首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The objectives of this study were to identify species and levels of volatile organic compounds (VOCs), and determine their oxidation capacity in the rural atmosphere of western Senegal. A field study was conducted to obtain air samples during September 14 and September 15, 2006 for analyses of VOCs. Methanol, acetone, and acetaldehyde were the most abundant detected chemical species and their maximum mixing ratios reached 6 parts per billion on a volume basis (ppbv). Local emission sources such as firewood and charcoal burning strongly influenced VOC concentrations. The VOC concentrations exhibited little temporal variations due to the low reactivity with hydroxyl radicals, with reactivity values ranging from 0.001 to 2.6 s−1. The conditions in this rural site were rather clean. Low ambient NO x levels limited ozone production. Nitrogen oxide (NO x ) levels reached values less than 2 ppbv and maximum VOC/NO x ratios reached 60 ppbvC/ppbv, with an overall average of 2.4 ± 4.5 ppbvC/ppbv. This indicates that the rural western Senegal region is NO x limited in terms of oxidant formation potential. Therefore, during the study period photochemical ozone production became limited due to low ambient NO x levels. The estimated ozone formation reactivity for VOCs was low and ranged between −5.5 mol of ozone/mol of benzaldehyde to 0.6 mol/mol of anthropogenic dienes.  相似文献   

2.
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO y ), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO y was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO y was seen. In particular, north of 25° N, ozone and NO y mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO y and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there.  相似文献   

3.
The seasonal and diurnal variations of ozone mixing ratios have been observed at Niwot Ridge. Colorado. The ozone mixing ratios have been correlated with the NO x (NO+NO2) mixing ratios measured concurrently at the site. The seasonal and diurnal variations in O3 can be reasonably well understood by considering photochemistry and transport. In the winter there is no apparent systematic diurnal variation in the O3 mixing ratio because there is little diurnal change of transport and a slow photochemistry. In the summer, the O3 levels at the site are suppressed at night due to the presence of a nocturnal inversion layer that isolated ozone near the surface, where it is destroyed. Ozone is observed to increase in the summer during the day. The increases in ozone correlate with increasing NO x levels, as well as with the levels of other compounds of anthropogenic origin. We interpret this correlation as in-situ or in-transit photochemical production of ozone from these precursors that are transported to our site. The levels of ozone recorded approach 100 ppbv at NO x mixing ratios of approximately 3 ppbv. Calculations made using a simple clean tropospheric chemical model are consistent with the NO x -related trend observed for the daytime ozone mixing ratio. However, the chemistry, which does not include nonmethane hydrocarbon photochemistry, underestimates the observed O3 production.  相似文献   

4.
Measurements of surface O3, CO, NOx and light NMHCs were made during December 2004 at Hissar, a semi-urban site in the state of Haryana in north-west region of the Indo-Gangetic Plain (IGP). The night-time O3 values were higher when levels of CO, NO and NO2 were lower but almost zero values were observed during the episodes of elevated mixing ratios of CO (above 2000 ppbv) and NOx (above 50 ppbv). Slopes derived from linear fits of O3 versus CO and O3 versus NOx scatter plots were also negative. However, elevated levels of O3 were observed when CO and NOx were in the range of 200–300 ppbv and 20–30 ppbv, respectively. Slope of CO-NOx of about 33 ppbv/ppbv is much larger than that observed in the US and Europe indicating significant impact of incomplete combustion processes emitting higher CO and lesser NOx. Correlations and ratios of these trace gases including NMHCs show dominance of recently emitted pollutants mostly from biomass burning at this site.  相似文献   

5.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

6.
A catalytic reduction technique for the measurement of total reactive odd-nitrogen NO y in the atmosphere was evaluated in laboratory and field tests. NO y component species include NO, NO2, NO3, HNO3, N2O5, CH3COO2NO2(PAN), and particulate nitrate. The technique utilizes the reduction of the higher oxides to NO in reaction with CO on a metal catalyst and the subsequent detection of NO by chemiluminescence produced in reaction with O3. The efficiency and linearity of the conversion of the principal NO y species were examined for mixing ratios in the range of 0.1 to 100 parts per billion by volume (ppbv). Results of tests with Au, Ni, and stainless steel as the catalyst in the temperature range of 25–500°C showed Au to be the preferred catalyst. NH3, HCN, N2O, CH4, and various chlorine and sulfur compounds were checked as possible sources of NO y interference with the Au catalyst. The effects of pressure, O3, and H2O on NO y conversion were also examined. The results of the checks and tests in the laboratory showed the technique to be suitable for initial NO y measurements in the atmosphere. The technique was subsequently tested in ambient air at a remote ground-based field site located near Niwot Ridge, Colorado. The results of conversion and inlet tests made in the field and a summary of the NO y data are included in the discussion.  相似文献   

7.
This paper shows a comparative study of particle and surface ozone concentration measurements undertaken simultaneously at two distinct semi-urban locations distant by 4 km at Saint-Denis, the main city of La Réunion island (21.5° S, 55.5° E) during austral autumn (May 2000). Black carbon (BC) particles measured at La Réunion University, the first site situated in the suburbs of Saint-Denis, show straight-forward anti-correlation with ozone, especially during pollution peaks ( 650 ng/m3 and 15 ppbv, for BC and ozone respectively) and at night-time (90 ng/m3 and 18.5 ppbv, for BC and ozone respectively). NOx (NO and NO2) and PM10 particles were also measured in parallel with ozone at Lislet Geoffroy college, a second site situated closer to the city centre. NOx and PM10 particles are anti-correlated with ozone, with noticeable ozone destruction during peak hours (mean 6 and 9 ppbv at 7 a.m. and 8 p.m. respectively) when NOx and PM10 concentrations exhibit maximum values. We observe a net daytime ozone creation (19 ppbv, O3 +4.5 ppbv), following both photochemical and dynamical processes. At night-time however, ozone recovers (mean 11 ppbv) when anthropogenic activities are lower ([BC] 100 ng/m3). BC and PM10 concentration variation obtained during an experiment at the second site shows that the main origin of particles is anthropogenic emission (vehicles), which in turn influences directly ozone variability. Saint-Denis BC and ozone concentrations are also compared to measurements obtained during early autumn (March 2000) at Sainte-Rose (third site), a quite remote oceanic location. Contrarily to Saint-Denis observations, a net daytime ozone loss (14.5 ppbv at 4 p.m.) is noticed at Sainte-Rose while ozone recovers (17 ppbv) at night-time, with however a lower amplitude than at Saint-Denis. Preliminary results presented here are handful data sets for modelling and which may contribute to a better comprehension of ozone variability in relatively polluted areas.  相似文献   

8.
Hydrogen peroxide, one of the key compounds in multiphase atmospheric chemistry, was measured on an Atlantic cruise (ANT VII/1) of the German research vessel Polarstern from 15 September to 9 October 1988, in rain and ambient air by a chemiluminescence technique. For gas phase H2O2 cryogenic sampling was employed. The presented results show an increase of gas-phase mixing ratios of about 45 pptv per degree latitude between 50° N and 0°, and a maximum of 3.5 ppbv around the equator. Generally higher mixing ratios were observed in the Southern Hemisphere, with a clear diurnal variation. The H2O2 mixing ratio is correlated to the UV radiation intensity and to the temperature difference between air and ocean surface water.  相似文献   

9.
During a 3-year study, gaseous hydrogenperoxide (H2O2) concentrations were measuredas part of the SANA project at the Melpitz FieldResearch Station and in the city of Leipzig. Typicaldaily mean H2O2 mixing ratios on sunny dayswere 0.15 to 0.25 ppbv with maximum values of 0.3 to0.5 ppbv at Melpitz, and 0.3 to 0.6 ppbv with maximumvalues of 0.4 to 1.0 ppbv in Leipzig. Over the entireperiod of the project the maximum hourly mean valueswere 2.1 ppbv and 5.3 ppbv in Melpitz and Leipzig,respectively. The data were not complete enough to show a trend.Linear regression analysis shows, that ozone(O3), temperature and solar radiation arepositively correlated with H2O2, whereasnitrogen oxides (NOx), carbon monoxide (CO) andrelative humidity are negatively correlated. Negativecorrelation between H2O2 and CO is caused byjoint occurrence of CO with NOx in exhaust gases.Negative correlation between H2O2 andrelative humidity is not necessarily in contradictionto the accelerating effect of water vapour onH2O2 formation. The strong positivecorrelation of H2O2 with the dew pointdifference however seems to better reflect theinfluence of water vapour. Multiple linear regression analysis (MLRA) of thecomponents measured, indicates the great influence of CO on the formation of H2O2 in the gasphase.  相似文献   

10.
Gas-phase H2O2, organic peroxides and carbonyl compoundswere determined at various sites from Mid-July to early August 1998 during the BERLIOZ campaign in Germany. The sites were located northwest of Berlin and were chosen to determine pollutants downwind of the city emissions during a summer smog episode. Hydrogen peroxide (H2O2),methyl hydroperoxide (MHP, CH3OOH) and occasionally hydroxymethyl hydroperoxide (HMHP, HOCH2OOH) were quantified in air samples by commercial fluorimetric methods and classical HPLC with post-column derivatisation by horseradish peroxidase/p-hydroxyphenyl acetic acid and fluorimetric detection. Carbonyl compounds were determined in ambient air by a novel method based onO-pentafluorobenzyl hydroxylamine as derivatisation agent.Mixing ratio profiles of the hydroperoxides and the carbonyl compounds are reported for the intensive phase of the campaign, 20–21 July, 1998. Peroxides showed pronounced diurnal variations with peak mixing ratios in the early afternoon. At times, a second maximum was observed in the late afternoon. The major part of the H2O2 was formed throughrecombination reactions of HO2 radicals, but there is some evidencethat H2O2 is also formed from ozonolysis ofanthropogenic and/or biogenic alkenes. Diurnal variations of mixing ratios of various carbonyl compounds are reported: alkanals (C2 to C10,isobutanal), unsaturated carbonyl compounds (methacrolein, methylvinylketone, acrolein), hydroxycarbonyl (glycolaldehyde, hydroxyacetone) and dicarbonyl compounds (glyoxal, methylglyoxal, biacetyl), aromatic compounds (benzaldehyde, o- and m-tolylaldehyde) and pinonaldehyde.  相似文献   

11.
We have studied long-term changes in tropospheric NO2 over South India using ground-based observations, and GOME and OMI satellite data. We have found that unlike urban regions, the region between Eastern and Western Ghat mountain ranges experiences statistically significant decreasing trend. There are few ground-based observatories to verify satellite based trends for rural regions. However, using a past study and recent measurements we show a statistically significant decrease in NOX and O3 mixing ratio over a rural location (Gadanki; 13.48° N, 79.18° E) in South India. In the ground-based records of surface NOX, the concentration during 2010–11 is found to be lower by 0.9 ppbv which is nearly 60 % of the values observed during 1994–95. Small but statistically significant decrease in noon-time peak ozone concentration is also observed. Noon-time peak ozone concentration has decreased from 34?±?13 ppbv during 1993–96 to 30?±?15 ppbv during 2010–11. NOX mixing ratios are very low over Gadanki. In spite of low NOX values (0.5 to 2 ppbv during 2010–11), ozone mixing ratios are not significantly low compared to many cities with high NOX. The monthly mean ozone mixing ratio varies from 9 ppbv to 37 ppbv with high values during Spring and low values during late Summer. Using a box-model, we show that presence of VOCs is also very important in addition to NOX in determining ozone levels in rural environment and to explain its seasonal cycle.  相似文献   

12.
The applicability of the tungsten oxide denuder tube technique for the measurement of ammonia in the rural troposphere was investigated. The technique is based on selective chemisorption of NH3 from a gas stream, thermal desorption, conversion to NO, and analysis by NO–O3 chemiluminescence. Nitric acid, which is also collected and desorbed as NO, was distinguished from NH3 by differences in desorption temperature. Substituted amines were also collected, but desorbed at a slightly lower temperature than NH3 in dry air. At high relative humidities, alkylamines may be hydrolyzed to NH3 on the denuder surface and hence detected as NH3. Overheating of the denuder tube during the temperature-programmed desorption was found to cause significant irreversible degradation of system performance.The technique was used to measure NH3 mixing ratios at two rural locations in the United States. At a mountain site in Colorado during the winter of 1984, the average NH3 mixing ratio was 0.20 ppbv (=0.08 ppbv). At an isolated coastal site in northern California during the spring of 1985, the average NH3 mixing ratio was 0.36 ppbv (=0.17 ppbv). Correlations of the latter measurements with wind direction and NO x level suggest that the NH3 mixing ratio in Pacific marine air at 40°N is <-0.25 ppbv.  相似文献   

13.
Simultaneousindependent measurements of NOy and NOx(NOx= NO + NO2) by high-sensitivitychemiluminescence systems and of PAN (peroxyacetylnitrate) and PPN (peroxypropionyl nitrate) by GC-ECDwere made at Spitsbergen in the Norwegian Arcticduring the first half year of 1994. The average mixingratio of the sum of PAN and PPN (denoted PANs)increased from around 150 pptv in early winter to amaximum of around 500 pptv in late March, whereasepisodic peak values reached 800 pptv. This occurredsimultaneously with a maximum in ozone which increasedto 45–50 ppbv in March–April. The average NOxmixing ratio was 27 pptv and did not show any cyclethrough the period. The NOy mixing ratio showeda maximum in late March, while the difference betweenNOy and PAN decreased during spring. This is anindication of the dominance of PAN in the NOybudget in the Arctic, but possible changes in theefficiency of the NOy converter could alsocontribute to this. Although most PAN in theArctic is believed to be due to long range transport,the observations indicate local loss and formationrates of up to 1–2 pptv h-1 in April–May.Measurements of carbonyl compounds suggest thatacetaldehyde was the dominant, local precursor ofPAN.Now at 1.  相似文献   

14.
This paper presents the application of a Monte-Carlo simulation for assessing the uncertainties of German 2005 emissions of particulate matter (PM10 & PM2.5) and aerosol precursors (SO2, NOx, NH3 and NMVOC) carried out in the PAREST (PArticle REduction STrategies) research project. For the uncertainty analysis the German Federal Environment Agency’s emission inventory was amended and integrated with a model on the disaggregation of energy balance data. A series of algorithms was developed in order to make efficient and pragmatic use of available literature and expert judgement data for uncertainties of emission model input data. The inventories for PM10 (95 %-confidence interval: ?16 %/+23 %), PM2.5 (?15 %/+19 %) and NOx (?10 %/+23 %) appear most uncertain, while the inventories for SO2 (?9 %/+9 %), NMVOC (?10 %/+12 %) and NH3 (?13 %/+13 %) show a higher accuracy. The source categories adding the most relevant contributions to overall uncertainty vary across the pollutants and comprise agriculture, mobile machinery in agriculture and forestry, construction sites, small businesses/carpentries, cigarette smoke and fireworks, road traffic, solvent use and stationary combustion. The PAREST results on relative uncertainties have been quoted in the German Informative Inventory Reports since 2012. A comparison shows that the PAREST results for Germany are within the range of (for NH3: close below) other European countries’ results on air pollutant inventory uncertainties as reported in the 2013 Informative Inventory Reports.  相似文献   

15.
The average composition and seasonal variations of atmospheric organic particulates with respect to n-alkanes, n-alkanoic acid, polycyclic aromatic hydrocarbon (PAHs), and nitrated polycyclic aromatic hydrocarbons (N-PAHs) were determined at the biggest municipal waste landfill in Algeria located in Oued Smar, 13 km east of downtown Algiers. Samplings were carried out from August 2002 to February 2003, and organic compounds adsorbed in air particles having an aerodynamic diameter lower than 10 μm (PM10) were characterized using gas chromatography coupled with mass spectrometric detection (GC/MSD). Total concentrations ranged from 828 to 11,068 ng per cubic meter of air for n-alkanes, from 1714 to 21,710 ng per cubic meter of air for n-alkanoic acids, from 13 to 212 ng per cubic meter of air for PAHs and from 93 to 205 pg per cubic meter of air for N-PAHs. n-Alkanoic acids accounted for 85 and 56% of the total organic composition of the aerosol measured in summer and winter, respectively, were the biggest fraction. The distribution profiles and the diagnostic ratios of some marker compounds allowed to identify the combustion and microbial activity as the major sources of particulate organic pollutants associated with direct emission. The year-time dependence of organic fraction content of aerosol in Oued Smar appeared to be related to average meteorological conditions as well as variability of rate and nature of materials wasted into the landfill.  相似文献   

16.
Continuous measurements of surface ozone (O3), NOx (NO + NO2) and meteorological parameters have been made in Kannur (11.9?°N, 75.4?°E, 5?m asl), India from November 2009 to October 2010. It was observed that O3 and NOx showed distinct diurnal and seasonal variabilities at this site. The annual average diurnal profile of O3 showed a peak of (30.3?±?10.4) ppbv in the late afternoon and a minimum of (3.2?±?0.7) ppbv in the early morning. The maximum value of O3 mixing ratio was observed in winter (44?±?3.1) ppbv and minimum during monsoon (18.46?±?3.5) ppbv. The rate of production of O3 was found to be higher in December (10.1?ppbv/h) and lower in July (1.8?ppbv/h) during the time interval 0800?C1000?h. A correlation coefficient of 0.52 for the relationship between O3 and [NO2]/[NO] reveals the role of NO2 photolysis that generates O3 at this site. The correlation between O3 and meteorological parameters indicate the influence of seasonal changes on O3 production. Investigations were further extended to explore the week day weekend variations in O3 mixing ratio at an urban site reveals the enhancement of O3. The variations of O3 mixing ratio with seasonal air mass flows were elucidated with the aid of backward air trajectories. This study also indicates how vapor phase organic species present in the ambient air at this location may influence the complex chemistry involving (VOCs) that enhances the production of O3 at this location.  相似文献   

17.
Generally, it is assumed that UV-light, high temperature or reactive molecules like O3 and OH are needed to activate gas reactions in air. In consequence, the catalytic activity on natural materials such as sand and soil on the earth's surface is assumed to be insignificant. We have measured O2-dissociation rates on natural quartz sand at 40˚C and compared these with O2-dissociation rates near 500˚C on materials with well-known catalytic activity. In terms of probabilities for dissociation of impinging O2-molecules the measured rates are in the 10−12–10−4 range. We have also measured dissociation rates of H2 and N2, water-formation from H2 and O2 mixtures, exchange of N between N2, NO x and a breakdown of HNO3, NO2 and CH4 on natural quartz sand at 40˚C. The measured rates together with an effective global land area have been used to estimate the impact of thermodynamically driven reactions on the earth's surface on the global atmospheric budgets of H2, NO2 and CH4. The experimental data on natural quartz sand together with data from equilibrium calculations of air suggest that an expected increase in anthropogenic supply of air pollutants, such as NO x or other “reactive” nitrogen compounds, hydrogen and methane, will be counter-acted by catalysis on the earth's surface. On the other hand, at Polar Regions and boreal forests where the “reactive” nitrogen concentration is below equilibrium, the same catalytic effect activates formation of bio-available nitrogen compounds from N2, O2 and H2O.  相似文献   

18.
19.
Peroxyacetyl nitrate (PAN,CH3C(O)O2NO2) has been measured inthe polluted boundary layer and free troposphere by thermal conversion tonitrogen dioxide (NO2) followed by detection of thedecomposition product with a Scintrex LMA-3 NO2-luminolinstrument. Following laboratory tests of the efficiency of PAN conversionand investigations of possible interferences, the technique was evaluated atthe West Beckham TOR (Tropospheric Ozone Research) Station near the northNorfolk coast in Eastern England between September 1989 and August 1990. PANmeasured by the new technique was reasonably well correlated with PANrecorded using electron capture gas chromatography (EC/GC). PAN was alsowell correlated with ozone (O3) in the summer months. Springand autumn episodes of simultaneously high concentrations of PAN andO3 were examined in conjunction with air parcelback-trajectories and synoptic- and local-scale meteorology in a study ofthe sources of photooxidants on the east coast of England. Spring-timemeasurements of PAN made in the free troposphere in a light aircraft ataltitudes up to 3.1 km showed the presence of 0.54 and 0.26 ppbv PAN inpolar maritime and mid-latitude oceanic air masses, respectively. Thetechnique is particularly suited to airborne applications because potentialinterferences are minimised and the frequency of measurements is higher thangenerally achieved with EC/GC methods.  相似文献   

20.
Emission inventories of NOx, CO, and individual volatile organic compounds (VOC), highly resolved in space and time, belong to the most important input parameters for chemistry and transport models (CTM) used for ozone prediction. Because of the decisive influence of the input quality on the outcome of CTM simulations, the quality of emission inventories has to be assessed. This paper presents an experimental evaluation of the highly resolved emission inventories for the city of Augsburg. The emissions of the city, determined in March and October 1998 using mass balance and tracer techniques, and derived from the measured receptor concentration ratios, were compared with emissions modeled from an emission inventory. The modeled CO emissions were in agreement with the measured ones within the combined experimental and model uncertainties. More detailed CO emission model simulations suggest that the tendency of calculated CO emissions being smaller than the measured ones may be due to higher traffic activity in Augsburg. Modeled NOx emissions were in agreement with the measured ones within the combined experimental and model uncertainties. Large deviations between modeled and measured values have been found for some individual NMHC compounds. The measured NMHC emission fingerprints were dominated by mobile sources. Substantial model predicted NMHC emissions from the solvent use could not be detected by measurements suggesting that they may not be correctly represented by the emission model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号