首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report contemporaneous multi-wavelength interferometric imaging of the red supergiant star Betelgeuse ( α Orionis), using the Cambridge Optical Aperture Synthesis Telescope (COAST) and the William Herschel Telescope (WHT), at wavelengths of 700, 905 and 1290 nm. We find a strong variation in the apparent symmetry of the stellar brightness distribution as a function of wavelength. At 700 nm the star is highly asymmetric, and can be modelled as the superposition of three bright spots on a strongly limb-darkened disc. However, at 905 nm only a single low-contrast feature is visible and at 1290 nm the star presents a featureless symmetric disc. The change in spot contrast with wavelength is consistent with a model in which the bright spots represent unobscured areas of elevated temperature, owing perhaps to convection, on a stellar disc that itself has a different appearance, i.e. geometrical extent and limb-darkening profile, at different wavelengths. The featureless centre-to-limb brightness profile seen at 1290 nm is consistent with this model and suggests that future interferometric monitoring of the star to quantify the size changes associated with radial velocity variations should be performed at similar wavelengths in the near-infrared.  相似文献   

2.
We report the first direct detection of long-term periodic diameter variations in a Mira variable. Angular diameter measurements of the 313-d period variable R Leonis at 833 nm and 940 nm obtained between 1996 February and 1997 June using the Cambridge Optical Aperture Synthesis Telescope (COAST) and the William Herschel Telescope (WHT) show a cyclic modulation of the apparent stellar diameter by approximately 35 per cent. The agreement between these new data and archival measurements from 1992 January suggests coherence in the modulation over a 5-yr period. Our data are consistent with recent models which suggest that, in photometric bands with only weak to moderate molecular contamination, periodic variations in stellar diameter of order 50 per cent can be maintained. The measurements indicate that the apparent stellar diameter was largest at visual phase 0.5 and that any phase shifts between the visual light curve and those at 833 and 940 nm were at most 0.05. The large offset (∼ 0.25) between the phase of the observed diameter maximum and that predicted for the photospheric continuum diameter variations suggests that our observations are more sensitive to the changing temperature structure of the outer atmosphere than to the deeper continuum-forming layers.  相似文献   

3.
We revisit the discovery outburst of the X-ray transient XTE J1550−564 during which relativistic jets were observed in 1998 September, and review the radio images obtained with the Australian Long Baseline Array, and light curves obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array. Based on H i spectra, we constrain the source distance to between 3.3 and 4.9 kpc. The radio images, taken some 2 d apart, show the evolution of an ejection event. The apparent separation velocity of the two outermost ejecta is at least  1.3 c   and may be as large as  1.9 c   ; when relativistic effects are taken into account, the inferred true velocity is  ≥ 0.8 c   . The flux densities appear to peak simultaneously during the outburst, with a rather flat (although still optically thin) spectral index of −0.2.  相似文献   

4.
The formation of dust with temperature-dependent non-grey opacity is considered in a series of self-consistent model atmospheres at different phases of an O-rich Mira variable of mass  1.2 M  . Photometric and interferometric properties of these models are predicted under different physical assumptions regarding the dust formation. The iron content of the initial silicate that forms and the availability of grain nuclei are found to be critical parameters that affect the observable properties. For certain plausible parameter values, dust would form at 2–3 times the average continuum photospheric radius. This work provides a consistent physical explanation for the larger apparent size of Mira variables at wavelengths shorter than 1 μm than that predicted by dust-free fundamental-mode pulsation models.  相似文献   

5.
We report the serendipitous discovery of the Sloan Digital Sky Survey (SDSS) star SDSS J160043.6+074802.9 to be a very rapid pulsator. The variation is dominated by a frequency near 8380 μHz (period = 119.33 s) with a large amplitude (0.04 mag) and its first harmonic at 16760 μHz (59.66 s; 0.005 mag). In between these frequencies, we find at least another eight variations with periods between 62 and 118 s and amplitudes between about 0.007 and 0.003 mag; weaker oscillations might also be present. Preliminary spectrograms from the performance verification phase of the Southern African Large Telescope indicate that SDSS J160043.6+074802.9 is a spectroscopic binary consisting of an sdO star and a late-type main-sequence companion. This makes it the first unambiguous detection of such an sdO star to pulsate, and certainly the first found to exhibit multifrequency variations.  相似文献   

6.
We report the possible detection of V4334 Sgr (Sakurai's Object) at 450 and 850 μm with SCUBA on the James Clerk Maxwell Telescope. The submillimetre photometry, combined with a  1–5 μm  spectrum and  8–10 μm  photometry obtained nearly contemporaneously, suggests that the submillimetre emission originates in material ejected during the 1995 event. The dust mass is a  few×10-7 M  , the average mass-loss in the form of dust is  few×10-8 M yr-1  , and the integrated luminosity is  log( L /L)=3.66  for a distance of 2 kpc. The ejected shell had angular diameter ∼55 mas in 2001 August, and should by now be resolvable in the mid-infrared by  8–10 m  class telescopes.  相似文献   

7.
We report the discovery of pulsations in two DB stars found in the Edinburgh–Cape blue object survey. The light curve of EC 04207−4748 appears to be dominated by a strong variation at  2235 μHz  (447 s) and its first overtone near 4475 μHz (223 s). Two other peaks appear in the periodograms of all three data sets for this star; near  2370 μHz  (∼420 s) and  3000 μHz  (∼333 s), though these are less accurately defined. EC 05221−4725 is less easy to specify with the currently available data; it appears to have one coherent frequency near  1114 μHz  (898 s), but is obviously multiperiodic and probably has several more frequencies near the one clearly observed.  相似文献   

8.
We present a new analysis of the light curve for the secondary star in the eclipsing binary millisecond pulsar system PSR B1957+20. Combining previous data and new data points at minimum from the Hubble Space Telescope , we have 100 per cent coverage in the R -band. We also have a number of new K s-band data points, which we use to constrain the infrared magnitude of the system. We model this with the eclipsing light-curve (ELC) code. From the modelling with the ELC code we obtain colour information about the secondary at minimum light in BVRI and K . For our best-fitting model we are able to constrain the system inclination to 65°± 2° for pulsar masses ranging from 1.3 to  1.9  M  . The pulsar mass is unconstrained. We also find that the secondary star is not filling its Roche lobe. The temperature of the unirradiated side of the companion is in agreement with previous estimates and we find that the observed temperature gradient across the secondary star is physically sustainable.  相似文献   

9.
A new analysis of long-slit CGS4 United Kingdom Infrared Telescope spectra of the 3.3-μm feature of the Red Rectangle and its evolution with offset along the NW whisker of the nebula is presented. The results support a proposed two-component interpretation for the 3.3-μm feature with peak wavelengths near 3.28 and 3.30 μm. Both components exhibit a small shift to shorter wavelength with increasing offset from the central star which, by comparison with laboratory studies, is consistent with a decrease in the temperature of the carriers with distance from HD 44179. The two-component approach is also applied to 3.3-μm data for the Red Rectangle, Orion Bar D2 and Orion Bar H2S1 from Infrared Space Observatory Short Wavelength Spectrometer (SWS) studies.  相似文献   

10.
We present near-infrared polarimetric images of the dusty circumstellar envelope (CSE) of IRAS 19306+1407, acquired at the United Kingdom Infrared Telescope (UKIRT) using the UKIRT 1–5 μm Imager Spectrometer (UIST) in conjunction with the half-waveplate module IRPOL2. We present additional 450- and 850-μm photometry data obtained with the Submillimetre Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT), as well as archived Hubble Space Telescope ( HST ) F606W - and F814W -filter images. The CSE structure in polarized flux at J and K bands shows an elongation north of north-east and south of south-west with two bright scattering shoulders north-west and south-east. These features are not perpendicular to each other and could signify a recent 'twist' in the outflow axis. We model the CSE using an axisymmetric light scattering ( als ) code to investigate the polarization produced by the CSE, and an axisymmetric radiation transport ( dart ) code to fit the spectral energy distribution. A good fit was achieved with the als and dart models using silicate grains, 0.1–0.4 μm with a power-law size distribution of a −3.5, and an axisymmetric shell geometry with an equator-to-pole ratio of 7:1. The spectral type of the central star is determined to be B1 i supporting previous suggestions that the object is an early planetary nebula. We have constrained the CSE and interstellar extinction as 2.0 and 4.2 mag, respectively, and have estimated a distance of 2.7 kpc. At this distance, the stellar luminosity is ∼4500 L and the mass of the CSE is ∼0.2 M. We also determine that the mass loss lasted for ∼5300 yr with a mass-loss rate of ∼3.4 × 10−5 M yr−1.  相似文献   

11.
We present high-cadence, high-precision multiband photometry of the young, M1Ve, debris disc star, AU Microscopii. The data were obtained in three continuum filters spanning a wavelength range from 4500 to 6600 Å, plus Hα, over 28 nights in 2005. The light curves show intrinsic stellar variability due to star-spots with an amplitude in the blue band of 0.051 mag and a period of 4.847 d. In addition, three large flares were detected in the data which all occur near the minimum brightness of the star. We remove the intrinsic stellar variability and combine the light curves of all the filters in order to search for transits by possible planetary companions orbiting in the plane of the nearly edge-on debris disc. The combined final light curve has a sampling of 0.35 min and a standard deviation of 6.8 mmag. We performed Monte Carlo simulations by adding fake transits to the observed light curve and find with 95 per cent significance that there are no Jupiter mass planets orbiting in the plane of the debris disc on circular orbits with periods,   P ≤ 5  d. In addition, there are no young Neptune like planets (with radii 2.5 times smaller than the young Jupiter) on circular orbits with periods,   P ≤ 3  d.  相似文献   

12.
We present 450- and 800-μm images, made with the James Clerk Maxwell Telescope, of the NGC 2024 molecular ridge. The seven previously known compact cores, FIR1–7, have been detected, and FIR5 has been resolved into a compact object and an associated extended source to the east. The estimated masses of the dense cores vary between 1.6 and 5.1 M⊙ per 14-arcsec beam, assuming a dust temperature of 30 K and a dust opacity of κ800 μm = 0.002 m2 kg−1. A spectral index map made from the 450- and 800-μm images shows spatial variations, with the spectral index, α ( F ν ∝ να), being systematically lower towards the dense cores. We interpret this as evidence for a lower value of the frequency dependence of the dust opacity, β, towards the denser cores relative to the surrounding molecular material. This may indicate that grain growth is occurring in the cores, prior to planetesimal formation. By comparing the high-resolution 450-μm image with interferometer maps of the integrated CS(2–1) emission, the previously reported discrepancy between dust continuum emission and molecular line emission is found to be very localized. Depletion and temperature variations are discussed as possible explanations.  相似文献   

13.
We have used maximum entropy eclipse-mapping to recover images of the visual surface brightness distribution of the primary component of the RS CVn eclipsing binary SV Cam, using high-precision photometry data obtained during three primary eclipses with Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope ( HST ). These were augmented by contemporaneous ground-based photometry secured around the rest of the orbit. The goal of these observations was to determine the filling factor and size distribution of star-spots too small to be resolved by Doppler imaging. The information content of the final image and the fit to the data were optimized with respect to various system parameters using the χ2 landscape method, using an eclipse-mapping code that solves for large-scale spot coverage. It is only with the unprecedented photometric precision of the HST data (0.000 15 mag) that it is possible to see strong discontinuities at the four contact points in the residuals of the fit to the light curve. These features can only be removed from the residual light curve by the reduction of the photospheric temperature, to synthesize high unresolvable spot coverage, and the inclusion of a polar spot. We show that this spottedness of the stellar surface can have a significant impact on the determination of the stellar binary parameters and the fit to the light curve by reducing the secondary radius from  0.794 ± 0.009  to  0.727 ± 0.009 R  . This new technique can also be applied to other binary systems with high-precision spectrophotometric observations.  相似文献   

14.
Models of brown dwarf atmospheres suggest they exhibit complex physical behaviour. Observations have shown that they are indeed dynamic, displaying small photometric variations over time-scales of hours. Here, I report results of infrared (0.95–1.64 μm) spectrophotometric monitoring of four field L and T dwarfs spanning time-scales of 0.1–5.5 h, the goal being to learn more about the physical nature of this variability. Spectra are analysed differentially with respect to a simultaneously observed reference source in order to remove Earth-atmospheric variations. The variability amplitude detected is typically 2–10 per cent, depending on the source and wavelength. I analyse the data for correlated variations between spectral indices. This approach is more robust than single band or  χ2  analyses, because it does not assume an amplitude for the (often uncertain) noise level (although the significance test still assumes a shape for the noise power spectrum). Three of the four targets show significant evidence for correlated variability. Some of this can be associated with specific features including Fe, FeH, VO and K  i , and there is good evidence for intrinsic variability in H2O and possibly also CH4. Yet some of this variability covers a broader spectral range which would be consistent with dust opacity variations. The underlying common cause is plausibly localized temperature or composition fluctuations caused by convection. Looking at the high signal-to-noise ratio stacked spectra, we see many previously identified spectral features of L and T dwarfs, such as K  i , Na  i , FeH, H2O and CH4. In particular, we may have detected methane absorption at 1.3–1.4 μm in the L5 dwarf SDSS 0539−0059.  相似文献   

15.
We report infrared photometry of the extrasolar planet HD 209458b during the time of secondary eclipse (planet passing behind the star). Observations were acquired during two secondary eclipses at the NASA Infrared Telescope Facility (IRTF) in 2003 September. We used a circular variable filter (1.5 per cent bandpass) centred at 3.8 μm to isolate the predicted flux peak of the planet at this wavelength. Residual telluric absorption and instrument variations were removed by offsetting the telescope to nearby bright comparison stars at a high temporal cadence. Our results give a secondary eclipse depth of 0.0013 ± 0.0011, not yet sufficient precision to detect the eclipse, whose expected depth is  ∼0.002 –0.003  . We here elucidate the current observational limitations to this technique, and discuss the approach needed to achieve detections of hot Jupiter secondary eclipses at 3.8 μm from the ground.  相似文献   

16.
Observations of the southern Cepheid ℓ Car to yield the mean angular diameter and angular pulsation amplitude have been made with the Sydney University Stellar Interferometer at a wavelength of 696 nm. The resulting mean limb-darkened angular diameter is 2.990 ± 0.017 mas (i.e. ± 0.6 per cent) with a maximum-to-minimum amplitude of 0.560 ± 0.018 mas corresponding to 18.7 ± 0.6 per cent in the mean stellar diameter. Careful attention has been paid to uncertainties, including those in measurements, in the adopted calibrator angular diameters, in the projected values of visibility squared at zero baseline, and to systematic effects. No evidence was found for a circumstellar envelope at 696 nm. The interferometric results have been combined with radial displacements of the stellar atmosphere derived from selected radial velocity data taken from the literature to determine the distance and mean diameter of ℓ Car. The distance is determined to be 525 ± 26 pc and the mean radius  169 ± 8 R  . Comparison with published values for the distance and mean radius shows excellent agreement, particularly when a common scaling factor from observed radial velocity to pulsation velocity of the stellar atmosphere (the p -factor) is used.  相似文献   

17.
Period–colour (PC) and amplitude–colour (AC) relations are studied for the Large Magellanic Cloud (LMC) Cepheids under the theoretical framework of the hydrogen ionization front (HIF)–photosphere interaction. LMC models are constructed with pulsation codes that include turbulent convection, and the properties of these models are studied at maximum, mean and minimum light. As with Galactic models, at maximum light the photosphere is located next to the HIF for the LMC models. However, very different behaviour is found at minimum light. The long-period  ( P > 10 d)  LMC models imply that the photosphere is disengaged from the HIF at minimum light, similar to the Galactic models, but there are some indications that the photosphere is located near the HIF for the short-period  ( P < 10 d)  LMC models. We also use the updated LMC data to derive empirical PC and AC relations at these phases. Our numerical models are broadly consistent with our theory and the observed data, though we discuss some caveats in the paper. We apply the idea of the HIF–photosphere interaction to explain recent suggestions that the LMC period–luminosity (PL) and PC relations are non-linear with a break at a period close to 10 d. Our empirical LMC PC and PL relations are also found to be non-linear with the F -test. Our explanation relies on the properties of the Saha ionization equation, the HIF–photosphere interaction and the way this interaction changes with the phase of pulsation and metallicity to produce the observed changes in the LMC PC and PL relations.  相似文献   

18.
We present time-series Very Large Telescope (VLT) spectroscopy and New Technology Telescope (NTT) photometry of the cataclysmic variable SDSS J220553.98+115553.7, which contains a pulsating white dwarf. We determine a spectroscopic orbital period of   P orb= 82.825 ± 0.089 min  from velocity measurements of the Hα emission line. A period analysis of the light curves reveals a dominant periodicity at   P phot= 44.779 ± 0.038 min  which is not related to the spectroscopic period. However, the light curves do not exhibit a variation at any frequency which is attributable to GW Lib-type pulsations, to a detection limit of 5 mmag. This non-detection is in contrast to previous studies which have found three pulsation frequencies with amplitudes of 9–11 mmag at optical wavelengths. Destructive interference and changes to the thermal properties of the driving layer in direct response to accretion can be ruled out as causes of the non-detection. Alternatively, it is feasible that the object has cooled out of the instability strip since a previous (unobserved) dwarf nova superoutburst. This would be the first time this behaviour has been seen in a cataclysmic variable pulsator. Another possibility is that changes in the surface characteristics, possibly induced by accretion phenomena, have modified the surface visibility of the pulsation modes. Further observations, particularly improved constraints on the time-scale for changes in the mode spectrum, are needed to distinguish among possible explanations.  相似文献   

19.
This paper presents a study of the envelope of the young stellar object (YSO) GGD30IR. What distinguishes this from most other YSOs is the elongated absorption feature seen in silhouette against the background emission in the Spitzer Galactic Legacy Infrared Midplane Survey Extraordinaire 8 μm Infrared Array Camera image of the region. The size and the symmetrical placement of GGD30IR in the centre of this feature suggest that it is an extended envelope, perhaps the remnant of the collapse of the GGD30 core. We have used the extinction in the envelope measured from (i) the reduction in the 8 μm background intensity and (ii) field star colour excesses, to estimate the envelope mass, obtaining values of 0.6 ± 0.2 and  0.5 ± 0.3 M  , respectively. To investigate the envelope further, we have obtained Australia Telescope Compact Array 3 mm continuum and HCO+ line observations of the region. The continuum emission at 3 mm arises from both a compact (unresolved; ≤730 au) core embedded in an extended envelope ∼18 000 au × 38 000 au in extent. We estimate the core mass to be 0.11 ± 0.02  M  . The HCO+ emission is extended in a direction perpendicular to the long axis of the envelope, suggesting it comes from an outflow. The spectral energy distribution (SED) provides a 2–24 μm spectral index, α= 1.0, which places GGD30IR in the Class I YSO category. Integrating the SED provides a luminosity of   L *≃ 25 ± 5 L  .  相似文献   

20.
HR 1217 is a prototypical rapidly oscillating Ap star that has presented a test to the theory of non-radial stellar pulsation. Prior observations showed a clear pattern of five modes with alternating frequency spacings of 33.3 and 34.6 μHz, with a sixth mode at a problematic spacing of 50.0 μHz (which equals  1.5×33.3 μHz)  to the high-frequency side. Asymptotic pulsation theory allowed for a frequency spacing of 34 μHz, but Hipparcos observations rule out such a spacing. Theoretical calculations of magnetoacoustic modes in Ap stars by Cunha predicted that there should be a previously undetected mode 34 μHz higher than the main group, with a smaller spacing between it and the highest one. In this Letter, we present preliminary results from a multisite photometric campaign on the rapidly oscillating Ap star HR 1217 using the 'Whole Earth Telescope'. While a complete analysis of the data will appear in a later paper, one outstanding result from this run is the discovery of a newly detected frequency in the pulsation spectrum of this star, at the frequency predicted by Cunha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号