low nutrient levels (‘heat wave scenario’), respectively temperature decrease (from 21 °C to 16 °C) and increased nutrient load (‘heavy rainfall scenario’). We hypothesised that there is a taxon specific nutrient x temperature interaction, leading to significant shifts in the phytoplankton community composition when both variables change. To separate the temperature effect from the nutrient effect, we performed another experimental series at a reduced temperature but without addition of nutrients. As expected, the nutrient effect was overall more important than temperature and significantly affected all five taxa tested that represented different algal classes. However, temperature also played an important role for community composition, because the cryptophyte Cryptomonas sp. and the dinoflagellate Peridinium sp. reached significantly higher biovolumes at lower temperatures. The nutrient x temperature interaction was significant in the green alga Scenedesmus obliquus. These findings suggest that our experimental results cannot be interpreted primarily by species competition for nutrients. Heterotrophic bacteria were present in all experiments. Bacterial biomass was significantly positively related to temperature and nutrients. However, relative to phytoplankton biovolume, bacterial biovolume decreased under nutrient replete conditions. In conclusion, our results demonstrate that short-term environmental change may significantly affect both the phytoplankton community (in terms of species dominance and total biomass) and the ratio between autotrophs and heterotrophs in temperate lakes.  相似文献   

17.
A monthly comparative study of mesozooplankton biomass and composition between a eutrophic Pearl River estuarine site (WE) and a mesotrophic coastal-oceanic site (EO) in Hong Kong waters was conducted to examine the response of mesozooplankton to nutrient-rich riverine discharge. Although the annual average mesozooplankton biomass was higher at WE than at EO, they were not statistically significant. Variations of mesozooplankton biomass at both stations followed similar trends of Chl a concentrations, with the exception of July at WE where mesozooplankton biomass was low but total Chl a was high. This mismatch may be due to the high flushing effect of the Pearl River discharge in summer and a time lag in mesozooplankton population growth. On the other hand, the composition of mesozooplankton was significantly modified by riverine discharge and eutrophication conditions. While small copepods dominated at both sites, the eutrophic estuarine water had a high abundance of barnacle and polychaete larvae, while cladocerans, bivalve larvae, gastropod larvae and chaetognaths mainly occurred at EO. Eutrophication increased the top-down role of copepods in the grazing community, revealed by an increase in the percentage of copepods in the total metazoan mesozooplankton, especially during the period of high river discharge. Moreover, mesozooplankton diversity at the two stations was similar, and they both showed relatively higher diversity during autumn and winter and lower diversity during summer, especially at WE. These results suggest that, despite high nutrient and Chl a concentrations in estuarine waters, mesozooplankton biomass were not enhanced compared to coastal waters with no river impact, possibly due to poor food quality and increased predation in the eutrophic estuarine waters.  相似文献   

18.
The seasonal cycle of chlorophyll concentration in the Bay of Biscay and western English Channel has been examined using satellite data (chlorophyll, sea surface temperature (SST), photosynthetically available radiation (PAR) and wind) along the line of the ferry Pride of Bilbao (Bilbao to Portsmouth). The spring phytoplankton bloom develops regularly in the oceanic region of the Bay of Biscay from mid March to the beginning of May with peak chlorophyll concentrations ranging 2–4 mg m?3. Low wind turbulence is a major factor allowing the development of productivity pulses in the Bay of Biscay during spring. Exceptional blooms of phytoplankton take place in summer (July–August) in the western English Channel with chlorophyll concentrations as high as 40 mg m?3. Some environmental factors (SST, wind, pressure and tide) are examined. Autumn blooms of phytoplankton (1–2 mg m?3) are also detected in the northern Bay of Biscay, shelf-break and Celtic Sea in October. A 11 years pluri-annual synthesis of SeaWiFS satellite measurements is presented.  相似文献   

19.
Two research cruises (CIMAR 13 Fiordos) were conducted in the N–S oriented macrobasin of the Moraleda Channel (42–47°S), which includes the E–W oriented Puyuhuapi Channel and Aysen Fjord, during two contrasting productive seasons: austral winter (27 July–7 August 2007) and spring (2–12 November 2007). These campaigns set out to assess the spatio-temporal variability, defined by the local topography along Moraleda Channel, in the biological, physical, and chemical oceanographic characteristics of different microbasins and to quantify the carbon budget of the pelagic trophic webs of Aysen Fjord.Seasonal carbon fluxes and fjord-system functioning vary widely in our study area. In terms of spatial topography, two constriction sills (Meninea and Elefantes) define three microbasins along Moraleda Channel, herein the (1) north (Guafo-Meninea), (2) central (Meninea-Elefantes), and (3) south (Elefantes-San Rafael Lagoon) microbasins. In winter, nutrient concentrations were high (i.e. nitrate range: 21–14 μM) and primary production was low (153–310 mgC m?2 d?1), suggesting that reduced light radiation depressed the plankton dynamics throughout Moraleda Channel. In spring, primary production followed a conspicuous N–S gradient, which was the highest (5167 mgC m?2 d?1) in the north microbasin and the lowest (742 mgC m?2 d?1) in the south microbasin. The seasonal pattern of the semi-enclosed Puyuhuapi Channel and Aysen Fjord, however, revealed no significant differences in primary production (~800 mgC m?2 d?1), and vertical fluxes of particulate organic carbon were nearly twice as high in spring as in winter (266 vs. 168 mgC m?2 d?1).At the time-series station (St. 79), the lithogenic fraction dominated the total sedimented matter (seston). The role of euphausiids in the biological carbon pump of the Patagonian fjords was evident, given the predominance of zooplankton fecal material, mostly euphausiid fecal strings (46% of all fecal material), among the recognizable particles contributing to the particulate organic carbon flux.The topographic constriction sills partially modulated the exchange of oceanic waters (Subantarctic Surface Water) with freshwater river discharges along the Moraleda Channel. This exchange affects salinity and nutrient availability and, thus, the plankton structure. The north microbasin was dominated by a seasonal alternation of the classical (spring) and microbial (winter) food webs. However, in the south microbasin, productivity was low and the system was dominated year-round by large inputs of glacier-derived, silt-rich freshwater carrying predominantly small-sized diatoms (Skeletonema spp) and bacteria. When superimposed upon this scenario, highly variable (seasonal) solar radiation and photoperiods could exacerbate north–south differences along Moraleda Channel.  相似文献   

20.
Daily variations in nutrients were monitored for 15 months (September 2007–November 2008) in the Godavari estuary, Andhra Pradesh, India, at two fixed locations. River discharge has significant influence on nutrients loading to the estuary, which peaks during June–August (peak discharge period; monsoon) whereas exchanges at the sediment–water interface, groundwater and rainwater contribute significantly during other period. Despite significant amount of nutrients brought by discharge to the study region, phytoplankton biomass, in terms of chlorophyll-a (Chl a), did not increase significantly due to high suspended load and shallow photic depth. Nutrients showed downward gradient towards downstream of the estuary from upstream due to dilution by nutrient poor seawater and biological uptake. The N:P ratios were higher than Redfield ratio in both upstream and downstream of the estuary during no discharge period suggesting PO4 to be a limiting nutrient for phytoplankton production, at levels <0.10 μmol L−1. On the other hand, Si:N ratios were always more than unity during entire study period at both the stations indicating that Si(OH)4 is not a limiting nutrient. Our results suggest that suspended matter limits phytoplankton biomass during peak discharge period whereas PO4 during no discharge period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号