首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
We have developed a significant body of new field-based evidence relating to the history of crustal extension in western Turkey. We establish that two of the NE–SW-trending basins in this region, the Gördes and Selendi Basins, whose sedimentary successions begin in the early Miocene, are unlikely to relate to late-stage Alpine compressional orogeny or to E–W extension of Tibetan-type grabens as previously suggested. We argue instead that these basins are the result of earlier (?) late Oligocene, low-angle normal faulting that created approximately N–S “scoop-shaped” depressions in which clastic to lacustine and later tuffaceous sediments accumulated during early–mid-Miocene time, separated by elongate structural highs. These basins were later cut by E–W-trending (?) Plio–Quaternary normal faults that post-date accumulation of the Neogene deposits. In addition, we interpret the Alaşehir (Gediz) Graben in terms of two phases of extension, an early phase lasting from the early Miocene to the (?) late Miocene and a young Plio–Quaternary phase that is still active. Taking into account our inferred earlier phase of regional extension, we thus propose a new three-phase “pulsed extension” model for western Turkey. We relate the first two phases to “roll-back” of the south Aegean subduction zone and the third phase to the westward “tectonic escape” of Anatolia.  相似文献   

2.
The Late Cenozoic basins in the Weihe–Shanxi Graben, North China Craton are delineated by northeast-striking faults. The faults have, since a long time, been related to the progressive uplift and northeastward expansion of the Tibetan Plateau. To show the relation between the basins and faults, two Pliocene–Pleistocene stratigraphic sections(Chengqiang and Hongyanangou) in the southern part of the Nihewan Basin at the northernmost parts of the graben are studied herein. Based on the sedimentary sequences and facies, the sections are divided into three evolutionary stages, such as alluvial fan-eolian red clay, fan delta, and fluvial, with boundaries at ~2.8 and ~1.8 Ma. Paleocurrent indicators, the composition of coarse clastics, heavy minerals, and the geochemistry of moderate–fine clastics are used to establish the temporal and spatial variations in the source areas. Based on features from the middlenorthern basin, we infer that the Nihewan Basin comprises an old NE–SW elongate geotectogene and a young NW–SE elongate subgeotectogene. The main geotectogene in the mid-north is a half-graben bounded by northeast-striking and northwest-dipping normal faults(e.g., Liulengshan Fault). This group of faults was mainly affected by the Pliocene(before ~2.8–2.6 Ma) NW–SE extension and controlled the deposition of sediments. In contrast, the subgeotectogene in the south was affected by northwest-striking normal faults(e.g., Huliuhe Fault) that were controlled by the subsequent weak NE–SW extension in the Pleistocene. The remarkable change in the sedimentary facies and provenance since ~1.8 Ma is possibly a signal of either weak or strong NE–SW extension. This result implies that the main tectonic transition ages of ~2.8–2.6 Ma and ~1.8 Ma in the Weihe–Shanxi Graben are affected by the Tibetan Plateau in Pliocene–Pleistocene.  相似文献   

3.
The Timiskaming Graben is a 400 km long, 50 km wide north‐west trending morphotectonic depression within the Canadian Shield of eastern North America and experiences frequent intraplate earthquakes. The graben extends along the border of Ontario and Quebec, connecting southward with the Nipissing and Ottawa‐Bonnechere grabens and the St. Lawrence Rift System which includes a similar structure underlying the Hudson Valley of the eastern USA. Together they form a complex failed rift system related to regional extension of North American crust during the breakup of Rodinia and, later, Pangea. The Timiskaming Graben lies within a belt of heightened seismic activity (Western Quebec Seismic Zone) with frequent moderate magnitude (greater than magnitude 5) earthquakes including a magnitude 6.2 in 1935. These events threaten aging urban infrastructure built on soft glacial sediments; post‐glacial landslides along the Ottawa Valley suggest earthquakes as large as magnitude 7. The inner part of the Timiskaming Graben is filled by Lake Timiskaming, a large 110 km long post‐glacial successor to glacial Lake Barlow that was ponded by the Laurentide Ice Sheet 9500 years ago. The effects of frequent ground shaking on lake floor sediments was assessed by collecting more than 1000 line kilometres of high‐resolution ‘chirp’ seismic profiles. Late glacial Lake Barlow glaciolacustrine and overlying post‐glacial sediments are extensively deformed by extensional faults that define prominent horsts and grabens; multibeam bathymetry data suggest that faults influence the morphology of the modern lake floor, despite high sedimentation rates, and indicate recent neotectonic deformation. The Lake Timiskaming area provides evidence of post‐glacial intracratonic faulting related to recurring earthquake activity along a weak spot within the North American plate.  相似文献   

4.
The Early Miocene Bílina Palaeodelta consists of fluvio‐deltaic and lacustrine clastics deposited along the south‐eastern margin of the extensional Most Basin, part of the Eger Graben in north Bohemia (Czech Republic). The Bílina succession shows evidence of repeated advances of an axial deltaic system across a thick accumulation of organic material and clay in the hangingwall of an active fault. Exposures up to ca 4·5 km long in the Bílina open‐cast mine help bridge the gap between seismic scale and typical outcrop scale of observation and thus allow the relationships between small‐scale and basin‐scale stratal geometries to be evaluated. The Bílina Palaeodelta deposits include sand‐dominated, fluvial channel fills and heterolithic sheets interpreted as delta plain strata, sand‐dominated mouth‐bar wedges and heterolithic sheets of prodeltaic deposits, passing distally into lacustrine clays. The depositional environment is interpreted as a fluvial‐dominated, mixed‐load, lacustrine delta with a high degree of grain‐size segregation at the feeder‐channel mouths. On the largest temporal and spatial scales, variable tectonic subsidence controlled the overall advance and retreat of the delta system. The medium‐term transgressive‐regressive history was probably driven by episodes of increased subsidence rate. However, at this temporal scale, the architecture of the deltaic sequences (deltaic lobes and correlative lacustrine deposits) was strongly affected by: (i) compaction of underlying peat and clay which drove lateral offset stacking of medium‐term sequences; and (ii) growth of a fault‐propagation fold close to the active Bílina Fault. At the smallest scale, the geometries of individual mouth bars and groups of mouth bars (short‐term sequences) reflect the interaction among sediment loading, compaction and growth faulting that produced high‐frequency relative lake‐level fluctuations and created local accommodation at the delta front.  相似文献   

5.
Industrial sites present a challenge to the hydrogeological delineation of pollution sources and their impacts. When large-scale geologic structures such as grabens exist on such sites, these can have a significant impact on the hydrology and water quality distribution. At the site investigated, geophysical techniques, standard hydrogeological approaches and hydrochemical characterisation (with methods such as depth-profiling and isotopes) were used to determine the impact of a graben structure and the hydrogeological properties and consequent water quality distribution. Zones of high conductivity, corresponding with available data, were identified from the geophysical investigation and subsequent pumping tests in the area. Through hydrochemical characterisation, including isotopes, it was determined that the fault zone acts as a barrier for groundwater flow and is thus the reason for the lower levels of pollutants in groundwater beyond this feature. However, the surface water flow is not restricted by these zones, and contributes significantly to the flow and salt loads at the discharge point. The study showed that graben structures are important controls on the movement of contaminants, and that the effect of such geological features on groundwater quality distribution must be investigated using multiple methodologies to construct a feasible conceptual model of the interactions.  相似文献   

6.
The Sivas Basin, located on the Central Anatolian Plateau in Turkey, is an elongate Oligo‐Miocene basin that contains numerous salt‐walled mini‐basins. Through field analysis, including stratigraphic section logging, facies analysis and geological mapping, a detailed tectono‐stratigraphic study of the Emirhan mini‐basin and its 2·6 km thick sediment fill has been undertaken. Three main palaeoenvironments are recognized – playa‐lake, braided stream and lacustrine – each corresponds to a relatively long‐lived depositional episode within a system that was dominated overall by the development of a distributive fluvial system. At local scale, this affects the geometry of the succession and influences facies distributions within preserved sequences. Sequences affected by wedge geometries are characterized by localized channelized sandstone bodies in the area of maximum subsidence and these pass laterally to floodplain mudstone towards the diaper; several internal unconformities are recognized. By contrast, sequences affected by hook geometries display narrow and steep drape‐fold geometries with no evidence of lateral facies change and apparent conformity in the preserved succession. The sediment fill of the Emirhan mini‐basin records the remobilization of diapir‐derived detritus and the presence of evaporitic bodies interbedded within the mini‐basin, implying the growth of salt walls expressed at the surface as palaeo‐topographic highs. The mini‐basin also records the signature of a regional change in stratigraphic assemblage, passing from playa‐lake facies to large‐scale highly amalgamated fluvial facies that represent progradation of the fluvial system. The initiation and evolution of this mini‐basin involves a variety of local and regional controls. Local factors include: (i) salt withdrawal, which influenced the rate and style of subsidence and consequently temporal and spatial variation in the stratigraphic assemblage and the stratal response related to halokinesis; and (ii) salt inflation, which influenced the topographic expression of the diapirs and consequently the occurrence of diapir‐derived detritus intercalated within the otherwise clastic‐dominated succession.  相似文献   

7.
In this study, we use contrasting zircon fission track age signatures of Alpine detritus and detritus derived from the Variscan realm to trace sediment pathways in Central Europe. Our data show that the Molasse Basin was connected with the Rhine Graben Sea during the Mid-Oligocene, thus joining the North Sea to the Paratethys. Within the Rhine Graben Sea, fairly strong south–north directed currents existed, transporting sand-sized Alpine detritus nearly 300 km towards the north. A connection between the Rhône-Bresse Graben and the Rhine Graben and/or the French Molasse Basin and the Swiss Molasse Basin, by contrast, is not supported by the fission track data. This may be explained by the existence of submarine rises that hampered the transport of sand-sized sediment towards the north/northeast.  相似文献   

8.
The Montagne Noire in the southernmost French Massif Central is made of an ENE‐elongated gneiss dome flanked by Palaeozoic sedimentary rocks. The tectonic evolution of the gneiss dome has generated controversy for more than half a century. As a result, a multitude of models have been proposed that invoke various tectonic regimes and exhumation mechanisms. Most of these models are based on data from the gneiss dome itself. Here, new constraints on the dome evolution are provided based on a combination of very low‐grade petrology, K–Ar geochronology, field mapping and structural analysis of the Palaeozoic western Mont Peyroux and Faugères units, which constitute part of the southern hangingwall of the dome. It is shown that southward‐directed Variscan nappe‐thrusting (D1) and a related medium‐P metamorphism (M1) are only preserved in the area furthest away from the gneiss dome. The regionally dominant pervasive tectono‐metamorphic event D2/M2 largely transposes D1 structures, comprises a higher metamorphic thermal gradient than M1 (transition low‐P and medium‐P metamorphic facies series) and affected the rocks between c. 309 and 300 Ma, post‐dating D1/M1 by more than 20 Ma. D2‐related fabrics are refolded by D3, which in its turn, is followed by dextral‐normal shearing along the basal shear zone of both units at c. 297 Ma. In the western Mont Peyroux and Faugères units, D2/M2 is largely synchronous with shearing along the southern dome margin between c. 311 and 303 Ma, facilitating the emplacement of the gneiss dome into the upper crust. D2/M2 also overlaps in time with granitic magmatism and migmatization in the Zone Axiale between c. 314 and 306 Ma, and a related low‐P/high‐T metamorphism at c. 308 Ma. The shearing that accompanied the exhumation of the dome therefore was synchronous with a peak in temperature expressed by migmatization and intrusion of melts within the dome, and also with the peak of metamorphism in the hangingwall. Both, the intensity of D2 fabrics and the M2 metamorphic grade within the hangingwall, decrease away from the gneiss dome, with grades ranging from the anchizone–epizone boundary to the diagenetic zone. The related zonation of the pre‐D3 metamorphic field gradients paralleled the dome. These observations indicate that D2/M2 is controlled by the exhumation of the Zone Axiale, and suggest a coherent kinematic between the different crustal levels at some time during D2/M2. Based on integration of these findings with regional geological constraints, a two‐stage exhumation of the gneiss dome is proposed: during a first stage between c. 316 and 300 Ma dome emplacement into the upper crust was controlled by dextral shear zones arranged in a pull‐apart‐like geometry. The second stage from 300 Ma onwards was characterized by northeast to northward extension, with exhumation accommodated by north‐dipping detachments and hangingwall basin formation along the northeastern dome margin.  相似文献   

9.
The Upper Rhine Graben (URG) is characterized by a thickness of up to 500 m of unconsolidated Quaternary sediments, providing excellent records of the Rhine river system and its responses to tectonic and climatic changes. The most complete Quaternary sequence of fluvial and limnic-fluvial deposits is found in the Heidelberg Basin, due to its long-term subsidence since the mid-Eocene. The aim of this study is to provide a chronological framework using optically stimulated luminescence (OSL) dating of aeolian and fluvial sands derived from the upper 33 m of a sediment core, which was drilled into the Heidelberg Basin infill close to the village of Viernheim, Germany. The OSL ages demonstrate that the dated fluvial sediments were deposited during the last glacial period (Weichselian) and that there were at least three aggradation periods during this episode. The coversands that cap the sequence were emplaced during the early Holocene.  相似文献   

10.
The Blagoevgrad Basin, a graben filled with Neogene–Quaternary continental sedimentary successions, is one of the most prospective placer-gold bearing regions in southwestern Bulgaria. The Quaternary sediments have been well explored and economically prospective areas have been identified. Previous studies indicated very limited occurrences of placer gold in the Neogene sediments, the genesis of which is connected with resedimentation of Paleogene sediments from the adjacent Bobov dol Basin to the north. From these previous studies, a detailed allo- and lithostratigraphic scheme, and paleogeographic models were developed.The present study aimed to evaluate the plausibility of the existing stratigraphic schemes and paleogeographic models for the area, through detailed study of the heavy mineral fraction of the Neogene and part of the Quaternary sediments from the southern part of the Blagoevgrad Basin. Additional objectives were to determine the mode of occurrence and the stratigraphic position of the placer gold in the Neogene sediments, and to investigate possible source areas. Special attention was paid to the mineral composition and the structure of the opaque detrital Fe–Ti oxide minerals, and the typologic features of the zircons. The results obtained could be used as a provenance indicator and for determination of the nature of the source area and the processes that operated therein.A very important finding is the discovery of placer gold in an additional three Neogene units. The morphologic features of the gold grains indicate short transport or proximity to the primary source. This interpretation is inconsistent with existing hypotheses on the origin and presence of the gold in the sediments of the basin. The characteristics of the magnetic heavy mineral fraction, and the morphologic features of zircon grains in auriferous samples, indicate the diorites and gabbro-diorites from the Strouma Diorite Group, which outcrop along the eastern edge of the graben, as a possible source.The stratigraphic distribution of the heavy minerals fully supports the plausibility of the existing detailed allo- and lithostratigraphic subdivision, and the paleogeographic model for the development of the southern part of the basin. Also, the results provide support for the soundness of an allostratigraphic approach for the study and exploration of placer deposits in basins similar to the Blagoevgrad.  相似文献   

11.
We present a general stratigraphic synthesis for the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene times. The stratigraphic data were compiled both from literature and from research carried out by the authors during the past 6 years ; an index of the stratigraphically most important localitites is provided. We distinguish 14 geographical areas from the Helvetic domain in the South to the Hanau Basin in the North. For each geographical area, we give a synthesis of the biostratigraphy, lithofacies, and chronostratigraphic ranges. The relationships between this stratigraphic record and the global sea-level changes are generally disturbed by the geodynamic (e.g., subsidence) evolution of the basins. However, global sea-level changes probably affected the dynamic of transgression–regression in the URG (e.g., Middle Pechelbronn Beds and Serie Grise corresponding with sea-level rise between Ru1/Ru2 and Ru2/Ru3 sequences, respectively) as well as in the Molasse basin (regression of the UMM corresponding with the sea-level drop at the Ch1 sequence). The URGENT-project (Upper Rhine Graben evolution and neotectonics) provided an unique opportunity to carry out and present this synthesis. Discussions with scientists addressing sedimentology, tectonics, geophysics and geochemistry permitted the comparison of the sedimentary history and stratigraphy of the basin with processes controlling its geodynamic evolution. Data presented here back up the palaeogeographic reconstructions presented in a companion paper by the same authors (see Berger et al. in Int J Earth Sci 2005).  相似文献   

12.
In order to study the ongoing tectonic deformation in the Rhine Graben area, we reconstruct the local crustal velocity and the strain rate field from GPS array solutions. Following the aim of this work, we compile the velocities of permanent GPS stations belonging to various networks (EUREF, AGNES, REGAL and RGP) in central western Europe. Moreover, the strain rate field is displayed in terms of principal axes and values, while the normal and the shear components of the strain tensor are calculated perpendicular and parallel to the strike of major faults. The results are compared with the fault plane solutions of earthquakes, which have occurred in this area. A broad-scale kinematic deformation model across the Rhine Graben is provided on the basis of tectonics and velocity results of the GPS permanent stations. The area of study is divided into four rigid blocks, between which there might be relative motions. The velocity and the strain rate fields are reconstructed along their borders, by estimating a uniform rotation for each block. The tectonic behaviour is well represented by the four-block model in the Rhine Graben area, while a more detailed model will be needed for a better reconstruction of the strain field in the Alpine region.
Magdala TesauroEmail:
  相似文献   

13.
西秦岭海西-印支期成矿大地构造背景为受位于古特提斯洋的坳拉槽,主要依据:(1)地层呈东宽西窄的剪刀形,犹如古特提斯构造带伸进中国古陆内的一段盲肠,并且位于中国古陆的凹入部位;(2)主要发育海相槽台沉积,且发育时限漫长,对应于古特提斯大约从4亿至2亿年的演化时限;(3)发育同沉积断裂,特别是同沉积正断层为主要的控相构造;(4)变质程度低,侵入岩及火山岩发育较少,并且火山作用西强东弱。这一认识对研究秦岭地质构造关键性问题得到较合理的解释。推断其主要构造型式为一具有向南倾主滑脱面的半地堑,是层控、热水沉积和浅成热液型铅、锌、金、银、汞、锑等矿产成矿的有利构造环境。  相似文献   

14.
The Late Cretaceous Gürsökü Formation represents the proximal fill of the Sinop–Samsun Forearc Basin that was probably initiated by extension during the Early Cretaceous. The succession records sedimentation in two contrasting depositional systems: a slope-apron flanking a faulted basin margin and coarse-grained submarine fans. The slope-apron deposits consist of thinly bedded turbiditic sandstones and mudstones, interbedded with non-channelized chaotic boulder beds and intraformational slump sheets representing a spectrum of processes ranging from debris flow to submarine slides. The submarine fan sediments are represented by conglomerates and sandstones interpreted as deposited from high density turbidity currents and non-cohesive debris flows. The occurrence of both slope apron and submarine fan depositional systems in the Gürsökü Formation may indicates that the region was a tectonically active basin margin during the Late Cretaceous.  相似文献   

15.
A compilation of gravity data from the Upper Rhine Graben (URG) is presented that includes all the main data sources from its German and French parts. This data is used to show that the URG consists of, at least, two arc-shaped and asymmetric rift units that tectonically are the basic building blocks of the graben. In this sense the URG does not differ from other continental rifts, such as the African rifts. This division should replace the now classical geomorphologic division of the URG into three segments, based on their different trends. Moreover, the gravity suggests that the faults in the central and southern segments are continuous and have the same trend, appearing to respond as a single kinematic unit. Changes in the gravity field in the graben are shown to reflect not only the structure of the graben, but also the highly variable composition of the basement. In this respect, the URG is quite different from some other Tertiary continental rifts, where possible changes in the composition of the basement are mostly masked in the gravity field by the effect of the overlying low-density sediments. This characteristic is used to study the extent of some of the main basement units that underlie the graben.  相似文献   

16.
The Jiloca basin is a NNW–SSE trending, Neogene-Quaternary graben in NE Spain, bounded by normal faults with measurable hectometre-scale throws. Its overall trend truncates previous NW–SE folds. The sedimentary infilling includes Neogene and Quaternary deposits, exceeding 80 m in thickness. The stratigraphical and structural setting controls hydrogeology of the basin. Neogene marls constitute an aquiclude that separates a main Jurassic karstic, confined aquifer from a shallow, unconfined Plio-Quaternary aquifer. The Jurassic aquifer is laterally compartmented by impervious Upper Triassic anticline cores, though its piezometric surface usually lies 30–60 m higher than the Mesozoic-Neogene boundary. The geological, and specifically the hydrogeological features are not significantly compatible with a previously published hypothesis that considers the Jiloca depression as a polje (in which the final topography is the result of suballuvial karstic corrosion) for three reasons. First, the hypothetical corrosion front shows neither a specific relationship with the epiphreatic zone, nor control by the local presence of impervious Triassic rocks. Second, chemistry of groundwater at the underlying Jurassic aquifer would not allow limestone dissolution at rates necessary for producing the supposed erosion deepening of 300 m since the late Pliocene. Finally, no evidence of swallow holes or ponors has been found.  相似文献   

17.
We determine the source parameters of three minor earthquakes in the Upper Rhine Graben (URG), a Cenozoic rift, using waveforms from permanent and temporary seismological stations. Two shallow thrust-faulting events (M L = 2.4 and 1.5) occurred on the rift shoulder just south of Heidelberg in March 2005. They indicate a possible movement along the sediment–crystalline interface due to tectonic loading from the near-by Odenwald. In February 2005, an earthquake with a normal-faulting mechanism occurred north of Speyer. This event (M L = 2.8) had an unusual depth of about 22 km and a similar deep normal-faulting event occurred there in 1972 (M L = 3.2). Other lower crustal events without fault plane solutions are known from 1981 and 1983. At such a depth, inside the lower crust, ductile behaviour instead of brittle faulting is commonly assumed and used for geodynamic modelling. Based on the newly available fault plane solutions we can confirm the brittle, extensional regime in the upper and lower crust in the central to northern URG indicated in earlier studies.  相似文献   

18.
Twenty paleogeographic maps are presented for Middle Eocene (Lutetian) to Late Pliocene times according to the stratigraphical data given in the companion paper by Berger et al. this volume. Following a first lacustrine-continental sedimentation during the Middle Eocene, two and locally three Rupelian transgressive events were identified with the first corresponding with the Early Rupelian Middle Pechelbronn beds and the second and third with the Late Rupelian Serie Grise (Fischschiefer and equivalents). During the Early Rupelian (Middle Pechelbronn beds), a connection between North Sea and URG is clearly demonstrated, but a general connection between North Sea, URG and Paratethys, via the Alpine sea, is proposed, but not proved, during the late Rupelian. Whereas in the southern URG, a major hiatus spans Early Aquitanian to Pliocene times, Early and Middle Miocene marine, brackish and freshwater facies occur in the northern URG and in the Molasse Basin (OMM, OSM); however, no marine connections between these basins could be demonstrated during this time. After the deposition of the molasse series, a very complex drainage pattern developed during the Late Miocene and Pliocene, with a clear connection to the Bresse Graben during the Piacenzian (Sundgau gravels). During the Late Miocene, Pliocene and Quaternary sedimentation persisted in the northern URG with hardly any interruptions. The present drainage pattern of the Rhine river (from Alpine area to the lower Rhine Embayment) was not established before the Early Pleistocene.  相似文献   

19.
Recently released seismic reflection data, together with previous seismic and well data, are used to describe the development of the Dannemarie basin, in the SW end of the Upper Rhine Graben. The Dannemarie Basin was formed during the main rifting phase of the Upper Rhine Graben as an asymmetrical graben trending NE–SW. Post-rift tectonism shifted the depocenter southward and changed the overall shape of the basin. Miocene Jura compression did not result in the formation of folds, as in the adjacent Mulhouse Horst. Strike slip faulting was dominant in the post-rift period and new faults were created, most notably the north trending and transpressional Belfort Fault. The boundary of the Dannemarie Basin with the Vosges Mountains is part of a restraining bend, which may account for the uplift of the southernmost part of the Vosges Mountains.  相似文献   

20.
The Thakkhola-Mustang Graben represents the extensional tectonic phase of the Tibetan Plateau uplift and whole Himalayan orogeny. It is situated at the northern side of the Dhaulagiri and Annapurna Ranges and south of the Yarlang Tsangpo Suture Zone. Stratigraphically, the oldest sedimentary units are the Tetang and Thakkhola Formations (Miocene), while the Sammargaon, Marpha and Kaligandaki Formations lying disconformably above these formations represent Plio-Pleistocene units. In this study, different lacustrine carbonates and calcretes were investigated within different lithological units and depositional environments to interpret the palaeoenvironmental and palaeoclimatological evolution of the area.Geological mapping, construction of columnar sections and carbonate sampling were carried out in the field, and stable oxygen and carbon isotope analyses and thin section analyses were done in the laboratory. Lacustrine facies contained abundant pelletal, charophytic algae, oncolitic algal micritic palustrine limestones with ostracods, and micritic mudstones with root traces. Stable carbon and oxygen isotope analysis from the carbonates show a range of δ13C values from −0.6‰ to 11.1‰ (V-PDB) and δ18O values from −13.5‰ to −25‰ (V-PDB).Discontinuous growth of oncolites and spherical pellets (25–40 μm in diameter) in micritic limestone, algal mats and charophyte algae indicate the presence of both shallow and deep water carbonates. Ostracods in dark micritic carbonates indicate quiet and calm water conditions. Microfabrics of the carbonates suggest that they were deposited in a flat and shallow lacustrine environment. The δ18O values of the investigated limestones of the Thakkhola-Mustang Graben suggest that it attained the current elevation level prior to the east-west extension of the Himalaya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号