首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We test an analytic model for the two-point correlations of galaxy clusters in redshift space using the Hubble volume N -body simulations. The correlation function of clusters shows no enhancement along the line of sight, owing to the lack of any virialized structures in the cluster distribution. However, the distortion of the clustering pattern arising from coherent bulk motions is clearly visible. The distribution of cluster peculiar motions is well described by a Gaussian, except in the extreme high-velocity tails. The simulations produce a small but significant number of clusters with large peculiar motions. The form of the redshift-space power spectrum is strongly influenced by errors in measured cluster redshifts in extant surveys. When these errors are taken into account, the model reproduces the power spectrum recovered from the simulation to an accuracy of 15 per cent or better over a decade in wavenumber. We compare our analytic predictions with the power spectrum measured from the APM cluster redshift survey. The cluster power spectrum constrains the amplitude of density fluctuations, as measured by the linear rms variance in spheres of radius 8  h −1 Mpc, denoted by σ 8. When combined with the constraints on σ 8 and the density parameter Ω derived from the local abundance of clusters, we find a best-fitting cold dark matter model with     and     , for a power spectrum shape that matches that measured for galaxies. However, for the best-fitting value of Ω and given the value of Hubble's constant from recent measurements, the assumed shape of the power spectrum is incompatible with the most readily motivated predictions from the cold dark matter paradigm.  相似文献   

2.
We investigate the properties of clusters of galaxies in the ΛCDM models with a step-like initial power spectrum. We examine the mass function, the peculiar velocities and the power spectrum of clusters in models with different values of the density parameter Ω0, the normalized Hubble constant h and the spectral parameter p that describes the shape of the initial power spectrum. The results are compared with observations. We also investigate the rms bulk velocity in the models, where the properties of clusters are consistent with the observed data. We find that the power spectrum of clusters is in good agreement with the observed power spectrum of the Abell–ACO clusters if the spectral parameter p is in the range p =0.6–0.8. The power spectrum and the rms peculiar velocity of clusters are consistent with observations only if Ω0<0.4 . The models with Ω0=0.3 are consistent with the observed properties of clusters if h =0.50–0.63. For h =0.65, we find that Ω0=0.20–0.27.  相似文献   

3.
A class of spatially flat models with cold dark matter (CDM), a cosmological constant and a broken-scale-invariant (BSI) step-like primordial (initial) spectrum of adiabatic perturbations, generated in an exactly solvable inflationary model where the inflaton potential has a rapid change of its first derivative at some point, is confronted with existing observational data on angular fluctuations of the CMB temperature, galaxy clustering and peculiar velocities of galaxies. If we locate the step in the initial spectrum at k  ≃ 0.05  h Mpc−1, where a feature in the spectrum of Abell clusters of galaxies was found that could reflect a property of the initial spectrum, and if the large-scale flat plateau of the spectrum is normalized according to the COBE data, the only remaining parameter of the spectrum is p — the ratio of amplitudes of the metric perturbations between the small-scale and large-scale flat plateaux. Allowed regions in the plane of parameters (Ω = 1 − ΩΛ,  H 0) satisfying all data have been found for p lying in the region (0.8–1.7). Especially good agreement of the form of the present power spectrum in this model with the form of the cluster power spectrum is obtained for the inverted step ( p  < 1,  p  = 0.7–0.8), when the initial spectrum has slightly more power on small scales.  相似文献   

4.
We apply a spherical harmonic analysis to the Point Source Redshift Survey (PSC z ), to compute the real-space galaxy power spectrum and the degree of redshift distortion caused by peculiar velocities. We employ new parameter eigenvector and hierarchical data compression techniques, allowing a much larger number of harmonic modes to be included, and correspondingly smaller error bars. Using 4644 harmonic modes, compressed to 2278, we find that the IRAS redshift-space distortion parameter is     and the amplitude of galaxy clustering on a scale of     is     . Combining these we find the amplitude of mass perturbations is     . While this is compatible with results from the cosmic microwave background (CMB), with a small degree of tilt, it disagrees with the amplitude of matter perturbations estimated from the abundance of clusters by a factor of 2, independent of cosmology. A preliminary model fitting analysis combining the CMB with either the PSC z or cluster abundances shows that the cosmological matter density parameter     , and the IRAS bias parameter     . However, the cluster abundances suggest that     and     , while the PSC z requires     and     . Given the physics of galaxy formation is poorly constrained, we conclude that IRAS galaxies and mass are only partially correlated.  相似文献   

5.
We study the power spectrum of galaxies in redshift space, with third-order perturbation theory to include corrections that are absent in linear theory. We assume a local bias for the galaxies: i.e., the galaxy density is sampled from some local function of the underlying mass distribution. We find that the effect of the non-linear bias in real space is to introduce two new features: first, there is a contribution to the power which is constant with wavenumber, whose nature we reveal as essentially a shot-noise term. In principle this contribution can mask the primordial power spectrum, and could limit the accuracy with which the latter might be measured on very large scales. Secondly, the effect of second- and third-order bias is to modify the effective bias (defined as the square root of the ratio of galaxy power spectrum to matter power spectrum). The effective bias is almost scale-independent over a wide range of scales. These general conclusions also hold in redshift space. In addition, we have investigated the distortion of the power spectrum by peculiar velocities, which may be used to constrain the density of the Universe. We look at the quadrupole-to-monopole ratio, and find that higher order terms can mimic linear theory bias, but the bias implied is neither the linear bias, nor the effective bias referred to above. We test the theory with biased N -body simulations, and find excellent agreement in both real and redshift space, providing the local biasing is applied on a scale whose fractional rms density fluctuations are < 0.5.  相似文献   

6.
We present results of the study of peculiar motions of 57 clusters and groups of galaxies in the regions of the Corona Borealis (CrB), Bootes (Boo), Z5029/A1424, A1190, A1750/A1809 superclusters of galaxies and the galaxy clusters located beyond massive structures (0.05 < z < 0.10). Using the SDSS (Data Release 8) data, a sample of early-type galaxies was compiled in the systems under study, their fundamental planes were built, and relative distances and peculiar velocities were determined. Within the galaxy superclusters, significant peculiar motions along the line of sight are observed with rms deviations of 652 ± 50 kms?1—in CrB, 757 ± 70 kms?1—in Boo. In the most massive A2065 cluster in the CrB supercluster, no peculiar velocity was found. Peculiar motions of the other galaxy clusters can be caused by their gravitational interaction both with A2065 and with the A2142 supercluster. It has been found that there are two superclusters projected onto each other in the region of the Bootes supercluster with a radial velocity difference of about 4000 kms?1. In the Z 5029/A1424 supercluster near the rich Z5029 cluster, the most considerable peculiar motions with a rms deviations of 1366 ± 170 kms?1 are observed. The rms deviations of peculiar velocities of 20 clusters that do not belong to large-scale structures is equal to 0 ± 20 kms?1. The whole sample of the clusters under study has the mean peculiar velocity equal to 83 ± 130 kms?1 relative to the cosmic microwave background.  相似文献   

7.
In this paper, we show that if a single sterile neutrino exists such that     , it can serendipitously solve all outstanding issues of the Modified Newtonian Dynamics. We focus on fitting the angular power spectrum of the cosmic microwave background (CMB) in detail which is possible using a flat Universe with     and the usual baryonic and dark energy components. One cannot match the CMB if there is more than one massive sterile neutrino, nor with three active neutrinos of 2 eV. This model has the same expansion history as the Λ cold dark matter  (ΛCDM)  model and only differs at the galactic scale, where the modified dynamics outperform  ΛCDM  comprehensively. We discuss how an 11 eV sterile neutrino can explain the dark matter of galaxy clusters without influencing individual galaxies and potentially match the matter power spectrum.  相似文献   

8.
9.
We estimate the power spectrum of H  i intensity fluctuations for a sample of eight galaxies (seven dwarf and one spiral). The power spectrum can be fitted to a power-law     for six of these galaxies, indicating turbulence is operational. The estimated best-fitting value for the slope ranges from  ∼−1.5  (AND IV, NGC 628, UGC 4459 and GR 8) to  ∼−2.6  (DDO 210 and NGC 3741). We interpret this bi-modality as being due to having effectively 2D turbulence on length-scales much larger than the scale-height of the galaxy disc and 3D otherwise. This allows us to use the estimated slope to set bounds on the scale-heights of the face-on galaxies in our sample. We also find that the power-law slope remains constant as we increase the channel thickness for all these galaxies, suggesting that the fluctuations in H  i intensity are due to density fluctuations and not velocity fluctuations, or that the slope of the velocity structure function is ∼0. Finally, for the four galaxies with '2D turbulence' we find that the slope α correlates with the star formation rate (SFR) per unit area, with larger SFRs leading to steeper power laws. Given our small sample size, this result needs to be confirmed with a larger sample.  相似文献   

10.
The real-space optical-depth distribution along the line of sight to the QSO Q1422+231 is recovered from two HIRES spectra using a modified version of the inversion method proposed by Nusser & Haehnelt. The first two moments of the truncated optical-depth distribution are used to constrain the density-fluctuation amplitude of the intergalactic medium (IGM) assuming that the IGM is photoionized by a metagalactic UV background and obeys a temperaturedensity relation. The fluctuation amplitude and the power-law index of the relation between gas and neutral hydrogen (H  i ) density are degenerate. The rms of the IGM density at z 3.25 estimated from the first spectrum is with 1.56< <2 for plausible reionization histories. This corresponds to 0.9 2.1 with ( =1.7)=1.44±0.3. The values obtained from the second spectrum are higher by 20 per cent. If the IGM density traces the dark matter (DM) as suggested by numerical simulations we have measured the fluctuation amplitude of the DM density at an effective Jeans scale of a few 100 kpc. For cold dark matter (CDM)-like power spectra the amplitude of dark matter fluctuations on these small scales depends on the cosmological density parameter . For power spectra normalized to reproduce the space density of present-day clusters and with a slope parameter of =0.21 consistent with the observed galaxy power spectrum, the inferred can be expressed as: =0.61( /1.7)1.3( x J/0.62)0.6 for a flat universe, and =0.91( /1.7)1.3( x J/0.62)0.7 for a =0 universe. x J is the effective Jeans scale in (comoving) h 1 Mpc. Based on a suite of detailed mock spectra the 1 error is 25 per cent. The estimates increase with increasing . For the second spectrum we obtain 15 per cent lower values.  相似文献   

11.
We derive analytic expressions for the leading-order corrections to the polarization induced in the cosmic microwave background (CMB) owing to scattering of photons off hot electrons in galaxy clusters along the line of sight. For a thermal distribution of electrons with kinetic temperature k B T e∼10 keV and bulk peculiar velocity V ∼1000 km s−1, the dominant corrections to the polarization induced by the primordial CMB quadrupole and the cluster peculiar velocity arise from electron thermal motion and are at the level of ∼10 per cent in each case, near the peak of the polarization signal. When more sensitive measurements become feasible, these effects will be significant for the determination of transverse peculiar velocities, and the value of the CMB quadrupole at the cluster redshift, via the cluster polarization route.  相似文献   

12.
We study the peculiar velocity field inferred from the Mark III spirals using a new method of analysis. We estimate optimal values of Tully–Fisher scatter and zero-point offset, and we derive the three-dimensional rms peculiar velocity ( σ v ) of the galaxies in the samples analysed. We check our statistical analysis using mock catalogues derived from numerical simulations of cold dark matter (CDM) models considering measurement uncertainties and sampling variations. Our best determination for the observations is σ v =(660±50) km s−1. We use the linear theory relation between σ v , the density parameter Ω, and the galaxy correlation function ξ ( r ) to infer the quantity     , where b is the linear bias parameter of optical galaxies and the uncertainties correspond to bootstrap resampling and an estimated cosmic variance added in quadrature. Our findings are consistent with the results of cluster abundances and redshift-space distortion of the two-point correlation function. These statistical measurements suggest a low value of the density parameter Ω∼0.4 if optical galaxies are not strongly biased tracers of mass.  相似文献   

13.
We investigate the number density of maxima in the cosmological galaxy density field smoothed with a filter as a probe of clustering. In previous work it has been shown that this statistic is closely related to the slope of the linear power spectrum, even when the directly measured power spectrum is non-linear. In the present paper we investigate the sensitivity of the peak number density to various models with differing power spectra, including rolling index models, cosmologies with massive neutrinos and different baryon densities. We find that rolling index models which have given an improved fit to CMB/LSS (cosmic microwave background/large scale structure) data yield a ∼10 per cent difference in peak density compared to the scale invariant case. Models with 0.3 eV neutrinos have effects of similar magnitude and it should be possible to constrain them with data from current galaxy redshift surveys. Baryon oscillations in the power spectrum also give rise to distinctive features in the peak density. These are preserved without modification when measured from the peak density in fully non-linear N -body simulations. Using the simulations, we also investigate how the peak density is modified in the presence of redshift distortions. Redshift distortions cause a suppression of the number of peaks, largely due to fingers of God overlapping in redshift space. We find that this effect can be modelled by using a modification of the input power spectrum. We also study the results when the simulation density field is traced by galaxies obtained by populating haloes with a halo occupation distribution consistent with observations. The peak number density is consistent with that in the dark matter for filter scales  >4  h −1 Mpc  , for which we find good agreement with the linear theory predictions. In a companion paper we analyse data from the 2dF Galaxy Redshift Survey.  相似文献   

14.
We consider the problem of the relative motion both of the substructures of the Local Group of galaxies (revealed via the S-tree method), and of the velocity of the Local Group itself. The existence of statistically significant bulk flow of the Milky Way subsystem is shown via a 3D reconstruction procedure, which uses information on the radial velocities of the galaxies but does not take account of their distances. Once the bulk motion of the substructures is estimated we also consider, in combination with the observed cosmic microwave background (CMB) dipole, the mean velocity of the Local Group itself. Assigning to the Local Group the mean motion of its main substructures, we evaluate its peculiar velocity in Milky Way frame V LG→MW = (−7 ± 303, −15 ± 155, +177 ± 144) or 178 km s−1 toward galactic coordinates l  = 245 and b  = +85. Combined with the CMB dipole V MW→CMB, we obtain a Local Group velocity in CMB frame: V LG→CMB = (−41 ± 303, −497 ± 155, 445 ± 144) or 668 km s−1 towards l  = 265 and b  = 42. This estimation is in good agreement, within the 1 σ level, with the estimation of Yahil et al.  相似文献   

15.
We present peculiar velocities for 85 clusters of galaxies in two large volumes at distances between 6000 and 15 000 km s−1 in the directions of Hercules–Corona Borealis and Perseus–Pisces–Cetus (the EFAR sample). These velocities are based on Fundamental Plane (FP) distance estimates for early-type galaxies in each cluster. We fit the FP using a maximum likelihood algorithm which accounts for both selection effects and measurement errors, and yields FP parameters with smaller bias and variance than other fitting procedures. We obtain a best-fitting FP with coefficients consistent with the best existing determinations. We measure the bulk motions of the sample volumes using the 50 clusters with the best-determined peculiar velocities. We find that the bulk motions in both regions are small, and consistent with zero at about the 5 per cent level. The EFAR results are in agreement with the small bulk motions found by Dale et al. on similar scales, but are inconsistent with pure dipole motions having the large amplitudes found by Lauer & Postman and Hudson et al. The alignment of the EFAR sample with the Lauer & Postman dipole produces a strong rejection of a large-amplitude bulk motion in that direction, but the rejection of the Hudson et al. result is less certain because their dipole lies at a large angle to the main axis of the EFAR sample. We employ a window function covariance analysis to make a detailed comparison of the EFAR peculiar velocities with the predictions of standard cosmological models. We find that the bulk motion of our sample is consistent with most cosmological models that approximately reproduce the shape and normalization of the observed galaxy power spectrum. We conclude that existing measurements of large-scale bulk motions provide no significant evidence against standard models for the formation of structure.  相似文献   

16.
Upcoming surveys for galaxy clusters using the Sunyaev–Zel'dovich effect are potentially sensitive enough to create a peculiar velocity catalogue. The statistics of these peculiar velocities are sensitive to cosmological parameters. We develop a method to explore parameter space using N -body simulations in order to quantify dark matter halo velocity statistics which will be useful for cluster peculiar velocity observations. We show that mass selection bias from a kinetic Sunyaev–Zel'dovich velocity catalogue forecasts rms peculiar velocities with a much more complicated  Ωm  dependency than suggested by linear perturbation theory. In addition, we show that both two-point functions for velocities disagree with linear theory predictions out to  ∼40  h −1 Mpc  separations. A pedagogical appendix is included developing linear theory notation with respect to the two-point peculiar velocities functions.  相似文献   

17.
We present an analysis of the redshift-space power spectrum, P ( k ), of rich clusters of galaxies based on an automated cluster catalogue selected from the APM Galaxy Survey. We find that P ( k ) can be approximated by a power law, P ( k )∝ kn , with n ≈−1.6 over the wavenumber range 0.04< k <0.1 h Mpc−1. Over this range of wavenumbers, the APM cluster power spectrum has the same shape as the power spectra measured for optical and IRAS galaxies. This is consistent with a simple linear bias model in which different tracers have the same power spectrum as that of the mass distribution, but shifted in amplitude by a constant biasing factor. On larger scales, the power spectrum of APM clusters flattens and appears to turn over on a scale k ∼0.03 h Mpc−1. We compare the power spectra estimated from simulated APM cluster catalogues with those estimated directly from cubical N -body simulation volumes, and find that the APM cluster survey should give reliable estimates of the true power spectrum at wavenumbers k ≳0.02 h Mpc−1. These results suggest that the observed turnover in the power spectrum may be a real feature of the cluster distribution, and that we have detected the transition to a near-scale-invariant power spectrum implied by observations of anisotropies in the cosmic microwave background radiation. The scale of the turnover in the cluster power spectrum is in good agreement with the scale of the turnover observed in the power spectrum of APM galaxies.  相似文献   

18.
We compute Fourier-resolved X-ray spectra of the Seyfert 1 Markarian 766 to study the shape of the variable components contributing to the 0.3–10 keV energy spectrum and their time-scale dependence. The fractional variability spectra peak at 1–3 keV, as in other Seyfert 1 galaxies, consistent with either a constant contribution from a soft excess component below 1 keV and Compton reflection component above 2 keV or variable warm absorption enhancing the variability in the 1–3 keV range. The rms spectra, which show the shape of the variable components only, are well described by a single power law with an absorption feature around 0.7 keV, which gives it an apparent soft excess. This spectral shape can be produced by a power law varying in normalization, affected by an approximately constant (within each orbit) warm absorber, with parameters similar to those found by Turner et al. for the warm-absorber layer covering all spectral components in their scattering scenario  [ N H∼ 3 × 1021 cm−2, log(ξ) ∼ 1]  . The total soft excess in the average spectrum can therefore be produced by a combination of constant warm absorption on the power-law plus an additional less variable component. On shorter time-scales, the rms spectrum hardens and this evolution is well described by a change in power-law slope, while the absorption parameters remain the same. The frequency dependence of the rms spectra can be interpreted as variability arising from propagating fluctuations through an extended emitting region, whose emitted spectrum is a power law that hardens towards the centre. This scenario reduces the short time-scale variability of lower energy bands making the variable spectrum harder on shorter time-scales and at the same time explains the hard lags found in these data by Markowitz et al.  相似文献   

19.
We analyse scale dependence of redshift-space bias b and β  ≡ Ωm0.6/ b in the context of the halo model. We show that linear bias is a good approximation only on large scales, for k <0.1  h  Mpc−1 . On intermediate scales the virial motions of galaxies cause a suppression of the power spectrum relative to the linear one and the suppression differs from the same effect in dark matter. This can potentially mimic the effect of massive neutrinos, and the degeneracy can only be broken if the power spectrum is measured for k ≪0.1  h  Mpc−1 . Different methods to determine β converge for k <0.1  h  Mpc−1 , but give drastically different results on smaller scales, which explains some of the trends observed in the real data. We also assess the level of stochasticity by calculating the cross-correlation coefficient between the reconstructed velocity field divergence and the galaxies, and show that the two fields decorrelate for k >0.1  h  Mpc−1 . Most problematic are galaxies predominantly found in groups and clusters, such as bright, red or elliptical galaxies, where we find poor convergence to a constant bias or β even on large scales.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号