首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
对流层延迟是影响精密单点定位效果的一项重要误差源,不同的对流层改正方法直接影响PPP的定位结果。对比分析采用UNB3模型、Saastamoinen模型、ZTD参数估计3种方法对PPP定位精度和收敛时间的影响。实验结果表明:3种模型平面改正精度和收敛时间基本一致。天顶方向改正精度UNB3模型与ZTD参数估计法基本相当,但两者优于Saastamoinen模型;收敛速度UNB3模型与Saastamoinen模型基本一致,ZTD参数估计法收敛速度较慢。  相似文献   

2.
GPS信号传播过程中穿过对流层时受到大气折射的影响,其信号发生弯曲和延迟,因此,对流层延迟是GPS测量的主要误差源之一。对流层延迟模型改正算法的选择关系着GPS探测大气水汽的精度。介绍了Saastamoinen、Hopfield、UNB3及EGNOS等4种国际上常用的对流层延迟模型,以南极戴维斯站(DAV1)为例,计算了4种对流层模型在南极地区的天顶总延迟(ZTD)、天顶干延迟(ZHD)和天顶湿延迟(ZWD),与探空数据进行比较,得到了适合南极地区的对流层延迟模型。  相似文献   

3.
大气可降水份的估计是地基GPS气象学的一个主要研究方向。本文介绍了大气折射对GPS测量的影响,简介了两种常用的天顶干延迟分量模型——Saastamoinen模型和Hopfield模型和各种模型的特点。通过对北京、乌鲁木齐、拉萨3个IGS站的气象数据对这两个的天顶延迟干分量模型进行了分析总结。  相似文献   

4.
对GPS对流层延迟改正的两种方法——UNB3模型改正法和参数估计法进行深入的探讨。在精密单点定位程序中,分别利用两种方法对IGS跟踪站数据进行坐标计算。结果表明,参数估计法在高程方向上的精度优于UNB3模型改正法,平面坐标精度相当;UNB3模型改正法在收敛速度上略优于参数估计法。  相似文献   

5.
周润杨  薛玫娇 《测绘工程》2018,(2):20-25,31
由于高纬度地区气温气压值及变化率与中低纬度地区有较大差异,因此目前发布的多种对流层延迟模型在高纬度地区使用的精度会不同。为了给高纬度地区BDS/GPS用户提供更好的对流层延迟模型选择,文中采用UNB3,EGNOS和GPT2模型,以IGS发布的ZPD产品和SINEX文件作为参考,对比基于这三种对流层延迟模型计算的天顶对流层总延迟量以及精密单点定位精度,可知GPT2较UNB3和EGNOS在高纬度地区定位中有更好的精度表现。  相似文献   

6.
正GPS信号通过对流层时,传播的路径发生弯曲,从而使测量距离产生偏差,这种现象叫作对流层延迟。准确估计出用户与主参考站之间的对流层延迟是网络RTK高精度实时定位的关键因素。目前天顶延迟采用对流层模型,如Saastamoinen、Hopfield、UNB3m等进行求解,而GMF映射函数和VMF1映射函数是被主流解算软件所选用的映射函数。理论分析和实践证明,目前采用上述几种对  相似文献   

7.
三种对流层延迟模型的精度对比   总被引:1,自引:0,他引:1  
针对不同对流层延迟模型的改正精度不同的问题,该文采用3个IGS站BJFS、SHAO、WUHN的2014年对流层天顶总延迟数据以及地面气象数据,对目前常用的3种对流层延迟模型:霍普菲尔德(Hopfield)、萨斯塔莫宁(Saastamoinen)、欧洲地球静止导航重叠服务(EGNOS)的精度进行了分析。结果表明:Saastamoinen和Hopfield模型的精度相当,EGNOS模型精度略差于其余两种模型,但能满足GNSS米级的定位要求;在气象条件变化剧烈时,EGNOS模型精度不如实测地面气象数据的Hopfield和Saastamoinen模块。  相似文献   

8.
对流层延迟是GPS传播过程中的主要误差源之一,误差的量级足以对观测数据的质量产生影响。在一般的工程应用中,大多采取建立对流层延迟模型的方式消除对流层延迟的影响。本文在编程实现Hopfield模型和Saastamoinen模型的基础上,结合IGS提供的BJFS、URUM、LHAZ测站的气象数据、对流层延迟参考值,分析了在不同海拔高度下对流层延迟模型值和参考值之间的差异。结果表明,随着测站海拔高度的增加,天顶方向对流层延迟逐渐减小,模型间差值逐渐增大。对于高海拔地区,Saastamoinen模型对天顶方向延迟的模拟效果更好。当卫星高度角减小时,模型间差值逐渐增大。测站越高,模型间差值越大。所以对高海拔地区的观测数据进行处理时,选择合适的延迟模型显得十分必要。  相似文献   

9.
受实测气象参数的限制,使用标准大气参数的传统对流层模型的精度并不高;使用参数估计法的精密对流层模型增加了观测方程的待估参数,影响收敛速度. 针对实测气象参数缺失的情况,提出一种融合对流层模型,使用两种非实测气象参数模型分别计算出平均海平面处和测站处的气象参数,再利用Saastamoinen模型经验公式求解天顶对流层延迟(ZTD). 利用RTKLIB软件进行精密单点定位(PPP)实验. 提出的融合对流层模型摆脱了实测气象参数的限制,解算结果表明:使用该模型时,在东、北、天方向的定位精度分别比Saastamoinen模型提高16 mm、1 mm、2.2 mm,比MOPS模型提高13.8 mm、0.7 mm、1.6 mm,比GPT/UNB3m+Sa模型提高2.9 mm、0.4 mm、0.7 mm,在天、北方向的定位精度接近参数估计模型,实现了PPP定位精度的提高.   相似文献   

10.
在高精度GPS变形监测数据处理中,对流层延迟是影响其精度的主要误差源之一,需设法对其进行改正。最常用的方法是使用模型改正,在编程实现Hopfield模型和Saastamoinen模型的基础上,结合CDDIS提供的.zpd格式对流层延迟参考值,对比分析了对流层延迟模型值和参考值之间的差异。结果表明,两种对流层延迟模型在天顶方向吻合很好。随着高度角的减小,模型差异逐渐增大。当高度角在10°左右时,模型差值甚至达到23~24cm。因此,观测数据的处理需要根据测站情况,选择合适的对流层延迟模型,以改善定位的精度,获得好的定位结果。  相似文献   

11.
针对现有对流层天顶延迟模型改正法因水汽参数难以精确获取所导致的时空分辨率与精度上的不足问题,提出了一种融合WRF(weather research and forecasting model)大气数值模式的对流层天顶延迟估计方法。通过分析WRF模式的数值模拟机理及其数据结构特征,采用直接积分与模型改正相结合的混合计算方式,实现了全球任意位置上小时级的对流层天顶延迟估计。验证结果表明,该方法计算的小时级ZTD再分析值精度为13.6 mm,日均值精度更是可达9.3 mm,比传统模型UNB3m的49.6 mm以及目前标称精度最高模型GPT2w的34.6 mm,精度分别提高了约5倍和3.5倍。在30 h的预报时段内,预报值精度也可达22 mm。无论是ZTD再分析值还是预报值比现有模型的估计值精度均有明显提高。  相似文献   

12.
对流层天顶干延迟(ZHD)建模是对流层延迟建模的一个重要组成部分,由于ZHD变化较为规律,因此,通常用模型来表达。而对流层天顶湿延迟(ZWD)变化不规则且随机性大,所以在GNSS处理中将它作为一个未知的待估参数。不精确的ZHD模型,会影响到ZWD估算的准确性,因此,选择精确合理的ZHD模型具有重要的意义。传统无线电探空仪数据获取的ZHD由于不能覆盖全球所有位置,尤其是海洋地区,而且在特殊天气使用也受限。为了更能全面反映ZHD模型的精度,本文尝试使用GGOS Atmosphere数据比较分析3种经典ZHD模型、即Saastamoinen模型、Hopfield模型和Black模型。通过对全球范围内的657个站点且时间覆盖长达5年的GGOS Atmosphere数据进行比较分析,我们得到以下结论:Saastamoinen模型优于Hopfield模型和Black模型,Saastamoinen模型的ZHD的精度可以优于1.5 mm。因此,在GNSS用户使用ZHD模型时,Saastamoinen模型可以作为使用模型。具体可以应用到GNSS大地测量学、GNSS车辆导航定位以及GNSS气象学。  相似文献   

13.
基于GNSS基准站网的对流层延迟建模   总被引:1,自引:0,他引:1  
针对在卫星导航定位中,通常采用对流层模型进行,对流层延迟误差修正的现状,该文研究了一种基于GNSS基准站网的对流层延迟建模方法,并基于此方法利用日本地区GENET参考网约737个站5a的GNSS-ZTD序列建立了区域对流层模型ZTDM-JPN,并将ZTDM-JPN模型应用于GPS及北斗定位实验,分析了其在GPS及北斗定位中的实际应用性能。通过与国际上常用的对流层模型EGNOS、UNB3m作比较,结果表明,ZTDM-JPN模型的模拟精度较相同条件下的EGNOS与UNB3m模型分别提升约26%和21%,从而验证了该建模方法的可行性与优越性。  相似文献   

14.
Ray-tracing is used to examine the accuracy of several well known models for tropospheric delay prediction under varying atmospheric conditions. The models considered include the Hopfield zenith delay model and related mapping functions, the Saastamoinen zenith delay model and mapping function, and three empirical mapping functions based upon the Marini continued fraction form. Modelled delays are benchmarked against ray-tracing solutions for representative atmospheric profiles at various latitudes and seasons. Numerical results are presented in light of the approximations inherent in model formulation. The effect of approximations to the temperature, pressure and humidity structure of the neutral atmosphere are considered; the impact of surface layer anomalies (i.e., inversions) on prediction accuracy is examined; and errors resulting from the neglect of ray bending are illustrated. The influence of surface meteorological parameter measurement error is examined. Finally, model adaptability to local conditions is considered. Recommendations concerning the suitability of the models for GPS relative positioning and their optimal application are made based upon the results presented.  相似文献   

15.
气象参数对对流层折射影响的相关研究   总被引:1,自引:0,他引:1  
对流层折射是卫星导航测量的重要误差源之一。针对卫星导航仿真系统高精度和强实时性的要求,本文利用Hopfield模型和Saastamoinen模型分析了不同气象环境下气象参数对计算对流层天顶折射的影响。研究表明天顶折射量是各气象参数的增函数,在相同气象环境下,对各气象参数的敏感度各不相同。当气象环境改变时,敏感度的变化也不相同:气温的敏感度变化幅度最大,相对湿度次之,而大气压的敏感度保持不变。在此基础上利用距离平方反比插值方法栅格化气象站资料建立全国范围的气象环境。栅格数据的应用可将因气象参数的不准确而导致的对流层天顶折射量误差减小一个量级,对于提高卫星导航仿真系统的精度具有重要意义。  相似文献   

16.
对流层延迟是影响全球卫星导航系统(GNSS)定位精度的主要误差源之一,模型修正法是目前削弱对流层延迟影响的主要方法. 以简单易用的角度为切入点,综合UNB3模型的简易性和GPT2w模型的高精度特点,构建一种简易且精度较高的对流层天顶延迟融合模型(FZTD). 并利用多年的国际GNSS服务(IGS) 对流层天顶延迟(ZTD)数据对该模型精度进行了验证. 结果表明FZTD模型的均方根(RMS)与平均偏差(bias)值分别为4.4 cm和?0.3 cm,均小于传统模型UNB3m(RMS:5.1 cm,bias:1.1 cm)和EGNOS(RMS:5.1 cm,bias:0.3 cm),定位精度提高了14%,而且在南半球提高尤为明显,特别在南极地区,精度提高了近3倍,弥补了传统模型在南北半球精度差异大的不足. 新模型总气象参数仅为120个比GPT2w模型急剧减少,与传统模型相当,为GNSS实时导航定位终端的预定义对流层延迟改正提供了更优的选择.   相似文献   

17.
在分析了当前GNSS主要的误差源,比较对流层延迟改正模型的基础上,应用Saastamoinen模型对BDS和GPS原始观测数据解算对流层天顶延迟,并对全球6个站点一个月的解算值进行比对分析,结果发现:北斗区域系统解算的ZTD相比于GPS结果,76%位于2cm之内,只有个别站点个别天的解算结果出现较大偏差,在中国周边站点解算结果优于其他地区站点。表明:北斗区域系统已经具备在中国周边同GPS相当的ZTD解算精度,为下一步北斗全球系统的建设奠定了坚实的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号