首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Observations of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index (C9) during the years 1962–1975 are compared in a 27-day pictorial format that emphasizes their associated variations during the sunspot cycle. This display accentuates graphically several recently reported features of solar wind streams including the fact that the streams were faster, wider, and longer-lived during 1962–1964 and 1973–1975 in the declining phase of the sunspot cycle than during intervening years (Bame et al., 1976; Gosling et al., 1976). The display reveals strikingly that these high-speed streams were associated with the major, recurrent patterns of geomagnetic activity that are characteristic of the declining phase of the sunspot cycle. Finally, the display shows that during 1962–1975 the association between long-lived solar wind streams and recurrent geomagnetic disturbances was modulated by the annual variation (Burch, 1973) of the response of the geomagnetic field to solar wind conditions. The phase of this annual variation depends on the polarity of the interplanetary magnetic field in the sense that negative sectors of the interplanetary field have their greatest geomagnetic effect in northern hemisphere spring, and positive sectors have their greatest effect in the fall. During 1965–1972 when the solar wind streams were relatively slow (500 km s-1), the annual variation strongly influenced the visibility of the corresponding geomagnetic disturbance patterns.Visiting Scientist, Kitt Peak National Observatory, Tucson, Arizona.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

2.
We have used data from five neutron monitor stations with primary rigidity (Rm) ranging from 16 GeV to 33 GeV to study the diurnal variations of cosmic rays over the period: 1965–1986 covering one 22-year solar magnetic cycle. The heliosphere interplanetary magnetic field (IMF) and plasma hourly measurements taken near Earth orbit, by a variety of spacecraft, are also used to compare with the results of solar diurnal variation. The local time of maximum of solar diurnal diurnal variations displays a 22-year cycle due to the solar polar magnetic field polarities. In general, the annual mean of solar diurnal amplitudes, magnitude of IMF and plasma parameters are found to show separte solar cycle variations. Moreover, during the declining period of the twenty and twenty-ne solar cycles, large solar diurnal amplitudes are observed which associated with high values of solar wind speed, plasma temperature and interplanetary magnetic field magnitude B3.  相似文献   

3.
New measurements using radio and plasma-wave instruments in interplanetary space have shown that nanometer-scale dust, or nanodust, is a significant contributor to the total mass in interplanetary space. Better measurements of nanodust will allow us to determine where it comes from and the extent to which it interacts with the solar wind. When one of these nanodust grains impacts a spacecraft, it creates an expanding plasma cloud, which perturbs the photoelectron currents. This leads to a voltage pulse between the spacecraft body and the antenna. Nanodust has a high charge/mass ratio, and therefore can be accelerated by the interplanetary magnetic field to the speed of the solar wind: significantly faster than the Keplerian orbital speeds of heavier dust. The amplitude of the signal induced by a dust grain grows much more strongly with speed than with mass of the dust particle. As a result, nanodust can produce a strong signal despite its low mass. The WAVES instruments on the twin Solar TErrestrial RElations Observatory spacecraft have observed interplanetary nanodust particles since shortly after their launch in 2006. After describing a new and improved analysis of the last five years of STEREO/WAVES Low Frequency Receiver data, we present a statistical survey of the nanodust characteristics, namely the rise time of the pulse voltage and the flux of nanodust. We show that previous measurements and interplanetary dust models agree with this survey. The temporal variations of the nanodust flux are also discussed.  相似文献   

4.
The solar wind velocity and density have been studied around the interplanetary magnetic field sector boundaries (+ to ? and ? to +) during 1965–1974, separating the data into autumnal and vernal periods. It is noticed that the solar wind velocity shows a sharp increase around the Hale type of sector boundary in both northern and southern heliosphere indicating a more favourable condition for the high speed stream after Hale type of sector boundary crossing than non-Hale boundary.  相似文献   

5.
An extended Ulysses interplanetary coronal mass ejections (ICMEs) list is used to statistically study the occurrence rate of ICMEs, the interaction of ICMEs with solar wind, and the magnetic field properties in ICMEs. About 43% of the ICMEs are identified as magnetic clouds (MCs). It is found that the occurrence rate of ICMEs approximately follows the solar activity level, except for the second solar orbit; the rate is higher in the southern heliolatitude than in the northern heliolatitude; and it roughly decreases with the increase of ICME speeds. Our results show that the speed difference between the ICME and the solar wind in front of it shows a slight decrease with increasing heliocentric distance for ICMEs preceded by a shock, whereas no such dependence is found for the ICMEs without shock association. It is also found that approximately 23% of the ICMEs are associated with radial field events, in which the interplanetary magnetic field with near-radial direction lasts for many hours, in the Ulysses detected range, and these associated events are not necessarily confined to fast ICMEs or the trailing portions of ICMEs. Nearly all these associated events occur during the period of declining solar wind speed and most of them occur at low heliolatitudes.  相似文献   

6.
Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU   总被引:1,自引:0,他引:1  
Based on the variations of sunspot numbers, we choose a 1-year interval at each solar minimum from the beginning of the acquisition of solar wind measurements in the ecliptic plane and at 1 AU. We take the period of July 2008??C?June 2009 to represent the solar minimum between Solar Cycles 23 and 24. In comparison with the previous three minima, this solar minimum has the slowest, least dense, and coolest solar wind, and the weakest magnetic field. As a result, the solar wind dynamic pressure, dawn?Cdusk electric field, and geomagnetic activity during this minimum are the weakest among the four minima. The weakening trend had already appeared during solar minimum 22/23, and it may continue into the next solar minimum. During this minimum, the galactic cosmic ray intensity reached the highest level in the space age, while the number of solar energetic proton events and the ground level enhancement events were the least. Using solar wind measurements near the Earth over 1995??C?2009, we have surveyed and characterized the large-scale solar wind structures, including fast-slow stream interaction regions (SIRs), interplanetary coronal mass ejections (ICMEs), and interplanetary shocks. Their solar cycle variations over the 15 years are studied comprehensively. In contrast with the previous minimum, we find that there are more SIRs and they recur more often during this minimum, probably because more low- and mid-latitude coronal holes and active regions emerged due to the weaker solar polar field than during the previous minimum. There are more shocks during this solar minimum, probably caused by the slower fast magnetosonic speed of the solar wind. The SIRs, ICMEs, and shocks during this minimum are generally weaker than during the previous minimum, but did not change as much as did the properties of the undisturbed solar wind.  相似文献   

7.
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system.  相似文献   

8.
Balachandran  Bala 《Solar physics》2000,195(1):195-208
Since the 1970s, the Solar-Terrestrial Environment Laboratory, Japan, has been publishing synoptic maps of solar wind velocity prepared using the technique of interplanetary scintillation. These maps, known as V-maps, are useful to study the global distribution of solar wind in the heliosphere. As the Earth-orbiting satellites are unable to probe regions outside the ecliptic, it is important to exploit the scope of interplanetary scintillation to study the solar wind properties at these regions and their relation with coronal features. It has been shown by Wang and Sheeley that there exists an inverse correlation between rate of magnetic flux expansion and the solar wind velocity. The NOAA/Space Environment Center daily updated version of the Wang and Sheeley model has been used to produce synoptic maps of solar wind velocity and magnetic field polarity for individual Carrington rotations. The predictions of the model at 1 AU have been found to be in good agreement with the observed values of the same. The present work is a comparison of the synoptic maps on the source surface using the interplanetary scintillation measurements from Japan and the NOAA/SEC version of the Wang and Sheeley model. The two results agree near the equatorial regions and the slow solar wind locations are consistent most of the times. However, at higher latitudes within ±60°, the wind velocities differ considerably. In the Wang and Sheeley model the highest speed obtained is 600 km s–1 whereas in the IPS results velocities as high as 800 km s–1 have been detected. The paper discusses the possible causes for this discrepancy and suggestion to improve the agreement between the two results.  相似文献   

9.
The distance to the dayside magnetopause is statistically analyzed in order to detect the possible dependence of the dayside magnetic flux on the polarity of the interplanetary magnetic field. The effect of changing solar wind pressure is eliminated by normalizing the observed magnetopause distances by the simultaneous solar wind pressure data. It is confirmed that the normalized size of the dayside magnetosphere at the time of southward interplanetary magnetic field is smaller than that at the time of northward interplanetary magnetic field. The difference in the magnetopause position between the two interplanetary field polarity conditions ranges from 0 to 2RE. Statistics of the relation between the magnetopause distance and the magnetic field intensity just inside the magnetopause testifies that the difference in the magnetopause position is not due to a difference in the magnetosheath plasma pressure. The effect of the southward interplanetary magnetic field is seen for all longitudes and latitudes investigated (|λGM|? 45°, |φSM|? 90°). These results strongly suggest that a part of the dayside magnetic flux is removed from the dayside at the time of southward interplanetary magnetic field.  相似文献   

10.
S. Vennerstrom 《Icarus》2011,215(1):234-241
Based on data from the Mars Global Surveyor magnetometer we examine periods of significantly enhanced magnetic disturbances in the martian space environment. Using almost seven years of observations during the maximum and early declining phase of the previous solar cycle the occurrence pattern and typical time profile of such periods is investigated and compared to solar wind measurements at Earth. Typical durations of the events are 20-40 h, and there is a tendency for large events to last longer, but a large spread in duration and intensity are found. The large and medium intensity events at Mars are found to occur predominantly in association with interplanetary sector boundaries, with solar wind dynamic pressure enhancements being the most likely interplanetary driver. In addition it is found that, on time scales of months to several years, the dominant cause of global variability of the magnetic field disturbance at Mars is solar wind dynamic pressure variations associated with the eccentricity of the martian orbit around the Sun.  相似文献   

11.
The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, Planet. Space Sci. 21, 463, 1973; Daniell and Cloutier. Planet. Space Sci.25, 621, 1977; Cloutier and Daniell, Planet. Space Sci.27, 1111, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (a) plasma depletion and magnetic field enhancement near the ionopause, (b) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (c) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the PIONEER-VENUS Orbiter. The formation of “flux-ropes” by the Kelvin-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.  相似文献   

12.
A simple model is used to present a unified picture of the polarity pattern of the interplanetary magnetic field observed during the solar cycle. Emphasis in this paper is on the field near solar maximum. The heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field is explained in terms of weak poloidal (dipolar) field sources in the sun's photosphere. Unlike the Babcock theory, the author hypothesizes that the dipolar field exists at equatorial latitudes (0–20°), too, (as well as in polar regions) and that the major source of the interplanetary magnetic field observed near the ecliptic plane is the dipolar field from equatorial latitudes. The polarity of the interplanetary field data taken in 1968 and in the first half of 1969 near solar maximum may possibly be explained in terms of a depression of the dipolar field boundary in space. The effect on the solar wind of the greater activity in the northern hemisphere of the sun that existed in 1968 and in the first half of 1969 is believed responsible for this hypothesized depression, especially near solar maximum, of the plane separating the + and - dipolar polarity below the solar equatorial plane in space. Predictions are made concerning the interplanetary field to be observed near the ecliptic plane in each portion of the next solar cycle.  相似文献   

13.
The flux rate of cosmic rays incident on the Earth’s upper atmosphere is modulated by the solar wind and the Earth’s magnetic field. The amount of solar wind is not constant due to changes in solar activity in each solar cycle, and hence the level of cosmic ray modulation varies with solar activity. In this context, we have investigated the variability and the relationship of cosmic ray intensity with solar, interplanetary, and geophysical parameters from January 1982 through December 2008. Simultaneous observations have been made to quantify the exact relationship between the cosmic ray intensity and those parameters during the solar maxima and minima, respectively. It is found that the stronger the interplanetary magnetic field, solar wind plasma velocity, and solar wind plasma temperature, the weaker the cosmic ray intensity. Hence, the lowest cosmic ray intensity has good correlations with simultaneous solar parameters, while the highest cosmic ray intensity does not. Our results show that higher solar activity is responsible for a higher geomagnetic effect and vice versa.  相似文献   

14.
Plasma temperature observations in the solar wind at 1 AU show that very low temperatures of electrons and protons appear not only after interplanetary shock waves, but also after solar wind streams. It is generally believed that the region embedded by a fast preceding and a slower following solar wind is expanding. In this way, the plasma inside may become cooler. In this analysis, we use plasma measurements made aboard the VELA and IMP satellites. Due to the limitations of data, we only give a qualitative picture of the possibility that low temperature regions may be given to local expansions of the plasma. In addition, we assume that these regions are not magnetically closed and therefore not thermically isolated, but are open and connected with the hot corona along the interplanetary magnetic field lines. Therefore, these regions are heated from the corona due to the thermal conduction. In this analysis both the theoretically predicted and the experimentally measured conducted electron heat fluxes are considered.  相似文献   

15.
The 3D structure of the solar wind and its evolution in time are needed for heliospheric modeling and interpretation of energetic neutral atoms observations. We present a model to retrieve the solar wind structure in heliolatitude and time using all available and complementary data sources. We determine the heliolatitude structure of solar wind speed on a yearly time grid over the past 1.5 solar cycles based on remote-sensing observations of interplanetary scintillations, in situ out-of-ecliptic measurements from Ulysses, and in situ in-ecliptic measurements from the OMNI 2 database. Since in situ out-of-ecliptic information on the solar wind density structure is not available apart from the Ulysses data, we derive correlation formulae between the solar wind speed and density and use the information on the solar wind speed from interplanetary scintillation observations to retrieve the 3D structure of the solar wind density. With the variations of solar wind density and speed in time and heliolatitude available, we calculate variations in solar wind flux, dynamic pressure, and charge-exchange rate in the approximation of stationary H atoms.  相似文献   

16.
It is presently believed that the high speed solar wind originates almost entirely in coronal holes. Theory suggests that the origin of the high speeds is extended energy deposition in proportion to the magnetic field intensity in the holes and at 1.5–3.0 solar radii heliocentric distance. Evidence from the time of the Maunder Minimum, together with the above results, allows a hypothesis to be made for the state of the solar wind at that time. Firstly, carbon-14 data indicate an enhanced cosmic ray intensity, with the conclusion that the interplanetary magnetic field (IMF) was smooth and perhaps of low intensity. Secondly, the apparent absence of a corona during eclipses requires low coronal density, suggesting an absence of closed magnetic loops. Thirdly, the absence of sunspots eliminates the possibility of a solar maximum type of corona of low emission intensity and implies a low large-scale photospheric field intensity. Finally, the absence of mid-latitude aurorae implies either that the solar wind speed or the IMF intensity or both, were low and not irregular.A resulting self-consistent hypothesis is that the solar wind was of the simplest variety, analogous to that described in models of the so-called “quiet solar wind”. All closed coronal field regions would have been absent and extended energy deposition in the corona would have been far less important than today. At 1 a.u., the density and speed would have been less than 5 cm?3 and 300 km?1s, respectively. At the same time, there would have been a very low level of fluctuation all the way from the microscale up to the contrast between high and low speed solar wind streams. Also, if the IMF is the source of the 22 yr and magnetic sector associated modulations in the present terrestrial climate, these modulations may have been suppressed during the Maunder Minimum. Recently, it has been discovered that the 22 yr modulation in fact was suppressed during the Maunder Minimum (C. Stockton and M. Mitchell, personal communication), in support of the above suggestion.  相似文献   

17.
The average values of the parameters of the solar wind and the interplanetary magnetic field at the Earth's orbit are calculated by using the results of direct measurements performed in the current and three previous solar cycles. Individual and general features of each cycle are analyzed by the method of superposition of epochs and hysteresis curves. The similarity in trends of solar cycles 23 and 20 at their growth phase is revealed. This gives additional reason to expect that the current solar cycle as a whole will be weaker than the two previous cycles.  相似文献   

18.
A reference catalogue of 373 well-defined high-speed plasma streams identified in the solar wind measurements from 1985 to 1996 is reported. The data base for this study is the interplanetary plasma/magnetic field data compilation made available by the NSSDC/WDC-A for rockets and satellites (NASA/GSFC-Greenbelt). The main characteristics of those streams, such as the beginning time, the duration, the origin of them (corotating or flare-generated), the interplanetary magnetic field polarity (Stanford magnetic field), are given in the catalogue.The long-term variation in the occurrence rate of high-speed streams shows interesting differences between even and odd solar cycles when catalogues for solar cycles 20, 21, and 22 are considered together. Hence, this catalogue, extended now over three solar cycles, should be useful for studies connected with solar-interplanetary or solar-terrestrial phenomena, and to clarify solar activity in time.  相似文献   

19.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   

20.
Boundary condition asymmetries inherent in the solar wind flow past the Moon are included in a cylindrical model of the interplanetary magnetic field - Moon interaction. Numerical examinations of the sunward side response of this model are compared in the frequency domain with those of symmetrically excited spherical and cylindrical models and two characteristic differences are observed: the response of the asymmetric model is depressed at low frequencies due to magnetic diffusion around a conducting core, and is flattened at high frequencies because of the finite application time of the incident interplanetary magnetic field. The diffusion of field lines around the core is also evident in the time response of the model in the anti-solar cavity. The above features of the lunar response resulting from boundary condition asymmetries are shown to be evident in observational measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号