首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The pollutant from land surface applied to agricultural chemicals is one of the major sources of contamination in water bodies. The pollutant transport within a watershed is profoundly influenced by the rainfall-runoff processes, especially the associated upland erosion and sediment transport processes because most of pollutant can be dissolved into water or attached to the soil particles. A set of soil experiments in laboratory was conducted in this paper to investigate the impacts of upland erosion and sediment transport on pollutant loads. The soil utilized for the experiments was the silty sand collected from Loess Plateau, China; and ammonium bicarbonate was applied on the soil surface as the pollutant source. Runoff discharge, soil loss, and ammonia- and nitrate-nitrogen concentrations were measured to establish the relationships which can help the numerical model to predict the pollutant losses coupled with upland soil erosion during the rain-fall-runoff processes. The experimental results indicate the ammonia-nitrogen concentration in runoff reaches the peak at the initial stage of the overland flow generation, and quickly decreases and approaches to the steady state. The ammonia-nitrogen transported by the soil loss also makes contributions to the nitrogen loss; and its amount mainly depends on the soil transport rate. The ammonia-nitrogen dissolved in overland flow is dominant due to the strong aqueous solution of ammonium bicarbonate during the first storm right after its application.  相似文献   

2.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

3.
Many simplifications are used in modeling surface runoff over a uniform slope. A very common simplification is to determine the infiltration rate independent of the overland flow depth and to combine it afterward with the kinematic-wave equation to determine the overland flow depth. Another simplication is to replace the spatially variable infiltration rates along the slope i(x, t) due to the water depth variations h(x,t) with an infiltration rate that is determined at a certain location along the slope. The aim of this study is to evaluate the errors induced by these simplications on predicted infiltration rates, overland flow depths, and total runoff volume. The error analysis is accomplished by comparing a simplified model with a model where the interaction between the overland flow depth and infiltration rate is counted. In this model, the infiltration rate is assumed to vary along the slope with the overland flow depth, even for homogeneous soil profiles. The kinematic-wave equation with interactive infiltration rate, calculated along the slopy by Richard's equation, are then solved by a finite difference scheme for a 100-m-long uniform slope. In the first error analysis, we study the effect of combining an ‘exact’ and ‘approximate’ one-dimensional infiltration rate with the kinematic-wave equation for three different soil surface roughness coefficients. The terms ‘exact’ and ‘approximate’ stand for the solution of Richard's equation with and without using the overland flow depth in the boundary condition, respectively. The simulations showed that higher infiltration rates and lower overland flow depths are obtained during the rising stage of the hydrograph when overland flow depth is used in the upper boundary condition of the one-dimensional Richard's equation. During the recession period, the simplified model predicts lower infiltration rates and higher overland flow depths. The absolute relative errors between the ‘exact’ and ‘approximate’ solutions are positively correlated to the overland flow depths which increase with the soil surface roughness coefficient. For this error analysis, the relative errors in surface runoff volume per unit slope width throughout the storm are much smaller than the relative errors in momentary overland flow depths and discharges due to the alternate signs of the deviations along the rising and falling stages. In the second error analysis, when the spatially variable infiltration rate along the slope i(x, t) is replaced in the kinematic-wave equation by i(t), calculated at the slope outlet, the overland flow depth is underestimated during the rising stage of the hydrograph and overestimated during the falling stage. The deviations during the rising stage are much smaller than the deviations during the falling stage, but they are of a longer duration. This occurs because the solution with i(x, t) recognizes that part of the slope becomes dry after rainfall stops, while overland flow still exists with i(t) determined at the slope outlet. As obtained for the first error analysis, the relative errors in surface runoff volume per unit slope width are also much smaller than the relative errors in momentary overland flow depths and discharges. The relation between the errors in overland flow depth and discharge to different mathematical simplifications enables to evaluate whether certain simplifications are justified or more computational efforts should be used.  相似文献   

4.
5.
Soil surface crusts are widely reported to favour Hortonian runoff, but are not explicitly represented in most rainfall‐runoff models. The aim of this paper is to assess the impact of soil surface crusts on infiltration and runoff modelling at two spatial scales, i.e. the local scale and the plot scale. At the local scale, two separate single ring infiltration experiments are undertaken. The first is performed on the undisturbed soil, whereas the second is done after removal of the soil surface crust. The HYDRUS 2D two‐dimensional vertical infiltration model is then used in an inverse modelling approach, first to estimate the soil hydraulic properties of the crust and the subsoil, and then the effective hydraulic properties of the soil represented as a single uniform layer. The results show that the crust hydraulic conductivity is 10 times lower than that of the subsoil, thus illustrating the limiting role the crust has on infiltration. Moving up to the plot scale, a rainfall‐runoff model coupling the Richards equation to a transfer function is used to simulate Hortonian overland flow hydrographs. The previously calculated hydraulic properties are used, and a comparison is undertaken between a single‐layer and a double‐layer representation of the crusted soil. The results of the rainfall‐runoff model show that the soil hydraulic properties calculated at the local scale give acceptable results when used to model runoff at the plot scale directly, without any numerical calibration. Also, at the plot scale, no clear improvement of the results can be seen when using a double‐layer representation of the soil in comparison with a single homogeneous layer. This is due to the hydrological characteristics of Hortonian runoff, which is triggered by a rainfall intensity exceeding the saturated hydraulic conductivity of the soil surface. Consequently, the rainfall‐runoff model is more sensitive to rainfall than to the subsoil's hydrodynamic properties. Therefore, the use of a double‐layer soil model to represent runoff on a crusted soil does not seem necessary, as the increase of precision in the soil discretization is not justified by a better performance of the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The connectivity and upscaling of overland runoff and sediment transport are important issues in hillslope hydrology to identify water flux and sediment transport within landscape. These processes are highly variable in time and space with regard to their interactions with vegetation and soil surface conditions. The generation of overland runoff and its spatial connectivity were examined along a slope to determine the variations in the transport mechanism of runoff and soil particles by rain splash and overland runoff. Field experiments were conducted by erosion plots on a steep hillslope at lengths of 5, 10, and 15 m. The overland runoff connectivity and flow transport distance decreased with the slope length, while spatial variability of infiltration increased significantly with the slope length. Observation of subsurface flow revealed that surface soil and litter layer could have important role in water transport. However, the surface soil water content and water flux transport along the slope was highly variable for different storm events; the variability was related to the complexity of the system, mainly by way of the initial wetness conditions and infiltration characteristics. Only net rain‐splashed soil was measurable, but examination of the water flux, overland runoff and sediment transport connectivity, characteristics of sheetwash, and the variability in spatial infiltration indicated an increase in the contribution of the rain splash transport mechanism along the slope. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

The Loess Plateau in China is overlain by deep and loose soil. As in other semi-arid regions, convective precipitation produces storms, typically of short duration, relatively high intensity and limited areal extent. Infiltration excess (Hortonian mechanism) of precipitation is conventionally assumed to be more prominent than saturation excess (Dunne mechanism) for storm runoff generation. This assumption is true at a point during the storm. However, the runoff generation mechanism is altered when the runoff is conditioned by a lateral redistribution movement of water, i.e. run-on, as the spatial scale increases. In the Loess Plateau, the effects of run-on may be significant, because of the deep and loose surface soil layer. In this study, the role of run-on for overland flow in the Upper Wei River basin, located in the Loess Plateau, is evaluated by means of a simple numerical model at the hillslope scale. The results show that almost all the Hortonian overland flow infiltrates into the soil along the flat hillslope and dry gully before it reaches the river channel. Most of the runoff is generated from the saturated soil near the river channel and from the subsurface. The run-on process takes much longer than the infiltration, facilitating rainfall–runoff modelling at a daily time step. A hydrological model is employed to investigate the characteristics of runoff generation in the Upper Wei River basin. The analysis shows that the subsurface flow contribution to total streamflow is more than 53% from October to March, while the overland flow contribution exceeds 72% from April to September.

Editor D. Koutsoyiannis; Associate editor Dawen Yang

Citation Liu, D.F., Tian, F.Q., Hu, H.C., and Hu, H.P., 2012. The role of run-on for overland flow and the characteristics of runoff generation in the Loess Plateau, China. Hydrological Sciences Journal, 57 (6), 1107–1117.  相似文献   

8.
With the development of modern agriculture, large amount of fertilizer and pesticide outflow from farming land causes great waste and serious pollution to surface water and groundwater, and threatens ecological environment and even human life. In this paper, laboratory experiments are conducted to simulate adsorbed Cr(VI) transfer from soil into runoff. A two-layer in-mixing analytical model is applied to analyze laboratory experimental results. A data assimilation (DA) method via the ensemble Kalman filter (EnKF) is used to update parameters and improve modeling results. In comparison with the experimental data, DA updated modeling results are much better than those without the updating. To make predictions better, the inflation method with a constant inflation factor via DA method was used to compensate the fast decrease of ensemble spread partially related to filter inbreeding. Based on the used rainfall and relevant physical principles, the updated value of the incomplete mixing coefficient γ is about 14.0 times of the value of the incomplete mixing coefficient α in experiment 1 and about 7.4 times in experiment 2, while the difference between the flow rate of runoff and infiltration is not so large even after reaching stable infiltration condition. The results indicate the loss of Cr(VI) in soil solute is mainly due to infiltration, rather than surface runoff. With the increase of mixing layer depth, soil adsorption capacity will increase and the loss of soil solute will decrease. The study results provide information for reducing and even preventing the agricultural nonpoint source pollution.  相似文献   

9.
Rainfall experiments have been conducted in the laboratory in order to assess the hydrological response of top soils very susceptible to surface sealing and containing rock fragments in different positions with respect to the soil surface. For a given cover level, rock fragment position in the top soil has an ambivalent effect on water intake and runoff generation. Compared to a bare soil surface rock fragments increase water intake rates as well as time of runoff concentration and decrease runoff volume if they rest on the soil surface. For the same cover level, rock fragments reduce infiltration rate and enhance runoff generation if they are well embedded in the top layer. The effects of rock fragment position on infiltration rate and runoff generation are proportional to cover percentage. Micromorphological analysis and measurements of the saturated hydraulic conductivity of bare top soils and of the top layer underneath rock fragments resting on the soil surface reveal significant differences supporting the mechanism proposed by Poesen (1986): i.e. runoff generated as rock flow or as Horton overland flow can (partly) infiltrate into the unsealed soil surface under the rock fragments, provided that they are not completely embedded in the top layer. Hence, rock fragment position, beside other rock fragment properties, should be taken into account when assessing the hydrological response of soils susceptible to surface sealing and containing rock fragments in their surface layers. A simple model, based on the proportions of bare soil surface, soil surface occupied by embedded rock fragments, and soil surface covered with rock fragments resting on the soil surface, describes the runoff coefficient data relatively well.  相似文献   

10.
A one‐dimensional, two‐layer solute transport model is developed to simulate chemical transport process in an initially unsaturated soil with ponding water on the soil surface before surface runoff starts. The developed mathematical model is tested against a laboratory experiment. The infiltration and diffusion processes are mathematically lumped together and described by incomplete mixing parameters. Based on mass conservation and water balance equations, the model is developed to describe solute transport in a two‐zone layer, a ponding runoff zone and a soil mixing zone. The two‐zone layer is treated as one system to avoid describing the complicated chemical transport processes near the soil surface in the mixing zone. The proposed model was analytically solved, and the solutions agreed well with the experimental data. The developed experimental method and mathematical model were used to study the effect of the soil initial moisture saturation on chemical concentration in surface runoff. The study results indicated that, when the soil was initially saturated, chemical concentration in surface runoff was significantly (two orders of magnitude) higher than that with initially unsaturated soil, while the initial chemical concentrations at the two cases were of the same magnitude. The soil mixing depth for the initially unsaturated soil was much larger than that for the initially saturated soil, and the incomplete runoff mixing parameter was larger for the initially unsaturated soil. The higher the infiltration rate of the soil, the greater the infiltration‐related incomplete mixing parameter. According to the quantitative analysis, the soil mixing depth was found to be sensitive for both initially unsaturated and saturated soils, and the incomplete runoff mixing parameter was sensitive for initially saturated soil but not for the initially unsaturated soil; the incomplete infiltration mixing parameter behaved just the opposite. Some suggestions are made for reducing chemical loss from runoff. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitivity analysis of Hortonian flow   总被引:6,自引:0,他引:6  
We present a sensitivity analysis for infiltration excess (Hortonian) overland flow based on a classic laboratory experiment by Smith and Woolhiser [Smith RE, Woolhiser DA. Overland flow on an infiltrating surface. Water Resour Res 1971;7(4):899–913]. The model components of the compartment approach are comprised of a diffusive wave approximation to the Saint–Venant equations for overland flow, a Richards model for flow in the variably saturated zone, and an interface coupling concept that combines the two components. In the coupling scheme a hydraulic interface is introduced to allow the definition of an exchange flux between the surface and the unsaturated zone. The effects of friction processes, soil capillarity, hydraulic interface, and vertical soil discretization on both infiltration and runoff prediction are investigated in detail. The corresponding sensitivity analysis is conducted using a small-perturbation method. As a result the importance of the hydraulic processes and related parameters are evaluated for the coupled hydrosystem.  相似文献   

12.
Surface runoff may be generated when the rainfall intensity exceeds the infiltration capacity, or when the soil profile is saturated with water. Indications exist that both types of overland flow may occur in hilly agricultural loess regions. Here, for a loessial hillslope under maize in the southern part of The Netherlands, it was shown, with pressure head and runoff measurements, that Hortonian overland flow occurs during typical summer rain events. Surface runoff was initiated after saturation of the top 5–10 cm of the soil. Deeper in the soil, unsaturated conditions prevailed while runoff took place. Peak runoff discharges at the outlet of the subcatchment occurred a few minutes after peak rainfall intensities were measured. It appeared that SWMS_2D, a two-dimensional water flow model, was capable in simulating observed pressure head changes and runoff. Simulated potential runoff for the transect studied was higher by a magnitude of three than the measured areal average. This indicates effects of surface ponding, and the probable location of this particular transect in a region with high runoff production.  相似文献   

13.
Monthly runoff and soil loss data of three fallow experimental plots are presented, comprising a summer and following winter season. The fallow plots were only tilled once, at the end of April. Summer runoff appeared to be controlled by rainfall intensity and conforms to the Horton model of overland flow generation. Winter runoff was primarily controlled by rainfall amount and conforms to the saturation or storage control model of runoff generation. Summer runoff volume was one fourth of winter runoff volume. Summer soil loss was twice as high as winter soil loss and was caused by high intensity, high energy rainfall. Winter soil loss was due to detachment limited erosion, caused by low intensity, low energy rainfall. Mean sediment concentration of winter runoff was one seventh of that of summer runoff. Implications for runoff and erosion of climatic change, involving increased rainfall amounts or intensities in summer or winter, are given.  相似文献   

14.
Solute transport in overland flow is considered as one of the main contributors to water pollution. Although many models of pollutant transport mechanism from soil to run‐off water have been proposed, the characteristics of solute transport accompanying the water run‐off over vegetated surface have not been well studied. In this study, a series of laboratory experiments were conducted to study the solute transport over vegetated surfaces. Based on the experimental results, an idea of the “stationary water layer” in run‐off was proposed. Applying the complete mixing theory in the stationary water layer, an analytical solute transport model was developed with the assumption that the upper run‐off completely mixes with the underlying water in the stationary water layer for each site. The results show that the predictions made by the present model are in good agreement with the measured experimental data. For the vegetated surfaces, the depth of stationary water layer is related to the rainfall intensity, bed slope, and vegetation density. The analytical solution shows that the maximum solute transport occurs at the time of concentration. This study advances our understanding of the mechanisms of solute transport over vegetated areas.  相似文献   

15.
Over a two-year period, rainfall, runoff and sediment output were measured in six small agricultural catchments (3–10 ha) in south Limburg (The Netherlands). These measurements were needed for validation of an erosion model for South Limburg (LISEM). In this paper, results of the measurements are presented and processes that determine surface runoff and sediment yield during winter and summer rainfall are identified. Before the start of the measurement programme, surface slaking and crust formation on the erodible loess soils were thought to be the main cause of overland flow and soil erosion in South Limburg. This was the starting point for soil conservation measures in the area. The measurement results discussed in this paper show that in some catchments much runoff occurred in winter and that soil moisture storage capacity may be just as important for runoff generation as infiltration capacity. Therefore, when modelling soil erosion and optimizing erosion control measures for South Limburg, runoff generation through Hortonian as well as through saturation overland flow must be considered.  相似文献   

16.
Soil moisture dynamics have a significant effect on overland flow generation. Catchment aspect is one of the major controlling factors of overland flow and soil moisture behaviour. A few experimental studies have been carried out in the uneven topography of the Himalayas. This study presents plot‐scale experiments using portable rainfall simulator at an altitude of 1,230 m above mean sea level and modelling of overland flow using observed datasets. Two plots were selected in 2 different aspects of Aglar watershed of Lesser Himalaya; the agro‐forested (AF) plot was positioned at the north aspect whereas the degraded (DE) plot was located at the south aspect of the hillslope. HS flumes and rain gauges were installed to measure the runoff at the outlet of the plot and the rainfall depth during rainfall simulation experiments. Moreover, 10 soil moisture sensors were installed at upslope and downslope locations of both the plots at 5, 15, 25, 35, and 45 cm depth from ground level to capture the soil moisture dynamics. The tests were conducted at intensities of 79.8 and 75 mm/hr in AF plot and 82.2 and 72 mm/hr in the DE plot during Test 1 and Test 2, respectively. The observed data indicate the presence of reinfiltration process only in the AF plot. The high water holding capacity and the presence of reinfiltration process results in less runoff volume in the AF plot compared with the DE plot. The Hortonian overland flow mechanism was found to be the dominant overland flow mechanism as only a few layers of top soil get saturated during all of the rainfall–runoff experiments. The runoff, rainfall, and soil moisture data were subsequently used to calibrate the parameters of HYDRUS‐2D overland flow module to simulate the runoff hydrograph and soil moisture. The components of hydrograph were evaluated in terms of peak discharge, runoff volume and time of concentration, the results were found to be within the satisfactory range. The goodness of fit of simulated hydrographs were more than 0.85 and 0.95 for AF and DE plot, respectively. The model produced satisfactory simulation results of soil moisture for all of the rainfall–runoff experiments. The HYDRUS‐2D overland flow module was found promising to simulate the runoff hydrograph and soil moisture in plot‐scale research.  相似文献   

17.
In the semi‐arid Mediterranean environment, the rainfall–runoff relationships are complex because of the markedly irregular patterns in rainfall, the seasonal mismatch between evaporation and rainfall, and the spatial heterogeneity in landscape properties. Watersheds often display considerable non‐linear threshold behavior, which still make runoff generation an open research question. Our objectives in this context were: to identify the primary processes of runoff generation in a small natural catchment; to test whether a physically based model, which takes into consideration only the primary processes, is able to predict spatially distributed water‐table and stream discharge dynamics; and to use the hydrological model to increase our understanding of runoff generation mechanisms. The observed seasonal dynamics of soil moisture, water‐table depth, and stream discharge indicated that Hortonian overland‐flow was negligible and the main mechanism of runoff generation was saturated subsurface‐flow. This gives rise to base‐flow, controls the formation of the saturated areas, and contributes to storm‐flow together with saturation overland‐flow. The distributed model, with a 1D scheme for the kinematic surface‐flow, a 2D sub‐horizontal scheme for the saturated subsurface‐flow, and ignoring the unsaturated flow, performed efficiently in years when runoff volume was high and medium, although there was a smoothing effect on the observed water‐table. In dry years, small errors greatly reduced the efficiency of the model. The hydrological model has allowed to relate the runoff generation mechanisms with the land‐use. The forested hillslopes, where the calibrated soil conductivity was high, were never saturated, except at the foot of the slopes, where exfiltration of saturated subsurface‐flow contributed to storm‐flow. Saturation overland‐flow was only found near the streams, except when there were storm‐flow peaks, when it also occurred on hillslopes used for pasture, where soil conductivity was low. The bedrock–soil percolation, simulated by a threshold mechanism, further increased the non‐linearity of the rainfall–runoff processes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
There is a dearth of knowledge on the runoff processes of eucalypt woodland communities in the semi-arid tropics of Australia. The work was undertaken on a 100 m transect of a 0·8 degree hillslope typical of the ‘smooth plainlands’ of central-north Queensland. This paper introduces a new experimental design for measuring overland flow in such areas by way of a cascade system of unbounded runoff plots which allow the inputs and outputs between troughs to be calculated. Most storms generate overland flow. Time to overland flow ranges between 1 and 18 min where rain intensities are above 10mm hr−1 and when the average detention storage of 3·6 mm is exceeded. The bare soil surfaces within the scattered grass understory control the runoff generation process through the temporal variability of field saturated hydraulic conductivity. The study demonstrated that overland flow is mainly redistributed over the freely-draining oxic soil. Some areas export more overland flow than they gain from upslope (runoff), others gain more overland flow than they export (runon). Over the study period only 2 per cent of total rain is transferred out of this 100 m transect as overland flow due to the short duration of storms, the relatively high soil permeability, and the low slope angle. The remainder adds to the large soil water store or deep drainage. The variability of runoff–runon over these ‘smooth plainlands’ highlights how results from bounded plots would be misleading in such areas.  相似文献   

19.
Land use in Panama has changed dramatically with ongoing deforestation and conversion to cropland and cattle pastures, potentially altering the soil properties that drive the hydrological processes of infiltration and overland flow. We compared plot-scale overland flow generation between hillslopes in forested and actively cattle-grazed watersheds in Central Panama. Soil physical and hydraulic properties, soil moisture and overland flow data were measured along hillslopes of each land-use type. Soil characteristics and rainfall data were input into a simple, 1-D representative model, HYDRUS-1D, to simulate overland flow that we used to make inferences about overland flow response at forest and pasture sites. Runoff ratios (overland flow/rainfall) were generally higher at the pasture site, although no overall trends were observed between rainfall characteristics and runoff ratios across the two land uses at the plot scale. Saturated hydraulic conductivity (Ks) and bulk density were different between the forest and pasture sites (p < 10−4). Simulating overland flow in HYDRUS-1D produced more outputs similar to the overland flow recorded at the pasture site than the forest site. Results from our study indicate that, at the plot scale, Hortonian overland flow is the main driver for overland flow generation at the pasture site during storms with high-rainfall totals. We infer that the combination of a leaf litter layer and the activation of shallow preferential flow paths resulting in shallow saturation-excess overland flow are likely the main drivers for plot scale overland flow generation at the forest site. Results from this study contribute to the broader understanding of the delivery of freshwater to streams, which will become increasingly important in the tropics considering freshwater resource scarcity and changing storm intensities.  相似文献   

20.
Since 1999, large-scale ecosystem restoration has been implemented in the Loess Plateau, effectively increasing regional vegetation coverage. Vegetation restoration has significantly elevated the saturated hydraulic conductivity (Ks) of the near-surface soil layers and increased the vertical heterogeneity of the Ks profile. Many studies have examined the change of runoff due to revegetation, yet the impacts of Ks profile on the soil moisture distribution and runoff generation processes were less explored. In this study, numerical simulations were conducted to investigate how changes in the Ks profile caused by vegetation restoration influenced the hydrological responses at event scale. The numerical simulation results show that the increase of surface Ks caused by vegetation restoration can effectively reduce runoff at event scale. Moreover, the enhancement of vertical heterogeneity of Ks profiles can significantly change the vertical profile of soil water content, prompting more water to percolate into the deep soil layer. When rainfall exceeds a threshold, the accumulation of soil water above the relatively less permeable layer can cause short-term saturation in shallow soil layers, resulting in a transient perched water table. As a result, after the vegetation restoration in the Loess Plateau, though Horton overland flow is still the main runoff generation mechanism, there is a possibility of the emergence of Dunne overland flow under the high vegetation coverage (e.g., NDVI larger than 0.5). This emergence of new runoff generation mechanism, saturation excess runoff, in the Loess Plateau due to the vegetation restoration could provide scientific guidance for water and sediment movement, soil and water conservation practices, and desertification control in the Loess Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号