首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Surface runoff generation capacity can be modified by land-use and climate changes. Annual runoff volumes have been evaluated in a small watershed of tropical forest (Brazil), using the Soil and Water Assessment Tool (SWAT) model. Firstly, the accuracy of SWAT in runoff predictions has been assessed by default input parameters and improved by automatic calibration, using 20-year observations. Then, the hydrological response under land uses (cropland, pasture and deforested soil) alternative to tropical forest and climate change scenarios has been simulated. SWAT application has showed that, if forest was replaced by crops or pasture, the watershed’s hydrological response would not significantly be affected. Conversely, a complete deforestation would slightly increase its runoff generation capacity. Under forecasted climate scenarios, the runoff generation capacity of the watershed will tend to decrease and will not be noticeably different among the representative concentration pathways. Pasture and bare soil will give the lowest and highest runoff coefficients, respectively.  相似文献   

2.
1 mTRODUCT1ONThe Loess Plateau in the central and westem China with an area of 430,(X)0 lQn2 is well known for itsancient cultUre and serious soil and water loss. About 287,(X)0 km2 of area in this region has an annualerosion be greatC than 1(XX) tlkIn2. The eroded soil totally amounts to more than 2.2 X l0' tons, amongwhich about l.6X 10' tons, on average, is delivered into the Yellow kiver mdeng the river one of thehighest sediment-laden rivers in the word. The serious soil erosion …  相似文献   

3.
A method to improve the calculation of overland flow in distributed groundwater recharge models is presented and applied to two sub‐catchments in the Thames Basin, UK. Recharge calculation studies tend to simulate the runoff flow component of river flow in a simplistic way, often as a fraction of rainfall over a particular period. The method outlined in this study intends to improve the calculation of groundwater recharge estimates in distributed recharge models but does not present an alternative to complex overland flow simulators. This method uses seasonally varying coefficients to calculate runoff for specified hydrogeological classes or runoff zones, which are used to model baseflow index variations across the basin. It employs a transfer function model to represent catchment storage. Monte Carlo simulation was applied to refine the runoff values. Decoupling the runoff zones between the two sub‐catchments produces a better match between the simulated and observed values; however, the difference between observed runoff and the simulated output indicates other factors, such as landuse and topographical characteristics that affect the generation of runoff flow, need to be taken into account when classifying runoff zones. British Geological Survey © NERC 2011. Hydrological Processes © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The results of field measurements conducted in a small (19·37 ha) agricultural watershed on the North Carolina coastal plain during the summer of 1996 are presented. The objective of the study was to develop a more complete understanding of basin response in the region with respect to stormflow generation and, in particular, to identify the processes that determine storm runoff and the conditions under which such processes occur. Twenty‐four storm events were monitored, including two tropical storm systems and two hurricanes. The data demonstrate considerable spatial and temporal heterogeneity in runoff generation within the watershed. Surface flowpaths, in the form of Hortonian overland flow and saturation overland flow, were found to be the dominant runoff processes during the storm events measured. The hillslope flowpaths had the same response time as the basin streamflow, but significantly shorter time of rise and lag times. The importance of Hortonian flow in a basin with sandy, permeable soils, as well as the rapid stormflow response in a low‐relief area with a humid climate, was contrary to expectations. This, coupled with the contingency of runoff response, suggests that it may be difficult to generalize about runoff generation mechanisms in broad terms, and that a synoptic approach may be more appropriate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Experimental research in the Ethiopian highlands found that saturation excess induced runoff and erosion are common in the sub‐humid conditions. Because most erosion simulation models applied in the highlands are based on infiltration excess, we, as an alternative, developed the Parameter Efficient Distributed (PED) model, which can simulate water and sediment fluxes in landscapes with saturation excess runoff. The PED model has previously only been tested at the outlet of a watershed and not for distributed runoff and sediment concentration within the watershed. In this study, we compare the distributed storm runoff and sediment concentration of the PED model against collected data in the 95‐ha Debre Mawi watershed and three of its nested sub‐watersheds for the 2010 and 2011 rainy seasons. In the PED model framework, the hydrology of the watershed is divided between infiltrating and runoff zones, with erosion only taking place from two surface runoff zones. Daily storm runoff and sediment concentration values, ranging from 0.5 to over 30 mm and from 0.1 to 35 g l?1, respectively, were well simulated. The Nash Sutcliffe efficiency values for the daily storm runoff for outlet and sub‐watersheds ranged from 0.66 to 0.82, and the Nash–Sutcliffe efficiency for daily sediment concentrations were greater than 0.78. Furthermore, the model uses realistic fractional areas for surface and subsurface flow contributions, for example between saturated areas (15%), degraded areas (30%) and permeable areas (55%) at the main outlet, while close similarity was found for the remaining hydrology and erosion parameter values. One exception occurred for the distinctly greater transport limited parameter at the actively gullying lower part of the watershed. The results suggest that the model based on saturation excess provides a good representation of the observed spatially distributed runoff and sediment concentrations within a watershed by modelling the bottom lands (as opposed to the uplands) as the dominant contributor of the runoff and sediment load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Decades of research has concluded that the percent of impervious surface cover in a watershed is strongly linked to negative impacts on urban stream health. Recently, there has been a push by municipalities to offset these effects by installing structural stormwater control measures (SCMs), which are landscape features designed to retain and reduce runoff to mitigate the effects of urbanisation on event hydrology. The goal of this study is to build generalisable relationships between the level of SCM implementation in urban watersheds and resulting changes to hydrology. A literature review of 185 peer-reviewed studies of watershed-scale SCM implementation across the globe was used to identify 52 modelling studies suitable for a meta-analysis to build statistical relationships between SCM implementation and hydrologic change. Hydrologic change is quantified as the percent reduction in storm event runoff volume and peak flow between a watershed with SCMs relative to a (near) identical control watershed without SCMs. Results show that for each additional 1% of SCM-mitigated impervious area in a watershed, there is an additional 0.43% reduction in runoff and a 0.60% reduction in peak flow. Values of SCM implementation required to produce a change in water quantity metrics were identified at varying levels of probability. For example, there is a 90% probability (high confidence) of at least a 1% reduction in peak flow with mitigation of 33% of impervious surfaces. However, as the reduction target increases or mitigated impervious surface decreases, the probability of reaching the reduction target also decreases. These relationships can be used by managers to plan SCM implementation at the watershed scale.  相似文献   

7.
This article describes and formulates a model designed to simulate runoff in wet weather events, called reservoir rainfall–runoff geomorphological model (R3GeM). In these wetlands, soil saturation is the main mechanism for the generation of surface runoff. To determine the saturated areas, the model applies a relationship based on the topographic index, between watershed storage and saturated surface. Precipitation is separated into surface runoff by saturation, subsurface runoff and losses; then, the flow of surface and subsurface runoff is performed. This hydrological model has five parameters and has been implemented in 37 events in Aixola watershed and 15 in Oiartzun watershed, both located on the Cantabrian coast of Spain. We analysed the influence of these five parameters in their behaviour, and we have proven, noting the efficiency gains, that the proposed model is valid to simulate the rainfall–runoff process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
《Journal of Hydrology》2006,316(1-4):1-12
Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu (Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass (Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals (Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based ‘tanh’ model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination (R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.  相似文献   

9.
The relation between runoff volume and sediment yield for individual events in a given watershed receives little attention compared to the relation between water discharge and sediment yield, though it may underlie the event-based sediment-yield model for large-size watershed. The data observed at 12 experimental subwatersheds in the Dalihe river watershed in hilly areas of Loess Plateau, North China, was selected to develop and validate the relation. The peak flow is often considered as an important factor affecting event sediment yield. However, in the study areas, sediment concentration remains relatively constant when water discharge exceeds a certain critical value, implying that the heavier flow is not accompanied with the higher sediment transport capacity. Hence, only the runoff volume factor was considered in the sediment-yield model. As both the total sediment and runoff discharge were largely produced during the heavy-discharge stage, and the sediment concentration was negligibly variable during this stage, a proportional function can be used to model the relation between event runoff volume and sediment yield for a given subwatershed. The applicability of this model at larger spatial scales was also discussed, and it was found that for the Yaoxinzhuang station at the Puhe River basin, which controls a drainage area of 2264km2, a directly proportional relation between event runoff volume and sediment yield may also exist.  相似文献   

10.
Approaches to modeling the continuous hydrologic response of ungauged basins use observable physical characteristics of watersheds to either directly infer values for the parameters of hydrologic models, or to establish regression relationships between watershed structure and model parameters. Both these approaches still have widely discussed limitations, including impacts of model structural uncertainty. In this paper we introduce an alternative, model independent, approach to streamflow prediction in ungauged basins based on empirical evidence of relationships between watershed structure, climate and watershed response behavior. Instead of directly estimating values for model parameters, different hydrologic response behaviors of the watershed, quantified through model independent streamflow indices, are estimated and subsequently regionalized in an uncertainty framework. This results in expected ranges of streamflow indices in ungauged watersheds. A pilot study using 30 UK watersheds shows how this regionalized information can be used to constrain ensemble predictions of any model at ungauged sites. Dominant controlling characteristics were found to be climate (wetness index), watershed topography (slope), and hydrogeology. Main streamflow indices were high pulse count, runoff ratio, and the slope of the flow duration curve. This new approach provided sharp and reliable predictions of continuous streamflow at the ungauged sites tested.  相似文献   

11.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Heejun Chang 《水文研究》2007,21(2):211-222
This study investigates changes in streamflow characteristics for urbanizing watersheds in the Portland Metropolitan Area of Oregon for the period from 1951 to 2000. The objective of this study was to assess how mean annual runoff ratio, mean seasonal runoff ratio, annual peak runoff ratio, changes in streamflow in response to storm amount, the fraction of time that the daily mean flow exceeds the annual mean flow, 3‐day recession constants, and dry/wet flow ratio vary among watersheds with different degrees of urban development. There were no statistically significant changes in annual runoff ratio and annual peak runoff ratio for the mixed land‐use watershed (Tualatin River watershed) and the urban watershed (Johnson Creek watershed) during the entire study period. The Tualatin River watershed, where most of the urban development occurred in a lower part of the watershed, showed a statistically significant increase in annual peak runoff ratio during the 1976 and 2000 period. The Upper Tualatin River watershed illustrated a significant decrease in annual peak runoff ratio for the entire study period. With significant differences in seasonal runoff ratio, only Johnson Creek exhibited a significant increase in both wet and dry season runoff ratios. Streamflow during storm events declined rapidly in the urban watershed, with a high 3‐day recession constant. At an event storm scale, streamflow in Fanno Creek, which is the most urbanized watershed, responded quickly to precipitation input. The fraction of time that the daily mean flow exceeded the annual mean flow and dry/wet flow ratio are all lower in Johnson Creek. This suggests a shorter duration of storm runoff and lower baseflow in the urbanized watershed when compared to the mixed land use watershed. The findings of this study demonstrate the importance of spatial and temporal scale, climate variability, and basin physiographic characteristics in detecting the hydrologic effects of urbanization in the Pacific Northwest of the USA. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Hydrological data of a drained tropical peat catchment have been analysed through conventional quantitative hydrological approaches to characterize its hydrological behaviours and changes due to continuous drainage for a long period. The results show that the hydrology of the catchment is extremely dynamic and the catchment is flashy in nature. A decreasing trend in peak flow amount and an increasing trend in baseflow amount was observed in the catchment, indicating that continuous drainage has reduced the risk of both flooding and water scarcity in the catchment. Correlation analysis among rainfall, runoff and groundwater table reveals that saturation excess-near surface flow is the dominant mechanism responsible for rapid runoff generation in the catchment. Therefore, any physical alterations or disturbances to the upper part of the peat profile would definitely affect the overall hydrological behaviour of the peat catchment.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Katimon, A., Shahid, S., Abd Wahab, A.K., and Ali, M.H., 2013. Hydrological behaviour of a drained agricultural peat catchment in the tropics. Part 1: Rainfall, runoff and water table relationships. Hydrological Sciences Journal, 58 (6), 1297–1309.  相似文献   

14.
This study analyzes how the stochastically generated rainfall time series accounting for the inter-annual variability of rainfall statistics can improve the prediction of watershed response variables such as peak flow and runoff depth. The modified Bartlett–Lewis rectangular pulse (MBLRP) rainfall generation model was improved such that it can account for the inter-annual variability of the observed rainfall statistics. Then, the synthetic rainfall time series was generated using the MBLRP model, which was used as input rainfall data for SCS hydrologic models to produce runoff depth and peak flow in a virtual watershed. These values were compared to the ones derived from the synthetic rainfall time series that is generated from the traditional MBLRP rainfall modeling. The result of the comparison indicates that the rainfall time series reflecting the inter-annual variability of rainfall statistics reduces the biasness residing in the predicted peak flow values derived from the synthetic rainfall time series generated using the traditional MBLRP approach by 26–47 %. In addition, it was observed that the overall variability of the peak flow and run off depth distribution was better represented when the inter-annual variability of rainfall statistics are considered.  相似文献   

15.
V. P. Singh 《水文研究》1997,11(12):1649-1669
The shape, timing and peak flow of a stream flow hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed characteristics. Depending upon the size and shape of a watershed, its hydrological response is closely linked with storm dynamics. On an urban watershed a rain storm moving in the direction of flow produces a higher peak than it would if it were moving in the opposite direction. The effect of storm speed on peak discharge is much less for rapidly moving storms than for storms moving at about the same speed as the flow velocity. In a relatively homogeneous watershed the most important effect of spatial variability of rainfall occurs in the timing and shape of the runoff hydrograph. Temporally variable rainfall leads to higher peak flow than does constant rainfall. Significant errors in the prediction of runoff occur when an equivalent uniform hillslope is used to represent a heterogeneous hillslope. When average soil properties are used instead of spatially variable properties, significant differences are observed in infiltration. Spatially variable roughness alters the flow dynamics significantly. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
A unit hydrograph model is proposed in which the watershed is decomposed into subareas which are individual cells or zones of neighbouring cells. The unit hydrograph is found for each subarea and the response at the outlet to excess rainfall on each subarea is summed to produce the watershed runoff hydrograph. The cell to cell flow path to the watershed outlet is determined from a digital elevation model. A constant flow velocity is assigned to each cell and the time lag between subarea input and response at the watershed outlet is found by integrating the flow time along the path from the subarea to the outlet. The response function for a subarea is modelled as a lagged linear reservoir in which the flow time is equal to the sum of a time of translation and an average residence time in the reservoir. It is shown that the assumption of a spatially varying, but time-invariant, velocity field underlying this model produces a linear system model for all subareas whose outputs can be summed in the manner indicated. An example application is presented for the 8.70 km2 Severn watershed at Plynlimon in Wales using a 50 m digital elevation model in which the cell velocity is calculated by modifying an average watershed velocity according to the terrain slope and the drainage area of each cell. The resulting model reasonably reproduces the observed unit hydrograph.  相似文献   

17.
Afforestation has been suggested as a means of improving soil and water conservation in north‐western China, especially on the Loess Plateau. Understanding of the hydrological responses to afforestation will help us develop sustainable watershed management strategies. A study was conducted during the period of 1956 to 1980 to evaluate runoff responses to afforestation in a watershed on the Loess Plateau with an area of 1·15 km2, using a paired watershed approach. Deciduous trees, including locust (locusta L.), apricot (praecox L.) and elm (ulmus L.), were planted on about 80% of a treated watershed, while a natural grassland watershed remained unchanged. It was estimated that cumulative runoff yield in the treated watershed was reduced by 32% as a result of afforestation. A significant trend was also observed that shows annual runoff reduction increases with the age of the trees planted. Reduction in monthly runoff occurred mainly from June to September, which was ascribed to greater rainfall and utilization by trees during this period. Afforestation also resulted in reduction in the volume and peak flow of storm runoff events in the treated watershed with greater reduction in peak flow. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Weather radar systems provide detailed information on spatial rainfall patterns known to play a significant role in runoff generation processes. In the current study, we present an innovative approach to exploit spatial rainfall information of air mass thunderstorms and link it with a watershed hydrological model. Observed radar data are decomposed into sets of rain cells conceptualized as circular Gaussian elements and the associated rain cell parameters, namely, location, maximal intensity and decay factor, are input into a hydrological model. Rain cells were retrieved from radar data for several thunderstorms over southern Arizona. Spatial characteristics of the resulting rain fields were evaluated using data from a dense rain gauge network. For an extreme case study in a semi-arid watershed, rain cells were derived and fed as input into a hydrological model to compute runoff response. A major factor in this event was found to be a single intense rain cell (out of the five cells decomposed from the storm). The path of this cell near watershed tributaries and toward the outlet enhanced generation of high flow. Furthermore, sensitivity analysis to cell characteristics indicated that peak discharge could be a factor of two higher if the cell was initiated just a few kilometers aside.  相似文献   

20.
Most runoff analyses using a grid‐based distributed model use one parameter group calibrated at the outlet of a watershed, instead of dividing the watershed into subwatersheds. Significant differences between the observed value and the simulation result of the subwatersheds can occur if just one parameter group is used in all subwatersheds that have different hydrological characteristics from each other. Therefore, to improve the simulation results of the subwatersheds within a watershed, a model calibrated at every subwatershed needs to be used to reflect the characteristics of each subwatershed. In this study, different parameter groups were set up for one or two sites using a distributed model, the GRM (Grid based Rainfall‐runoff Model), and the evaluations were based on the results of rainfall–runoff analysis, which uses a multi‐site calibration (MSC) technique to calibrate the model at the outlet of each site. The Hyangseok watershed in Naeseong River, which is a tributary of Nakdong River in Korea, was chosen as the study area. The watershed was divided into five subwatersheds each with a subwatershed outlet that was applied to the calibration sites . The MSC was applied for five cases. When a site was added for calibration in a watershed, the runoff simulation showed better results than the calibration of only one site at the most downstream area of the watershed. The MSC approach could improve the simulation results on the calibrated sites and even on the non‐calibrated sites, and the effect of MSC was improved when the calibrated site was closer to the runoff site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号