首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Comparative Analysis of Transpiration and Bare Soil Evaporation   总被引:4,自引:0,他引:4  
Transpiration Ev and bare soil evaporation Eb processes are comparatively analysed assuming homogeneous and inhomogeneous areal distributions of volumetric soil moisture content . For a homogeneous areal distribution of we use a deterministic model, while for inhomogeneous distributions a statistical-deterministic diagnostic surface energy balance model is applied. The areal variations of are simulated by Monte-Carlo runs assuming normal distributions of .The numerical experiments are performed for loam. In the experiments we used different parameterizations for vegetation and bare soil surface resistances and strong atmospheric forcing. According to the results theEv()-Eb() differences are great, especially in dry conditions. In spite of this, the available energy flux curves of vegetation Av() and bare soil Ab() surfaces differ much less than the Ev() and Eb() curves. The results suggest that Ev is much more non-linearly related to environmental conditions than Eb. Both Ev and Eb depend on the distribution of , the wetness regime and the parameterization used. With the parameterizations, Eb showed greater variations than Ev. These results are valid when there are no advective effects or mesoscale circulation patterns and the stratification is unstable.  相似文献   

2.
This paper considers the near-field dispersion of an ensemble of tracer particles released instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the mean vertical drift velocity w(t) is w()=bu *(1–e (1+)), where is time since release (nondimensionalized with the Lagrangian time scale at the source), b Batchelor's constant, and u *, the friction velocity. Hence, the mean height and mean depth of the ensemble are calculated. Although the derivation is formally valid only when 1, the predictions for w, mean height and mean depth are consistent in the downstream limit ( 1) with surface-layer Lagrangian similarity theory and with the diffusion equation. By comparing the analytical predictions with numerical, randomflight solutions of the Langevin equation, the analytical predictions are shown to be good approximations at all times, both near-field and far-field.  相似文献   

3.
Functional forms of the universal similarity functions A, B (for wind components parallel and normal to the surface stress), and C (for potential temperature difference) are determined based on the generalized theory of the resistance laws for the Planetary Boundary Layer (PBL). The similarity-profile functions for the surface layer are matched with the velocity and temperature-defect profiles that are assumed to have shapes modified by certain powers of nondimensional height z/h, where h is the PBL height. The powers of the outer-layer profile functions are determined, so that the functions become negligible in the surface layer. To close the temperature defect law, an assumption that the temperature gradient across the top of the PBL is continuous with the stratification of the overlying atmosphere is used. The result of this assumption is that nondimensional momentum and temperature profiles in the PBL can be described in terms of four basic ratios: (1) roughness ratio = /h (2) scale-height ratio =|f|h/u*, (3) ambient stratification parameter =h/*, and (4) stability parameter =h/L, where L is the Monin-Obukhov length, z0 is the surface roughness, is the upper-air stratification, u * is the friction velocity, and * is the temperature scale at the surface. For stable conditions, the scale-height ratio can be related to the atmospheric stability and the upperair stratification, and the generalized similarity and Rossby number similarity theories become identical. Under appropriate boundary conditions, function A is explicitly dependent on the stability parameter , while B is a function of scale-height ratio , which in turn depends on the stability. Function C is shown to be dependent on the stability and the upper-air stratification, due to the closure assumption used for the temperature profile.The suggested functional forms are compared with other empirical approximations by several authors. The general framework used to determine the functional forms needs to be tested against good boundary-layer measurements.  相似文献   

4.
An observation of waves and turbulence in the earth's boundary layer   总被引:1,自引:1,他引:1  
An account is given of an observation of a wave-like phenomenon obtained during a study of nocturnal inversions. Associated bursts of turbulent activity are also described.  相似文献   

5.
The formulation of a new land surface scheme (LSS) with vegetation dynamics for coupling to the McGill Paleoclimate Model (MPM) is presented. This LSS has the following notable improvements over the old version: (1) parameterization of deciduous and evergreen trees by using the models climatology and the output of the dynamic global vegetation model, VECODE (Brovkin et al. in Ecological Modelling 101:251–261 (1997), Global Biogeochemical Cycles 16(4):1139, (2002)); (2) parameterization of tree leaf budburst and leaf drop by using the models climatology; (3) parameterization of the seasonal cycle of the grass leaf area index; (4) parameterization of the seasonal cycle of tree leaf area index by using the time-dependent growth of the leaves; (5) calculation of land surface albedo by using vegetation-related parameters, snow depth and the models climatology. The results show considerable improvement of the models simulation of the present-day climate as compared with that simulated in the original physically-based MPM. In particular, the strong seasonality of terrestrial vegetation and the associated land surface albedo variations are in good agreement with several satellite observations of these quantities. The application of this new version of the MPM (the green MPM) to Holocene millennial-scale climate changes is described in a companion paper, Part II.
Yi WangEmail: Phone: +1-514-3987448Fax: +1-514-3986115
  相似文献   

6.
Summary During an expedition to the high Andes of Southern Peru in June–July 1977, measurements of direct solar radiation in four spectral bands (0.270–0.530–0.630–0.695–2.900 ) were conducted at six sites in elevations ranging from sea level to 5645 m. These measurements were evaluated in Langley plots to determine total optical depths () and irradiances at the top of the atmosphere. In addition, water vapor optical depths (wv) were calculated from the mean radiosounding over Lima during the expedition, and Rayleigh (ray) and ozone (oz) optical depths were obtained from published tabulations. Subtracting ray, oz, and wv from yielded estimates of aerosol optical depth aer. The components ray and oz decrease from the shorter towards the longer wavelength bands and from the lower towards the higher elevation sites; aer also decreases towards the higher elevations. Particularly pronounced is the decrease of aer and from the lowlands of the Pacific coast to the highlands of the interior, reflecting the effect of a persistent lower-tropospheric inversion and the contrast from the marine boundary layer to the clear atmosphere of the high Andes.With 4 Figures  相似文献   

7.
The treatment of the land surface can have a significant impact on the performance of atmospheric models, influencing the surface energy balance and near surface atmospheric variables. In numerical weather prediction models it is especially important to reproduce the observed diurnal cycle in screen-level temperature, which requires an accurate representation of the surface temperature, and therefore an accurate and computationally efficient representation of soil heat storage and transfer. We present a technique for analysing the accuracy of numerical soil temperature schemes, and a methodology for choosing the optimal layer thicknesses for schemes with a given number of layers. Furthermore, the analysis suggests that first generation land surface schemes, which typically used a layer-average surface temperature, may be more accurate in this respect than the latest land surface schemes, which tend to use a skin surface temperature boundary condition.The British Crowns right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.  相似文献   

8.
A pair of parallel cold wires separated in either the vertical or lateral direction was used to obtain the three components x, y, z of the temperature derivative in the streamwise, lateral and vertical directions, respectively. The average absolute skewness values of x and z are nonzero and approximately equal, while the skewness of y is approximately zero. These results appear to be consistent with the presence of a large, three-dimensional organised structure in the surface layer. There is an apparent low-frequency contamination in the spectral density of y and z due mainly to small errors in estimating the sensitivity of the cold wires. The temperature derivatives were high-pass filtered, the filter being set to remove possible contributions from the large structure and to minimise low-frequency sensitivity contamination. The filtered rms ratios \~x/\~y and \~x/\~z were in the range 0.7 to 0.9, a result in qualitative agreement with that obtained in the laboratory boundary layer by Sreenivasan et al. (1977). The skewness of filtered x or z is negligible, consistent with local isotropy of small-scale temperature fluctuations and in support of the high wavenumber spectral isotropy discussed in Antonia and Chambers (1978).  相似文献   

9.
Summary The performance of evaporation schemes with and approach and their combination within resistance representation of evaporation from bare soil surface is discussed. For this purpose nine schemes, based on different functions of or , on the ratio of the volumetric soil moisture content and its saturated value are used.The quality of the chosen schemes has been evaluated using the results of time integration by the coupled soil moisture and surface temperature prediction model, BARESOIL, using in situ data. A sensitivity analysis was made using two sets of data derived from the volumetric soil moisture content of the top soil layer. One with values below the wilting point (0.17 m3m–3) and the second with values above 0.20m3m–3. Data sets were obtained at the experimental site Rimski anevi, Yugoslavia, from the bare surface of a chernozem soil.With 4 Figures  相似文献   

10.
Equilibrium evaporation beneath a growing convective boundary layer   总被引:1,自引:1,他引:0  
Expressions for the equilibrium surface Bowen ratio ( s ) and equilibrium evaporation are derived for a growing convective boundary layer (CBL) in terms of the Bowen ratio at the top of the mixed layer i and the entrainment parameter A R . If AR is put equal to zero, the solution for s becomes-that previously obtained for the zero entrainment or closed box model. The Priestley-Taylor parameter is also calculated and plotted in terms ofA R and i . Realistic combinations of the atmospheric parameters give values of in the range 1.1 to 1.4.  相似文献   

11.
The purpose of the paper is to find the mean velocities and stresses in the turbulent, neutral, barotropic planetary boundary layer (PBL). Correction functions are introduced similar to those used by Millikan and Hinze in discussions of flows in a pipe and in a turbulent boundary layer. The functions for the PBL are determined semi-empirically and, with a choice of constants, the resulting velocity distributions are in reasonable agreement with the Leipzig profile. The paper also discusses the correction functions for pipe and boundary-layer flows and for plane Couette flow. The results are in excellent agreement with observations.  相似文献   

12.
The relation between the turbulence Reynolds numberR and a Reynolds numberz* based on the friction velocity and height from the ground is established using direct measurements of the r.m.s. longitudinal velocity and turbulent energy dissipation in the atmospheric surface layer. Measurements of the relative magnitude of components of the turbulent kinetic energy budget in the stability range 0 >z/L 0.4 indicate that local balance between production and dissipation is maintained. Approximate expressions, in terms of readily measured micrometeorological quantities, are proposed for the Taylor microscale and the Kolmogorov length scale .  相似文献   

13.
A two-dimensional atmospheric boundary-layer model is applied to the Nanticoke region on the northern shore of Lake Erie (80 ° 03W and 42 ° 50N) to simulate numerically the observed wind and temperature profiles. In general, the profiles predicted by the model agree reasonably well with the observed profiles.  相似文献   

14.
The formation of longitudinal vortex rolls in the planetary boundary layer (PBL) is investigated by means of perturbation analysis. The method is the same as that used by previous authors who have investigated the instability of a laminar Ekman layer. To study the instability of the turbulent boundary layer of the atmosphere, vertical profiles are needed of the eddy viscosity and of the two components of the basic flow. These profiles have been obtained by a numerical PBL-model; they are universal for zz 0. (However, the stability equations are not completely universal, i.e., independent of the external parameters). For each thermal stratification, expressed by the internal stratification parameter , one has a set of three consistent profiles.The numerical solution of the stability equations gives the critical values and the perturbation growth rates as functions of thermal stratification and of the surface Rossby number Ro0. This is in contrast to the case of a laminar Ekman layer, where the instability depends on a Reynolds number only, which makes atmospheric applications difficult. The most unstable perturbations are found for Ro0 = 1 × 106 approximately, which is in the range of surface Rossby numbers observed in the atmosphere. However, considering vortex rolls oriented in the direction of the surface stress, the instability is found to be universal, i.e., independent of the external parameters combined in the surface Rossby number. With respect to thermal stratification, the results show that the instability of the perturbations increases with increasing static stability.  相似文献   

15.
Three-dimensional excitation–emission matrix (EEM) fluorescence spectra of water-soluble organic compounds (WSOC) from aerosol samples were measured and compared with those reported in the literature for natural dissolved organic matter. The EEM profiles of the WSOC presented three characteristic excitation/emission (Exc/Em) peaks: 240/405 nm, 310/405 nm and 280/340 nm. The fluorescence intensities at Exc/Em240/405 nm and Exc/Em310/405 nm are located at wavelengths shorter than those reported for aquatic humic substances, indicating a smaller content of both aromatic structures and condensed unsaturated bond systems in the WSOC fraction. The EEM profiles of fractions obtained by the isolation procedure of the WSOC by the XAD resins showed that a fractionation has occurred and the XAD-8 eluate is highly representative of the total WSOC of collected aerosol. Synchronous scan spectra were more detailed than conventional fluorescence emission spectra, appearing more suitable for studying multicomponent samples such as the WSOC from atmospheric aerosols.  相似文献   

16.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

17.
We examine mixed layer temperatures in a global ocean general circulation model subjected to seasonally varying climatological forcing. Harmonic analysis of monthly mixed layer temperatures and climatological sea surface temperatures (SSTs) shows that, on the average, the annual harmonic accounts for 90% of the total seasonal variance in both fields, while the semiannual harmonic accounts for about 8%. The semiannual signal is mostly confined to equatorial and high-latitude regions. The model mixed layer temperatures underestimate the mean amplitude of the annual harmonic in middle latitudes (65°||10°) by about 26%, while lagging climatological SSTs by 22 days, on average. In several parameter sensitivity experiments, these differences could be reduced to as little as 12% and 12.5 days, respectively, though most of this gain occurred when the mixed layer was unrealistically shallow (mean depth less than 65 m). At least part of the differences in amplitudes and phases of the annual harmonic is linked to the uncoupled formulation of the surface heat flux, which is computed using specified and seasonally varying climatological air temperatures. In ice-free areas, seasonal amplitudes and phases of air temperatures are almost identical to those of climatological SSTs. Thus, differences between model mixed layer temperatures and climatological SSTs give rise to Newtonian relaxation to SSTs, which then leads to amplitude damping and time lags in mixed layer temperatures relative to the SSTs.  相似文献   

18.
For the thermal stability function h used to calculate heat and moisture fluxes in the surface layer, we choose a formulation which has the theoretically correct free convection limit % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeikaiabgk% HiTGqaciaa-PhacaqGVaGaamitaiaabMcadaahaaWcbeqaaiabgkHi% TiaaigdacaGGVaGaaG4maaaaaaa!3DFE!\[{\rm{(}} - z{\rm{/}}L{\rm{)}}^{ - 1/3} \]. We then use the experimental result that z/L Ri to deduce a formulation with an exponent -1/6 for the momentum stability function m. This formulation also resolves the matching problem at the interface between the surface and Ekman layers. The proposed functions are found to remain reasonably close to another formulation that is well supported by observations and has exponents -1/2 for h and -1/4 for m. The intent of the proposals is mainly to clarify and simplify the parameterization of the convective boundary layer in present day atmospheric models, without significantly altering the results.  相似文献   

19.
This study examines the statistical properties of the concentration derivative, , for a dispersing plume in a near-neutrally stratified atmospheric surface layer. Towards this goal, the probability density function (pdf) of , and the conditional pdf of given a fixed concentration level, , have been measured. These pdfs are found to be modeled well by a generalizedq-Gaussian (gqG) distribution with intermittency exponent,q, equal to 0.3 and 3/4, respectively. These results highlight the strong intermittency effect (patchiness) of the small-scale concentration eddy structures in the plume. The distribution of time intervals between successive high peaks in the squared derivative process, x2, is found to be well approximated by a power-law distribution, implying that occurrences of these high peaks are much more clustered than would be predicted by a Poisson or shot-noise process. The results are used to improve models for the joint pdf of and , and for the expected number of upcrossings per unit time interval of a fixed concentration level that have been proposed by Kristensenet al. (1989). The predictions of the improved models are in accord with observations, and suggest that the intercorrelation between and must be explicitly incorporated if good estimates of the upcrossing intensity are to be obtained.  相似文献   

20.
It is shown that the ratio of standard deviation of lateral velocity to the friction velocity, /u *, and therefore wind direction fluctuations, are sensitive to mesoscale terrain properties. Under neutral conditions, /u * is almost 40% larger in rolling terrain than over a horizontal surface. In the lee of a low mountain, the fluctuations may be 2.5 times as strong as over horizontal terrain. In contrast, vertical velocity fluctuations are little influenced by mesoscale terrain features.Now with Air Weather Service, Offutt AFB, Omaha, Nebraska.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号