首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In June 1991 the EFEDA-field experiment (ECHIVAL Field Experiment in a Desertification-Threatened Area) was carried out in the Spanish province Castilla-La Mancha, to improve the understanding of the interactions between the soil, the vegetation and the atmosphere.Here results of energy balance studies at the Barrax site are given, one of the three intensively studied experimental sites within Castilla-La Mancha. This area is characterized by a large fraction of irrigated fields (40%) while the remaining 60% was fallow land at the end of June 1991. The energy balances over these two characteristic land-use classes totally differ. While for the irrigated fields the evapotranspiration is dominant, for the non-irrigated fields the sensible and the soil heat fluxes dominate and the latent heat flux is nearly negligible.In order to achieve areally averaged turbulent fluxes, surface, SODAR and aircraft data have been used. Comparing the surface fluxes from all three facilities, it can be found that:The sensible heat flux estimation from SODAR (w-method) gives reliable results when a calibration of w is done with another independent system (e.g. aircraft).Aircraft measurements in conjunction with energy budget methods yield surface fluxes of sensible heat, which are about 20% lower than the areally averaged values calculated by the surface measurements. The areally averaged latent heat fluxes from aircraft and surface measurements agree better than the sensible heat fluxes.  相似文献   

2.
This paper evaluates convective boundary layer (CBL) budget methods as a tool for estimating regionally averaged sensible and latent heat fluxes for the study region used in OASIS (Observations at Several Interacting Scales). This is an agricultural region of mixed cropping and grazing extending about 100 km west of the town of Wagga Wagga, NSW, Australia.The analysis proceeds in three stages: first, a simpleone-dimensional model of the well-mixed layer (the CBL slab model), forced with measurements of the surface heat and evaporation fluxes, is evaluated by comparing measured and modelled CBL temperature, humidity and depths. A comparison of several entrainment schemes shows that a simple model, where the entrainment kinetic energy is parameterised as a fraction (3) of the surface sensible heat flux, works well if is set to 0.5. Second, the slab model is coupled to a Penman–Monteith model of surface evaporation to predict regional scale evaporation and thence heat fluxes. Finally, the integral CBL budget approach, which is an inverse method using theone-dimensional slab model, is used to infer regional heat and evaporation fluxes from measured time series of CBL temperature and humidity.We find that the simple CBL slab model works reasonably well for predicting CBL depth and very well for CBL temperature, especially if approximate estimates of subsidence velocity and warming due to advection are included. Regional sensible heat fluxes estimated from the integral CBL method match those measured, although the method is very sensitive to measurement errors. Measurement-model differences were larger for short integration times, because the well-mixed assumptions are violated at particular times of the day. The corollary is that `whole-day' (0530–1530 h) estimates are in reasonable agreement with measured values. Integral methods could not be used to infer the regional evaporation flux directly because CBL humidity profiles were complex and often not well mixed until mid-afternoon. We recommend that regional evaporation fluxes be predicted either from a coupled Penman–Monteith – CBL slab model, or inferred as a residual term from estimates of the regionally averaged available energy and sensible heat flux. Furthermore, we show that inferring fluxes via integral methods will always be difficult when the scalar concentrations have either a large surface source and free atmosphere sink (in the case of water vapour and methane), or a large surface sink and upper level source (in the case of CO2).  相似文献   

3.
陆地蒸散(ET)涵括地表和潮湿叶片的蒸发和植物的蒸散发,是陆地水循环的重要组成部分。Penman-Monteith方程是估算陆地蒸散的重要方法,方程中的叶片或冠层气孔导度是提高估算精度的关键因子。根据碳水循环的耦合原理,植物光合作用模型可用于估算叶片或冠层气孔导度。植物光合作用模型可分为三类:1)使用总冠层导度的大叶模型(BL),2)区别阴、阳叶冠层导度的双大叶模型(TBL),3)区别阴、阳叶叶片导度的双叶模型(TL)。与这三类光合作用模型相对应,衍生出基于不同导度计算方法的三种蒸散估算模型。三种蒸散模型之间的主要区别在于是否进行从叶片尺度到冠层尺度的气孔导度集成。这三种模型中,双叶模型使用叶片尺度的气孔导度,集成度最低。反之,大叶模型使用冠层尺度的气孔导度,集成度最高。由于在Penman-Monteith中,蒸腾和气孔导度之间的关系是非线性的,气孔导度的集合会导致负偏差。因此,与通量测量相比,大叶蒸散模型的估算偏差最大,而双叶蒸散模型的估算偏差最小。  相似文献   

4.
利用遥感信息研究区域冬小麦气孔导度的时空分布   总被引:5,自引:0,他引:5  
气孔导度是影响作物蒸散和作物的光合速率进而影响作物产量的重要因子。文中通过利用NOAA-AVHRR数据首次对华北平原典型区冬小麦气孔导度分布进行了研究,给出了华北平原典型区冬小麦不同生长季节的气孔导度空间分布状况,为进一步研究田间水分和作物蒸散对产量影响以及建立遥感作物水分胁迫生物量模型和监测不同生育期的农田缺水等提供依据。  相似文献   

5.
Abstract

Diurnal changes in the local atmospheric moisture budget over the Canadian Prairies are computed using sequential radiosonde soundings from the 1991 Regional Evaporation Study (RES‐91). Previous attempts to estimate evapotranspiration with radiosonde data have used either similarity theory or a moisture budget, but have been confined to the boundary layer in either case. These studies, as well as semi‐empiric operational techniques which use surface‐based data, exclude the effects of moisture advection and energy exchanges between the boundary layer and the free atmosphere, assuming negligible effects on evapotranspiration. The moisture budget method adopted here includes horizontal advection explicitly, and treats vertical fluxes implicitly through a total tropospheric moisture budget.

Comparison of the evapotranspiration estimates with those of other techniques are positive only when results are averaged over several days to weeks. While the advection estimates are a major source of error for the “daily” estimates in this particular study, it is shown that neither advection nor moisture flux through the boundary layer can be ignored in estimating daily evapotranspiration, regardless of the technique used. The results also suggest that evapotranspiration is more variable on a daily basis than other techniques have indicated. With an improved synoptic database now available for advection estimates, the moisture budget technique may provide an excellent ground‐truth method for fine‐tuning techniques for remote sensing of evapotranspiration, and could lead to improved parametrization schemes for both NWP models and GCMs.  相似文献   

6.
The measurements obtained during the ECLATS experiment were used in order to determine the surface energy budget of the Sahel region (Niamey, Niger). This expedition was carried out from November 15 to December 10, 1980, during the dry period. Some data were collected by an instrumented aircraft, from which the turbulent fluxes were obtained in the boundary layer around midday; data were also collected at a surface station in order to estimate the surface energy budget continuously by the profile method. The aircraft measurements show the homogeneity of the vertical fluxes over large areas, allowing generalization to the bushy steppe of the Sahel region. The mean diurnal cycle of the energy budget is characterized by high values of ground heat flux and weak values of latent heat flux (deduced from the balance of the energy budget). This cycle is compared with that of the Koorin expedition, performed in similar conditions (tropical savanna in the dry period). We compare the three midday budgets: during Koorin; during ECLATS, at the ground station, and with the aircraft. The important differences that appear in the net radiative flux are explained by the difference in surface albedo.Ecole des Sciences, Université de Niamey, B.P. 10662 Niamey, Niger.  相似文献   

7.
长江三角洲地区水和热通量的时空变化特征及影响因子   总被引:9,自引:2,他引:9  
文中利用改进的K B模式和牛顿扩散方法及 196 1年以来的长江三角洲 (2 8~ 33°N ,118~ 12 3°E)地区的 4 8个测站的常规气象资料 ,估计了该地区近 4 0a来的蒸散量和感热通量。结合该地区的气温、太阳辐射等气候资料和 196 0年以来该区域土地资源利用变化等有关信息对该地区的潜热通量和感热通量的时 空间变化特征及其可能成因进行了综合分析。结果认为该地区自 2 0世纪 70年代开始平均蒸散量有逐渐减小的趋势 ,与 1980年相比 ,1998年区域年平均蒸散量减小了 2 4mm。区域平均感热通量与蒸散量相比在此期间变化并不明显。通过对该地区的云量、太阳辐射及土地利用变化资料分析认为 ,造成该地区平均蒸散量减少趋势的的原因之一是用于蒸发的能量即太阳辐射的减少 ,而造成太阳辐射减少的可能原因为云量及大气透明度的变化所至 ;原因之二是该地区地表覆盖条件的改变。近 2 0a来 ,该地区的水田、旱地及水域面积占总面积的比率分别减少 1.35 3% ,4 .4 4 2 %和2 .5 97% ,而城镇建设、工矿及其它建设用地面积则增加 3.345 %。耕地及水面的减小和城镇及建设用地面积的增加从整体上使区域平均蒸发量减少。  相似文献   

8.
Estimates of hourly transpiration from a 16–17 yr old Sitka spruce forest were calculated from the Penman-Monteith combination equation and compared with estimates from an eddy correlation/energy balance method.Canopy conductances were estimated from stomatal conductances measured using null balance diffusion porometers and took account of canopy variations of stomatal conductance and needle area index.Vertical heat fluxes were measured by the eddy correlation method; transpiration fluxes were then estimated from an energy balance of the forest.There was not a 1:1 relationship between the estimates of transpiration from the two methods. The major sources of error were concluded to be (i) difficulties of estimating the variation in stomatal conductance and leaf area through the canopy, (ii) errors in the value of total leaf area index, and (iii) errors in stomatal conductance measurements.The eddy correlation method was suggested as the more useful for future studies of the variation of forest transpiration in time or space, because the Penman-Monteith equation requires extensive biological measurements.  相似文献   

9.
Aircraft and ground-based measurements made during the1995 Australian OASIS field campaign are compared. The aircraft data were recorded during low-level flightsat 6 m above ground level and grid flights at altitudes of between 15 and 65 m, allin unstable atmospheric conditions. The low-level flights revealed an inadequate temperaturesensor response time, a correction for which was determined from subsequent work ina wind tunnel. Aircraft and ground-based measurements of mean wind speed, wind directionand air temperature agree to within 0.2 m s-1, 4° and 0.9 °C respectively.Comparisons between aircraft and ground-based observations of the standarddeviations of vertical velocity, horizontal wind speed, air temperature and specifichumidity have slopes of 0.96, 0.97, 0.92 and 0.99 respectively but the observed scatter isroughly twice the random error expected due to the averaging length of the aircraft data andthe averaging period of the ground-based data. For the low-level flights, the ground-basedand aircraft measurements of sensible and latent heat flux show mean differences of 27 and-25 W m-2 respectively, which reduce to 11 and -4 W m-2 respectivelywhen analysis of aircraft data is limited to areas immediately adjacent to the fluxtowers. For the flights at 15 to 65 m above ground level, the mean differences between theground-based and aircraft measurements of sensible and latent heat flux are -22 and-1 W m-2 respectively and these change to -1 and -7 W m-2 respectively oncethe effect of surface heterogeneity is included. Aircraft and ground-based measurementsof net radiation agree to within 6% at one ground-based site but differ by 20% at a second.Aircraft measurements of friction velocity at 6 m above the ground agree well withground-based data, but those from flights between 15 and 65 m above ground level do not.This is because at these heights the aircraft measurements provide the local shear stress,not the surface shear stress. Overall, the level of agreement allows confidence in the aircraftdata provided due care is taken of instrument response times and differences in thesurfaces sampled by aircraft and ground-based systems.  相似文献   

10.
The performance of the Canadian Land Surface Scheme (CLASS 3.5) was assessed using turbulent fluxes derived from data recorded at two micrometeorological stations located in a potato field in Quebec, Canada. The minimum stomatal resistance, the maximum leaf area index, and the initial water content of the third soil layer were optimized using the Non-Dominated Sorting Genetic Algorithm-II and the mean square error of the latent heat flux. With respect to benchmark solutions, the optimization improved the sensible and latent heat fluxes by 31 and 23%, respectively. The use of a pedotransfer rule in adjustment of the water content of mineral soils having small percentages of organic matter provided better estimates of the evapotranspiration during the growing stage. However, like the original version of the model (without the pedotransfer rule), it underestimated evapotranspiration throughout the maturity stage. It is noteworthy that the original version produced a good estimate of cumulative evapotranspiration over the entire season as a result of over- and underestimates at the beginning and maturity stage of the growing season, respectively.  相似文献   

11.
Feedbacks in the Land-Surface and Mixed-Layer Energy Budgets   总被引:2,自引:1,他引:1  
A mixed-layer model of the surface energy budget and the planetary boundary layer (PBL) is developed, based on the prognostic equations for soil temperature, mixed layer potential temperature and specific humidity and the growth and abrupt collapse of the PBL. Detailed parameterizations of the longwave radiative fluxes are included. The feedbacks in the uncoupled (i.e. surface energy budget with non-responding PBL) and coupled land surface and atmospheric mixed-layer energy budgets are examined. A simplified, time continuous, version of the model, in which the specific humidity budget is the balance of evapotranspiration and dry-air entrainment, and the PBL height is given by the lifted condensation level, is shown to be in good agreement with the complete model. By forcing the simplified model with daily mean rather than periodic solar radiation, an equilibrium model state is achieved where the fluxes are in close agreement with the daily mean fluxes corresponding to the periodic forcing. The model also agrees favorably with measurements from the FIFE field experiment. Feedbacks are examined using the equilibrium model state. The uncoupled and coupled model sensitivities with respect to the minimal stomatal resistance and the atmospheric specific humidity not only differ in magnitude, but in sign as well. This results puts into question the extent to which uncoupled land-surface models that are forced with atmospheric variables may be used in sensitivity studies.  相似文献   

12.
ABSTRACT Daily average net radiation (DANR) is an important variable for estimating evapotranspiration from satellite data at regional scales, and is used for atmospheric and hydrologic modeling, as well as ecosystem management. A scheme is proposed to estimate the DANR over large heterogeneous areas under clear-sky conditions using only remotely sensed data. The method was designed to overcome the dependence of DANR estimates on ground data, and to map spatially consistent and reasonably distributed DANR, by using various land and atmospheric data products retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) data. An improved sinusoidal model was used to retrieve the diurnal variations of downward shortwave radiation using a single instantaneous value from satellites. The downward shortwave component of DANR was directly obtained from this instantaneous value, and the upward shortwave component was estimated using satellite-derived albedo products. Four observations of air temperature from MOD07_L2 and MYD07_L2 data products were used to derive the downward longwave component of DANR, while the upward longwave component was estimated using the land surface temperature (LST) and the surface emissivity from MOD1 l_L2. Compared to in situ observations at the cropland and grassland sites located in Tongyu, northern China, the root mean square error (RMSE) of DANR estimated for both sites under clear-sky conditions was 37 W m-2 and 40 W m-2, respectively. The errors in estimation of DANR were comparable to those from previous satellite-based methods. Our estimates can be used for studying the surface radiation balance and evapotranspiration.  相似文献   

13.
非均匀陆面条件下区域蒸散量计算的遥感模型   总被引:23,自引:0,他引:23  
非均匀陆面条件下的区域蒸散计算是一个复杂的问题。文中首先在利用遥感资料求取地表特征参数 (如植被覆盖度、地表反照率等 )的基础上 ,建立了裸露地表条件下的裸土蒸发和全植被覆盖条件下植被蒸腾计算模型 ,然后结合植被覆盖度 (植被的垂直投影面积与单位面积之比 )给出非均匀陆面条件下的区域蒸散计算方法。实测资料验算表明该模型具有较高的计算精度。文章最后利用该模型对中国北方地区的蒸散量进行了计算 ,并对该研究区蒸散的特点进行了分析  相似文献   

14.
RegCM4对中国东部区域气候模拟的辐射收支分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用卫星和再分析数据,评估了区域气候模式Reg CM4对中国东部地区辐射收支的基本模拟能力,重点关注地表净短波(SNS)、地表净长波(SNL)、大气顶净短波(TNS)、大气顶净长波(TNL)4个辐射分量。结果表明:1)短波辐射的误差值在夏季较大,而长波辐射的误差值在冬季较大。但各辐射分量模拟误差的空间分布在冬、夏季都有较好的一致性。2)对于地表辐射通量,SNS表现为正偏差(向下净短波偏多),在各分量中误差最大,区域平均误差值近50 W/m2;SNL表现为负偏差(向上净长波偏多);对于大气顶辐射通量,TNS和TNL分别表现为"北负南正"的误差分布和整体正偏差。3)利用空间相关和散点线性回归方法对4个辐射分量的模拟误差进行归因分析,发现在云量、地表反照率、地表温度三个直接影响因子中,云量模拟误差的贡献最大,中国东部地区云量模拟显著偏少。  相似文献   

15.
A novel approach for upscaling land-surface parameters based on inverse stochastic surface-vegetation-atmosphere transfer (SVAT) modelling is presented. It allows estimation of effective parameters that yield scale invariant outputs e.g. for sensible and latent heat fluxes and evaporative fraction. The general methodology is used to estimate effective parameters for the Oregon State University Land-Surface Model, including surface albedo, surface emissivity, roughness length, minimum stomatal resistance, leaf area index, vapour pressure deficit factor, solar insolation factor and the Clapp–Hornberger soil parameter. Upscaling laws were developed that map the mean and standard deviation of the distributed land-surface parameters at the subgrid scale to their corresponding effective parameter at the grid scale. Both linear and bi-parabolic upscaling laws were obtained for the roughness length. The bi-parabolic upscaling law fitted best for the remaining land-surface parameters, except surface albedo and emissivity, which were best fitted with linear upscaling laws.  相似文献   

16.
A variational technique (VT) is applied to estimate surface sensible and latent heat fluxes based on observations of air temperature, wind speed, and humidity, respectively, at three heights (1 m, 4 m, and 10 m), and the surface energy and radiation budgets by the surface energy and radiation system (SERBS). The method fully uses all information provided by the measurements of air temperature, wind, and humidity profiles, the surface energy budget, and the similarity profile formulae as well. Data collected at Feixi experiment station installed by the China Heavy Rain Experiment and Study (HeRES) Program are used to test the method. Results show that the proposed technique can overcome the well-known unstablility problem that occurs when the Bowen method becomes singular; in comparison with the profile method, it reduces both the sensitivities of latent heat fluxes to observational errors in humidity and those of sensible heat fluxes to observational errors in temperature, while the estimated heat fluxes approximately satisfy the surface energy budget. Therefore, the variational technique is more reliable and stable than the two conventional methods in estimating surface sensible and latent heat fluxes.  相似文献   

17.
Two land surface schemes, SCAM and CSIRO9, were used to model the measured energy fluxes during the OASIS (Observations At Several Interacting Scales) field program. The measurements were taken at six sites along a 100 km rainfall gradient. Two types of simulations were conducted: (1) offline simulations forced with measured atmospheric input data at each of the six sites, and (2) regional simulations with the two land surface schemes coupled to the regional climate model DARLAM.The two land surface schemes employ two different canopy modelling concepts: in SCAM the vegetation is conceptually above the ground surface, while CSIRO9 employs the more commonly used `horizontally tiled' approach in which the vegetation cover is modelled by conceptually placing it beside bare ground. Both schemes utilize the same below-ground components (soil hydrological and thermal models) to reduce the comparison to canopy processes only. However, the ground heat flux, soil evaporation and evapotranspiration are parameterised by the two canopy treatments somewhat differently.Both canopy concepts reproduce the measured energy fluxes. SCAM has a slightly higher root-mean standard error in the model-measurement comparison for the ground heat flux. The mean surface radiative temperature simulated by SCAM is approximately 1K lower than in the CSIRO9 simulations. However, the soil and vegetation temperatures (which contribute to the radiative temperature) varied more in the CSIRO9 simulations. These larger variations are due to the absence of a representation of the aerodynamic interactions between vegetation and ground.  相似文献   

18.
The low-level flight method (LLF) has been combined with linear inverse models (IM) resulting in an LLF+IM method for the determination of area-averaged turbulent surface fluxes. With this combination, the vertical divergences of the turbulent latent and sensible heat fluxes were calculated from horizontal flights. The statistical errors of the derived turbulent surface fluxes were significantly reduced. The LLF+IM method was tested both in numerical and field experiments. Large-eddy simulations (LES) were performed to compare ‘true’ flux profiles with ‘measurements’ of simulated flights in an idealised convective boundary layer. Small differences between the ‘true’ and the ‘measured’ fluxes were found, but the vertical flux divergences were correctly calculated by the LLF+IM method. The LLF+IM method was then applied to data collected during two flights with the Helipod, a turbulence probe carried by a helicopter, and with the research aircraft Do 128 in the LITFASS-98 field campaign. The derived surface fluxes were compared with results from eddy-covariance surface stations and with large-aperture scintillometer data. The comparison showed that the LLF+IM method worked well for the sensible heat flux at 77 and 200 m flight levels, and also for the latent heat flux at the lowest level. The model quality control indicated failures for the latent heat flux at the 200 m level (and higher), which were probably due to large moisture fluctuations that could not be modelled using linear assumptions. Finally the LLF+IM method was applied to more than twenty low-level flights from the LITFASS-2003 experiment. Comparison with aggregated surface flux data revealed good agreement for the sensible heat flux but larger discrepancies and a higher statistical uncertainty for the latent heat flux  相似文献   

19.
Turbulence data obtained aboard a NOAA P-3 research aircraft during flights over the eastern equatorial Pacific Ocean are used to obtain mean vertical profiles of water vapor density, potential temperature, wind speed and fluxes of latent heat, buoyancy and momentum. The variation of eddy fluxes and bulk transfer coefficients as a function of atmospheric stability are plotted for two of the flights. The observed transfer coefficients generally agree with those obtained from parameterizations based on surface-layer similarity theory (Deardorff, 1968; Kondo, 1975).  相似文献   

20.
Summary Hourly lysimetric and micrometeorological data taken over a grass surface at the Meteorological Research Unit, Cardington U.K. have been analysed. A temperature difference and measurements of wind speed at only one height, combined with an independently estimated effective roughness length allowed sensible heat and momentum fluxes determination by the profile method on an hourly basis. The estimates are compared with direct measurements of sensible heat and friction velocity obtained by the eddy correlation method. The sensible and latent heat fluxes are also modelled by the resistance method. Equations based on the Monin—Obukhov similarity theory are used to account for stability effects through various forms of parameterization Aerodynamic and surface resistances, necessary for the Penman—Monteith equation are calculated from routinely measured meteorological data. The profile method for estimation of sensible heat flux and friction velocity is found to work excellently on the discussed daytime experimental data which correspond mainly to near neutral or slightly unstable conditions.Surface latent and sensible heat fluxes can also be described very well by the resistance method. A slightly better estimate of the sensible heat flux is achieved when stability corrections are taken into account. On the contrary Penman-Monteith equation for estimating latent heat flux is insensitive to adjustments for atmospheric stability.The comparison of the various methods leads to the establishment of empirical relationships which correlate various quantities such as soil heat flux, resistances, evapotranspiration etc. to routinely measured meteorological data.With 8 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号