首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Puklen complex of the Mid-Proterozoic Gardar Province, SouthGreenland, consists of various silica-saturated to quartz-bearingsyenites, which are intruded by a peralkaline granite. The primarymafic minerals in the syenites are augite ± olivine +Fe–Ti oxide + amphibole. Ternary feldspar thermometryand phase equilibria among mafic silicates yield T = 950–750°C,aSiO2 = 0·7–1 and an fO2 of 1–3 log unitsbelow the fayalite–magnetite–quartz (FMQ) bufferat 1 kbar. In the granites, the primary mafic minerals are ilmeniteand Li-bearing arfvedsonite, which crystallized at temperaturesbelow 750°C and at fO2 values around the FMQ buffer. Inboth rock types, a secondary post-magmatic assemblage overprintsthe primary magmatic phases. In syenites, primary Ca-bearingminerals are replaced by Na-rich minerals such as aegirine–augiteand albite, resulting in the release of Ca. Accordingly, secondaryminerals include ferro-actinolite, (calcite–siderite)ss,titanite and andradite in equilibrium with the Na-rich minerals.Phase equilibria indicate that formation of these minerals tookplace over a long temperature interval from near-magmatic temperaturesdown to  相似文献   

2.
Liquidus relations in the four-component system Na2O–Al2O3–SiO2–F2O–1were studied at 0· 1 and 100 MPa to define the locationof fluoride–silicate liquid immiscibility and outlinedifferentiation paths of fluorine-bearing silicic magmas. Thefluoride–silicate liquid immiscibility spans the silica–albite–cryoliteand silica–topaz–cryolite ternaries and the haplogranite-cryolitebinary at greater than 960°C and 0· 1–100 MPa.With increasing Al2O3 in the system and increasing aluminum/alkalication ratio, the two-liquid gap contracts and migrates fromthe silica liquidus to the cryolite liquidus. The gap does notextend to subaluminous and peraluminous melt compositions. Forall alkali feldspar–quartz-bearing systems, the miscibilitygap remains located on the cryolite liquidus and is thus inaccessibleto differentiating granitic and rhyolitic melts. In peralkalinesystems, the magmatic differentiation is terminated at the albite–quartz–cryoliteeutectic at 770°C, 100 MPa, 5 wt % F and cation Al/Na =0· 75. The addition of topaz, however, significantlylowers melting temperatures and allows strong fluorine enrichmentin subaluminous compositions. At 100 MPa, the binary topaz–cryoliteeutectic is located at 770°C, 39 wt % F, cation Al/Na 0·95, and the ternary quartz–topaz–cryolite eutecticis found at 740°C, 32 wt % F, 30 wt % SiO2 and cation Al/Na 0· 95. Such location of both eutectics enables fractionationpaths of subaluminous quartz-saturated systems to produce fluorine-rich,SiO2-depleted and nepheline-normative residual liquids. KEY WORDS: silicate melt; granite; rhyolite; fluorine; liquid immiscibility  相似文献   

3.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

4.
Experimental studies were carried out to evaluate phase relationsinvolving titanite–F–Al-titanite solid solutionin the system CaSiO3–Al2SiO5–TiO2–CaF2. Theexperiments were conducted at 900–1000°C and 1·1–4·0GPa. The average F/Al ratio in titanite solid solution in theexperimental run products is 1·01 ± 0·06,and XAl ranges from 0·33 ± 0·02 to 0·91± 0·05, consistent with the substitution [TiO2+]–1[AlF2+]1.Analysis of the phase relations indicates that titanite solidsolutions coexisting with rutile are always low in XAl, whereasthe maximum XAl of titanite solid solution occurs with fluoriteand either anorthite or Al2SiO5. Reaction displacement experimentswere performed by adding fluorite to the assemblage anorthite+ rutile = titanite + kyanite. The reaction shifts from 1·60GPa to 1·15 ± 0·05 GPa at 900°C, from1·79 GPa to 1·375 ± 0·025 GPa at1000°C, and from 1·98 GPa to 1·575 ±0·025 GPa at 1100°C. The data show that the activityof CaTiSiO4O is very close to the ideal molecular activity model(XTi) at 1100°C, but shows a negative deviation at 1000°Cand 900°C. The results constrain  相似文献   

5.
The early augite syenite unit in the 1·13-Ga-old Ilímaussaqintrusive complex, South Greenland, consists of a magmatic assemblageof ternary alkali feldspar + fayalitic olivine + augite + titanomagnetite+ apatite + baddeleyite ± nepheline ± quartz ±ilmenite ± zircon. Feldspar, nepheline and QUILF thermometryyield T = 1000–700°C, at P = 1 kbar, which is derivedfrom fluid inclusion data from other parts of the complex. Ternaryfeldspar was the first major liquidus phase. It crystallizedat temperatures between 950 and 1000°C from a homogeneousmagma with aSiO2 = 0·8 and fO2 about 1·5–2log units below the fayalite–magnetite–quartz (FMQ)buffer. Later, closed system fractionation produced nepheline-bearingassemblages with aSiO2 = 0·4 and log fO2 = FMQ –3 to FMQ – 5. Assimilation of wall rocks produced localvariations of melt composition. Four traverses through the unitwere sampled parallel to the assumed direction of crystallization.They exhibit significant differences in their mineral assemblagesand compositions. The chemical zoning and calculated intensiveparameters of four sample suites reflect both closed systemfractional crystallization and local assimilation of wall rocks. KEY WORDS: alkaline magmatism; assimilation; fractionation; redox equilibria; QUILF  相似文献   

6.
Pelitic xenoliths derived from amphibolite grade basement rocksoccur within a Pleistocene, trachytic, pyroclastic unit of theWehr volcano, East Eifel, West Germany: With increasing temperatureand/or prolonged heating at high temperature, quartz-plagioclaseand micaceous layers of the xenoliths have undergone meltingto form buchites and thermal reconstitution by dehydration reactions,melting and crystallization to form restites respectively. Thexenoliths provide detailed evidence of melting, high temperaturedecomposition of minerals, nucleation and growth of new phasesand P-T-fo2 conditions of contact metamorphism of basement rocksby the Wehr magma. Melting begins at quartz-oligoclase (An17·3Ab82·3Or0·4-An20·0Ab78·1Or1·9)grain boundaries in quartz-plagioclase rich layers and the amountof melting is controlled by H2O and alkalis released duringdehydroxylation/oxidation of associated micas. Initially, glasscompositions are heterogeneous, but with increasing degreesof melting they become more homogeneous and are similar to S-typegranitic minimum melts with SiO2 between 71 and 77 wt. per cent;A/(CNK) ratios of 1·2–1·4; Na2O < 2·95and normative corundum contents of 1·9–4·0per cent. Near micas plagioclase melts by preferential dissolutionof the NaAlSi3O8 component accompanied by a simultaneous increasein CaAl2Si2O8 (up to 20 mol. per cent An higher than the bulkplagioclase composition) at the melting edge. With increasingtemperature the end product of fractional melting is the formationand persistence of refractory bytownite (An78–80) in thosexenoliths where extensive melting has taken place. Initial stage decomposition of muscovite involves dehydroxylation(H2O and alkali loss). At higher temperatures muscovite breaksdown to mullite, sillimanite, corundum, sanidine and a peraluminousmelt. Mullite (40–43 mol. per cent SiO2) and sillimanite(49 mol. per cent SiO2) are Fe2O3 and TiO2 rich (up to 6·1–0·84and 3·6–0·24 wt. per cent respectively).Al-rich mullite (up to 77 wt. per cent Al2O3) occurs with corundumwhich has high Fe2O3 and TiO2 (up to 6·9 and 2·1wt. per cent respectively). Annealing at high temperatures andreducing conditions results in the exsolution of mullite fromsillimanite and ilmenite from corundum. Glass resulting fromthe melting of muscovite in the presence of quartz is peraluminous(A/(CNK) = 1·3) with SiO2 contents of 66–69 percent and normative corundum of 4 per cent. Sanidine (An1·9Ab26·0Or72·1-An1·3Ab15·9Or82·9)crystallized from the melt. Dehydroxylation and oxidation of biotite results in a decreaseof K2O from 8·6 to less than 1 wt. per cent and oxidetotals (less H2O + contents) from 96·5 to 88·6,exsolution of Al-magnetite, and a decrease in the Fe/(Fe + Mg)ratio from 0·41 to 0·17. Partial melting of biotitein the presence of quartz/plagioclase to pleonaste, Al-Ti magnetite,sanidine(An2·0Ab34·9Or63·1) and melt takesplace at higher temperatures. Glass in the vicinity of meltedbiotite is pale brown and highly peraluminous (A/CNK = 2·1)with up to 6 wt. per cent MgO+FeO(total iroq) and up to 10 percent normative corundum. Near liquidus biotite with higher Al2O3and TiO2 than partially melted biotite crystallized from themelt. Ti-rich biotites (up to 6 wt. per cent TiO2) occur withinthe restite layers of thermally reconstituted xenoliths. Meltingof Ti-rich biotite and sillimanite in contact with the siliceousmelt of the buchite parts of xenoliths resulted in the formationof cordierite (100 Mg/(Mg+Fe+Mn) = 76·5–69·4),Al-Ti magnetite and sanidine, and development of cordierite/quartzintergrowths into the buchite melt. Growth of sanidine enclosedrelic Ca-plagioclase to form patchy intergrowths in the restitelayers. Cordierite (100 Mg/(Mg+Fe+Mn) = 64–69), quartz,sillimanite, mullite, magnetite and ilmenite, crystallized fromthe peraluminous buchite melt. Green-brown spinels of the pleonaste-magnetite series have awide compositional variation of (mol. per cent) FeAl2O4—66·6–45·0;MgAl2O4—53·0–18·7; Fe3O4—6·9–28·1;MnAl2O4—1·2–1·5; Fe2TiO4—0·6–6·2.Rims are generally enriched in the Fe3O4 component as a resultof oxidation. Compositions of ilmenite and magnetite (single,homogeneous and composite grains) are highly variable and resultfrom varying degrees of high temperature oxidation that is associatedwith dehydroxylation of micas and melting. Oxidation mainlyresults in increasing Fe3+, Al and decreasing Ti4+, Fe2+ inilmenite, and increasing Fe2+, Ti4+ and decreasing Fe3+ in associatedmagnetite. A higher degree of oxidation is reached with exsolutionof rutile from ilmenite and formation of titanhematite and withexsolution of pleonaste from magnetite. Ti-Al rich magnetite(5·1–7·5 and 8·5–13·5wt. per cent respectively) and ilmenite crystallized from meltsin buchitic parts of the xenoliths. Chemical and mineralogic evidence indicates that even with extensivemelting the primary compositions of individual layers in thexenoliths remained unmodified. Apparently the xenoliths didnot remain long enough at high temperatures for desilicationand enrichment in Al2O3, TiO2, FeO, Fe2O3, and MgO that resultsby removal of a ‘granitic’ melt, and/or by interactionwith the magma, to occur. T °C-fo2 values calculated from unoxidized magnetite/ilmenitegive temperatures ranging from 615–710°C for contactmetamorphism and the beginning of melting, and between 873 and1054°C for the crystallization of oxides and mullite/sillimanitefrom high temperature peraluminous melts. fo2 values of metamorphismand melting were between the Ni-NiO and Fe2O3-Fe3O4 buffer curves.The relative abundance of xenolith types, geophysical evidenceand contact metamorphic mineralogy indicates that the xenolithswere derived from depths corresponding to between 2–3kb Pload = Pfluid. The xenoliths were erupted during the latestphreatomagmatic eruption from the Wehr volcano which resultedin vesiculation of melts in partially molten xenoliths causingfragmentation and disorientation of solid restite layers.  相似文献   

7.
Experiments defining the distribution of H2O [Dw = wt % H2O(melt)/wt% H2O(crd)]) between granitic melt and coexisting cordieriteover a range of melt H2O contents from saturated (i.e. coexistingcordierite + melt + vapour) to highly undersaturated (cordierite+ melt) have been conducted at 3–7 kbar and 800–1000°C.H2O contents in cordierites and granitic melts were determinedusing secondary ion mass spectrometry (SIMS). For H2O vapour-saturatedconditions Dw ranges from 4·3 to 7 and increases withrising temperature. When the system is volatile undersaturatedDw decreases to minimum values of 2·6–5·0at moderate to low cordierite H2O contents (0·6–1·1wt %). At very low aH2O, cordierite contains less than 0·2–0·3wt % H2O and Dw increases sharply. The Dw results are consistentwith melt H2O solubility models in which aH2O is proportionalto Xw2 (where Xw is the mole fraction of H2O in eight-oxygenunit melt) at Xw  相似文献   

8.
La Pacana is one of the largest known calderas on Earth, andis the source of at least two major ignimbrite eruptions witha combined volume of some 2700 km3. These ignimbrites have stronglycontrasting compositions, raising the question of whether theyare genetically related. The Toconao ignimbrite is crystal poor,and contains rhyolitic (76–77 wt % SiO2) tube pumices.The overlying Atana ignimbrite is a homogeneous tuff whose pumiceis dacitic (66–70 wt % SiO2), dense (40–60% vesicularity)and crystal rich (30–40 % crystals). Phase equilibriaindicate that the Atana magma equilibrated at temperatures of770–790°C with melt water contents of 3·1–4·4wt %. The pre-eruptive Toconao magma was cooler (730–750°C)and its melt more water rich (6·3–6·8 wt% H2O). A pressure of 200 MPa is inferred from mineral barometryfor the Atana magma chamber. Isotope compositions are variablebut overlapping for both units (87Sr/86Sri 0·7094–0·7131;143Nd/144Nd 0·51222–0·51230) and are consistentwith a dominantly crustal origin. Glass analyses from Atanapumices are similar in composition to those in Toconao tubepumices, demonstrating that the Toconao magma could representa differentiated melt of the Atana magma. Fractional crystallizationmodelling suggests that the Toconao magma can be produced by30% crystallization of the observed Atana mineral phases. Toconaomelt characteristics and intensive parameters are consistentwith a volatile oversaturation-driven eruption. However, thelow H2O content, high viscosity and high crystal content ofthe Atana magma imply an external eruption trigger. KEY WORDS: Central Andes; crystal-rich dacite; eruption trigger; high-silica rhyolite; zoned magma chamber  相似文献   

9.
Phase Relations of Peralkaline Silicic Magmas and Petrogenetic Implications   总被引:16,自引:5,他引:16  
The phase relationships of three peralkaline rhyolites fromthe Kenya Rift have been established at 150 and 50 MPa, at oxygenfugacities of NNO - 1·6 and NNO + 3·6 (log fO2relative to the Ni–NiO solid buffer), between 800 and660°C and for melt H2O contents ranging between saturationand nominally anhydrous. The stability fields of fayalite, sodicamphiboles, chevkinite and fluorite in natural hydrous silicicmagmas are established. Additional phases include quartz, alkalifeldspar, ferrohedenbergite, biotite, aegirine, titanite, montdoriteand oxides. Ferrohedenbergite crystallization is restrictedto the least peralkaline rock, together with fayalite; it isreplaced at low melt water contents by ferrorichterite. Riebeckite–arfvedsoniteappears only in the more peralkaline rocks, at temperaturesbelow 750°C (dry) and below 670°C at H2O saturation.Under oxidizing conditions, it breaks down to aegirine. In themore peralkaline rocks, biotite is restricted to temperaturesbelow 700°C and conditions close to H2O saturation. At 50MPa, the tectosilicate liquidus temperatures are raised by 50–60°C,and that of amphibole by 30°C. Riebeckite–arfvedsonitestability extends down nearly to atmospheric pressure, as aresult of its F-rich character. The solidi of all three rocksare depressed by 40–100°C compared with the solidusof the metaluminous granite system, as a result of the abundanceof F and Cl. Low fO2 lowers solidus temperatures by at least30°C. Comparison with studies of metaluminous and peraluminousfelsic magmas shows that plagioclase crystallization is suppressedas soon as the melt becomes peralkaline, whatever its CaO orvolatile contents. In contrast, at 100 MPa and H2O saturation,the liquidus temperatures of quartz and alkali feldspar arenot significantly affected by changes in rock peralkalinity,showing that the incorporation of water in peralkaline meltsdiminishes the depression of liquidus temperatures in dry peralkalinesilicic melts compared with dry metaluminous or peraluminousvarieties. At 150 MPa, pre-eruptive melt H2O contents rangefrom 4 wt % in the least peralkaline rock to nearly 6 wt % inthe two more peralkaline compositions, in broad agreement withprevious melt inclusion data. The experimental results implymagmatic fO2 at or below the fayalite–quartz–magnetitesolid buffer, temperatures between 740 and 660°C, and meltevolution under near H2O saturation conditions. KEY WORDS: peralkaline; rhyolite; phase equilibria  相似文献   

10.
To model magmatic crystallization processes for mafic to intermediatecompositions at high pressure, liquidus phase relations in theforsterite–anorthite–diopside–silica (FADS)tetrahedron within the CaO–MgO–Al2O3–SiO2system have been determined at 2·0 GPa. Compositionsof five liquidus invariant points have been determined and theapproximate compositions of five others have been inferred.These involve primary phase volumes for forsterite (fo), enstatite(en), diopside (di), high quartz (qz), spinel (sp), sapphirine(sa), garnet (gt), anorthite (an), and corundum (cor). The determined(with wt % coefficients) and inferred reactions (without coefficients)that define each isobaric invariant point are as follows: 23 en + 68 di + 9 sp = 84 liq + 16 fo 37 di + 63 sa = 47 liq + 40 sp + 13 en 100 gt = 21 liq + 27 sa + 55 en + 18 di 1 di + 59 en + 41 an = 43 liq + 57 gt 18 di + 21 qz + 15 en + 47 an = 100 liq di + an + gt = liq + sa an + gt = liq + sa + en sa + an + di = liq + sp sa + an = liq + cor + sp di + cor = liq + an + sp. These phase relations provide a diverse range of constraintson igneous processes at pressures near 2 GPa. They show thatfractional crystallization of a model basalt gives a residualliquid strongly enriched in SiO2, strongly depleted in MgO,and mildly enriched in Al2O3. Such a trend is consistent withthe calc-alkaline fractionation trend observed at subductionzones, but is in disagreement with suggestions that fractionationof tholeiitic basalt in this pressure range yields an alkalicbasalt. Both trends may occur for natural basalts dependingon the Na2O content of the parental magma. Also, the data showthat the minimum pressure for the formation of cumulate eclogitesand garnet pyroxenites is about 1·8–1·9GPa. The lower limit of pressure at which sapphirine can crystallizefrom a liquid in the FADS tetrahedron is estimated to be 1·1–1·5GPa and the upper limit is >3 GPa. Sapphirine crystallizesfrom magmas intermediate in composition between basalt and andesite.Probable igneous sapphirine in mafic associations is rare, butit occurs as part of a pyroxenite xenolith from Delegate, Australia,that we suggest is a cumulate assemblage and in a sapphirinenorite at Wilson Lake, Labrador, Canada. KEY WORDS: basalt; eclogite; sapphirine; fractional crystallization  相似文献   

11.
A mantle xenolith suite from two Late Tertiary necks on SalIsland (Cape Verde Archipelago) consists of nearly equivalentamounts of anhydrous spinel-bearing lherzolites and harzburgites,in which secondary metasomatic textural domains are superimposedon the original protogranular textures. Detailed petrographicstudies, coupled with in situ major and trace element analysesof the constituent minerals and interstitial glasses, revealthe complex evolutionary history of the Cape Verde lithosphericmantle, from depletion in the garnet facies to re-equilibrationand re-enrichment in the spinel stability field. Low CaO (16·4–18·0wt %) and heavy rare earth element (HREE; Ybn = 2·4–4·8),and high Cr2O3 (1·06–1·84 wt %) contentsin the clinopyroxenes of the lherzolites can be quantitativelyaccounted for by (1) low-degree (4%) partial melting of a PrimitiveMantle-like garnet lherzolite followed by (2) partial re-equilibrationof the melting residuum from the garnet to the spinel stabilityfield. This model is further supported by thermobarometric estimates(T = 975–1210°C; P = 1·3–2·1 GPa),which cluster around the spinel–garnet boundary in theperidotite system. Secondary parageneses, regardless of theprimary lithologies, are characterized by (1) two clinopyroxenes,cpx2-O and cpx2-C, respectively related to orthopyroxene andclinopyroxene destabilization after reaction with metasomaticfluids, and (2) glasses with anomalously high, even for continentalsettings, K2O contents (up to 8·78 wt %), together withK-feldspar. Major and trace element mass balance calculationsbetween the primary and secondary parageneses suggest infiltrationof a kimberlite-like metasomatizing agent (on volatile-freebasis, MgO 17–27 wt %; K2O/Na2O 1·6–3·2molar; (K2O + Na2O)/Al2O3 1·1–3·0 molar;Rb 91–165 ppm; Zr 194–238 ppm). The kimberlite-likemetasomatism in the Cape Verde lithospheric mantle, togetherwith the presence of lherzolitic domains, partially re-equilibratedfrom the garnet to the spinel stability field, may suggest thepresence of subcontinental mantle lithosphere relicts left behindby drifting of the African Plate during the opening of the CentralAtlantic Ocean. KEY WORDS: Cape Verde; mantle metasomatism; garnet signatures; clinopyroxenes; kimberlites  相似文献   

12.
Kornerupine and associated minerals in 31 samples of high-graderocks relatively rich in Al and Mg were analysed by wet chemistry,ion microprobe mass analyser, electron microprobe and X-raypowder diffraction. For 11 samples of kornerupine and threesamples of biotite (F only) analysed by both wet chemical andion microprobe methods, the best agreement was obtained forB2O3, whereas the ion microprobe Li2O values were systematicallysomewhat higher than the wet chemical values. The wet chemicalmethods give Li2O=0–0?19 wt.%; BeO=0–0?032 wt.%;B2O3=0–4?01 wt.%; and F=0?07–0?77 wt.% in kornerupine,whereas ion microprobe analyses on other kornerupines give valuesup to 0?35 wt.% Li2O, O066 wt.% BeO, and 4?72 wt.% B2O3. Thesum B+Al+Fe3++Cr is close to 6?9 atoms per 22 (O, OH, F) or21?5 (O) in kornerupine. In general, Li/Fe ratios decrease as follows: kornerupine ?sapphirinebiotite> Crd (Na<0?03 per 18 oxygens)>tourmaline, garnet,orthopyroxene. However, for cordierite with Na>004, Li/Fedecreases as follows: cordierite>kornerupine. Sapphirineand sillimanite are the only associated minerals to incorporatesignificant boron (0?1–0?85 wt.% B2O3) and then only whenthe single site for B in kornerupine is approaching capacity.Sillimanite B2O3 contents increase regularly with kornerupineF. Fractionation of fluorine increases as follows: kornerupine<biotite<tourmaline,and Kkrn-BtD=(F/OH)Krn/(F/(OH)Bt (assuming ideal anion composition)increases with biotite Ti. Kornerupine B2O3 content is a measureof B2O3 activity in associated metamorphic fluid, whereas sillimaniteB2O3 content increases with temperature, exceeding 0?4 wt.%whenT=900?C at very low water activities. New data on 11 kornerupines and literature data indicate thatthe unit cell parameters a, c, and V decrease with increasingB content and b, c, and V increase with increasing Fe3+ content.In Fe3+-poor kornerupines, b increases with Mg and with (Mg+ Fe2+) but the effect of Mg on b via the substitution VIMg+IVSi=VIAl+IVAloverwhelms the effect of Fe2+=Mg substitution.  相似文献   

13.
Experiments in the quartz-saturated part of the system KFMASHunder fO2 conditions of the haematite–magnetite bufferand using bulk compositions with XMg of 0·81, 0·72,0·53 define the stability limits of several mineral assemblageswithin the PT field 9–12 kbar, 850–1100°C.The stability limits of the mineral assemblages orthopyroxene+ spinel + cordierite ± sapphirine, orthopyroxene + garnet+ sapphirine, sapphirine + cordierite + orthopyroxene and garnet+ orthopyroxene + spinel have been delineated on the basis ofPT and T–X pseudosections. Sapphirine did not appearin the bulk composition of XMg = 0·53. A partial petrogeneticgrid applicable to high Mg–Al granulites metamorphosedat high fO2, developed in our earlier work, was extended tohigher pressures. The experimental results were successfullyapplied to several high-grade terranes to estimate PTconditions and retrograde PT trajectories. KEY WORDS: KFMASH equilibria; experimental petrogenetic grid at high fO2  相似文献   

14.
Hydrothermal synthesis and investigations of stability relationsof Mg—Al pumpellyite were conducted using high-pressurecold-seal apparatus over the temperature range 250–600°C and 2–8 kb Pfluid. Mg—Al pumpellyite Ca4Al5MgSi6O21(OH)7was synthesized from partially crystalline gel mixtures of stoichiometriccomposition at 275–410 °C, 6–9 kb Pfluid, andruns of 7–90 days. Pure monomineralic synthetic Mg—Alpumpellyite has refractive index nß = 1.624 (2) andcell dimensions = 8.825 (8) Á, b = 5.875 (5) Á,c = 19.10 (1) Á, and ß = 97.39 (7)°. The high temperature assemblage of the equivalent bulk compositionconsists of clinozoisite, hydrogrossular/grossular, aluminousseptechlorite/chlorite, quartz, and H2O. Hydrogrossular wassynthesized in the presence of quartz at 8 kb from 400–500°C, and hydrogrossular + quartz are unstable with respectto grossular + H2O at 400 °C and 8 kb Pfluid. At 8 kb Pfluid,aluminous septechlorite forms at temperatures below 500 °Cwhereas aluminous 14 Á chlorite crystallizes at 500–600°C. The equilibrium relations of Mg—Al pumpellyite were determinedusing subequal mixtures of synthetic Mg—Al pumpellyiteand its high temperature assemblage. The reaction 9 Mg—Alpumpellyite = 9 clinozoisite + 6 grossular + 2 chlorite + 4quartz + 19 H2O occurs at temperatures of 390 °C at 8 kb,368 °C at 5 kb, and near 325 °C at 2 kb Pfluid. Thereversal data yield an approximate value of –3141 joules/mole°K for the standard entropy of formation for the syntheticMg—Al pumpellyite. The Schreinemakers' relations for pumpellyite, prehnite, clinozoisite,tremolite, grossular, and amesite in the presence of excessquartz and fluid were constructed in the pseudo-ternary systemCaO–Al2O3–MgO(SiO2–H2O). The results, togetherwith reconnaissance experiments on the reaction 4 Mg—Alpumpellyite + 2 quartz = 8 prehnite + aluminous septechlorite+ 2 H2O, locate the invariant point [TR] at approximately 5.7kb Pfluid and 375 °C. The results of the present study arenot compatible with previous experimental data on the invariantpoint [GR]. The P–T oriented phase relations are used to interpretsome natural parageneses developed in low-grade metabasalticrocks recrystallized under conditions of low co2. The high-temperaturestability relations of Mg—Al pumpellyite are useful todenote the onset of greenschist facies metamorphism in rocksof basaltic composition.  相似文献   

15.
Crystallization experiments were performed at 200 MPa in thetemperature range 1150–950°C at oxygen fugacitiescorresponding to the quartz–fayalite–magnetite (QFM)and MnO–Mn3O4 buffers to assess the role of water andfO2 on phase relations and differentiation trends in mid-oceanridge basalt (MORB) systems. Starting from a primitive (MgO9·8 wt %) and an evolved MORB (MgO 6·49 wt %),crystallization paths with four different water contents (0·35–4·7wt % H2O) have been investigated. In primitive MORB, olivineis the liquidus phase followed by plagioclase + clinopyroxene.Amphibole is present only at water-saturated conditions below1000°C, but not all fluid-saturated runs contain amphibole.Magnetite and orthopyroxene are not stable at low fO2 (QFM buffer).Residual liquids obtained at low fO2 show a tholeiitic differentiationtrend. The crystallization of magnetite at high fO2 (MnO–Mn3O4buffer) results in a decrease of melt FeO*/MgO ratio, causinga calc-alkaline differentiation trend. Because the magnetitecrystallization temperature is nearly independent of the H2Ocontent, in contrast to silicate minerals, the calc-alkalinedifferentiation trend is more pronounced at high water contents.Residual melts at 950°C in a primitive MORB system havecompositions approaching those of oceanic plagiogranites interms of SiO2 and K2O, but have Ca/Na ratios and FeO* contentsthat are too high compared with the natural rocks, implyingthat fractionation processes are necessary to reach typicalcompositions of natural oceanic plagiogranites. KEY WORDS: differentiation; MORB; oxygen fugacity; water activity; oceanic plagiogranite  相似文献   

16.
In the Ranmal migmatite complex, non-anatectic foliated graniteprotoliths can be traced to polyphase migmatites. Structural–microtexturalrelations and thermobarometry indicate that syn-deformationalsegregation–crystallization of in situ stromatic and diatexiteleucosomes occurred at 800°C and 8 kbar. The protolith,the neosome, and the mesosome comprise quartz, K-feldspar, plagioclase,hornblende, biotite, sphene, apatite, zircon, and ilmenite,but the modal mineralogy differs widely. The protolith compositionis straddled by element abundances in the leucosome and themesosome. The leucosomes are characterized by lower CaO, FeO+MgO,mg-number, TiO2 , P2O5 , Rb, Zr and total rare earth elements(REE), and higher SiO2 , K2O, Ba and Sr than the protolith andthe mesosome, whereas Na2O and Al2O3 abundances are similar.The protolith and the mesosome have negative Eu anomalies, butprotolith-normalized abundances of REE-depleted leucosomes showpositive Eu anomalies. The congruent melting reaction for leucosomeproduction is inferred to be 0·325 quartz+0·288K-feldspar+0·32 plagioclase+0·05 biotite+0·014hornblende+0·001 apatite+0·001 zircon+0·002sphene=melt. Based on the reaction, large ion lithophile element,REE and Zr abundances in model melts computed using dynamicmelting approached the measured element abundances in leucosomesfor >0·5 mass fraction of unsegregated melts withinthe mesosome. Disequilibrium-accommodated dynamic melting andequilibrium crystallization of melts led to uniform plagioclasecomposition in migmatites and REE depletion in leucosome. KEY WORDS: migmatite; REE; trace element; partial melting; P–T conditions  相似文献   

17.
AUDETAT  A.; PETTKE  T. 《Journal of Petrology》2006,47(10):2021-2046
The magmatic processes leading to porphyry-Cu mineralizationat Santa Rita are reconstructed on the basis of petrographicstudies, thermobarometry, and laser-ablation inductively-coupled-plasmamass-spectrometry analyses of silicate melt and sulfide inclusionsfrom dikes ranging from basaltic andesite to rhyodacite. Combinedresults suggest that magma evolution at Santa Rita is similarto that of sulfur-rich volcanoes situated above subduction zones,being characterized by repeated injection of hot, mafic magmainto an anhydrite-bearing magma chamber of rhyodacitic composition.The most mafic end-member identified at Santa Rita is a shoshoniticbasaltic andesite that crystallized at 1000–1050°C,1–3 kbar and log fO2 = NNO + 0·7 to NNO + 1·0,whereas the rhyodacite crystallized at 730–760°C andlog fO2 = NNO + 1·3 to NNO + 1·9. Mixing betweenthe two magmas caused precipitation of 0·1–0·2wt % magmatic sulfides and an associated decrease in the Cucontent of the silicate melt from 300–500 ppm to lessthan 20 ppm. Quantitative modeling suggests that temporal storageof ore-metals in magmatic sulfides does not significantly enhancethe amount of copper ultimately available to ore-forming hydrothermalfluids. Magmatic sulfides are therefore not vital to the formationof porphyry-Cu deposits, unless a mechanism is required thatholds back ore-forming metals until late in the evolution ofthe volcanic–plutonic system. KEY WORDS: porphyry-Cu; sulfur; sulfides; magma mixing; LA-ICP-MS  相似文献   

18.
Widespread penecontemporaneous igneous activity affected NWRussia (the Kola Peninsula and adjoining areas to the SE aroundArkhangelsk) during the Late Devonian (360–380 Ma). Magmatismvaries from tholeiitic basalts, erupted in the axial regionsof former Middle Proterozoic (Riphean) rifts, to strongly alkalinerock-types on and marginal to Archaean cratons. NNE of Arkhangelskkimberlites, olivine lamproites and alkaline picrites were emplaced;all these rock-types are diamondiferous to varying extents.Higher TiO2 (and also total Fe) distinguish predominantly mica-poorEastern Group kimberlites (TiO2 = 2·4–3·1wt %) and spatially associated alkaline picrites (TiO2 = 3·2–3·7wt %) from nearby micaceous Western Group kimberlites (TiO2= 0·8–1·1 wt %). Each rock-type also hasdistinctive rare earth element (REE) patterns, and  相似文献   

19.
After 11·5 ka of quiescence (24·5–13 ka),the Nevado de Toluca volcano started a 2500 year period of activity.This period was characterized by a dome destruction event at13 ka, a small Plinian event at 12·1 ka, and a largePlinian eruption at 10·5 ka. About 10 km3 of magma waserupted that was homogeneous in composition (63·3–65·7SiO2 wt % whole-rock) and in mineralogy. Pumice consists ofplagioclase (An30–59) > orthopyroxene (En56–59)> hornblende >> Fe–Ti oxides + rare apatite (inopx) + biotite, set in a rhyolitic matrix (72–76 SiO2wt %). 40Ar/39Ar analysis of single biotite crystals yieldedages (0·81–4·7 Ma), that do not correspondto eruption ages. The biotite represents partially assimilatedxenocrysts, which could have resided in the magma for only ashort period of time. Mineral chemical data, coupled with hydrothermalexperiments, indicate that prior to eruption the dacitic magmastagnated at a depth of 4·5–6 km below the summitat water pressures of 160–210 MPa and a temperature of824 ± 12°C on the basis of Fe–Ti oxide thermometry,and under water-saturated conditions. To stabilize a homogeneousmagma body of >10 km3 at 824°C in the upper crust, wepropose that reheating of the dacitic reservoir by hotter magmabatches was able to maintain the equilibrium between the temperatureof the magma and the assimilation of wall-rock over a periodof 2500 years. Based on similarities among the juvenile products,we suggest that the three eruptions were fed from the same magmabody. KEY WORDS: explosive volcanism; xenocrystic contamination; Nevado de Toluca, Mexico  相似文献   

20.
The spinel–garnet transition in Cr/Al-enriched peridotiticbulk compositions is known from experimental investigationsto occur at 20–70 kbar, within the pressure range sampledby kimberlites. We show that the Cr2O3–CaO compositionsof concentrate garnets from kimberlite have maximum Cr/Ca arrayscharacterized by Cr2O3/CaO 0·96–0·81, andinterpret the arrays as primary evidence of chromite–garnetcoexistence in Cr-rich harzburgitic or lherzolitic bulk compositionsderived from depth within the lithosphere. Under Cr-saturatedconditions on a known geotherm, each Cr/Ca array implicitlydelineates an isobar inside a garnet Cr2O3–CaO diagram.This simplification invites a graphical approach to calibratean empirical Cr/Ca-in-pyrope barometer. Carbonaceous chromite–garnetharzburgite xenoliths from the Roberts Victor kimberlite tightlybracket a graphite–diamond constraint (GDC) located atCr2O3 = 0·94CaO + 5·0 (wt %), representing a pivotalcalibration corresponding to 43 kbar on a 38 mW/m2 conductivegeotherm. Additional calibration points are established at 14,17·4 and 59·1 kbar by judiciously projecting garnetcompositions from simple-system experiments onto the same geotherm.The garnet Cr/Ca barometer is then simply formulated as follows(in wt %):
if Cr2O3 0·94CaO + 5, then P38 (kbar) = 26·9+ 3·22Cr2O3 – 3·03CaO, or
if Cr2O3 <0·94CaO + 5, then P38 (kbar) = 9·2+ 36[(Cr2O3+ 1·6)/(CaO + 7·02)].
A small correction to P38 values, applicable for 35–48mW/m2 conductive geotherms, is derived empirically by requiringconventional thermobarometry results and garnet concentratecompositions to be consistent with the presence of diamondsin the Kyle Lake kimberlite and their absence in the Zero kimberlite.We discuss application of the P38 barometer to estimate (1)real pressures in the special case where chromite–garnetcoexistence is known, (2) minimum pressures in the general casewhere Cr saturation is unknown, and (3) the maximum depth ofdepleted lithospheres, particularly those underlying Archaeancratons. A comparison with the PCr barometer of Ryan et al.(1996, Journal of Geophysical Research 101, 5611–5625)shows agreement with P38 at 55 ± 2 kbar, and 6–12%higher PCr values at lower P38. Because the PCr formulationsystematically overestimates the 43 kbar value of the GDC by2–6 kbar, we conclude that the empirical Cr/Ca-in-garnetbarometer is preferred for all situations where conductive geothermsintersect the graphite–diamond equilibrium. KEY WORDS: Cr-pyrope; chromite; P38 barometer; mantle petrology; lithosphere thickness  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号