首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We present Hubble Space Telescope ( HST ) images of seven low-redshift quasars (six taken with the Planetary Camera, one with the Wide Field Camera). These complete the sample of 14 quasars observed by the Faint Object Camera Investigation Definition Team (FOC IDT). Following subtraction of the quasar nuclear light, host galaxies can be seen in all seven cases. A combination of the optical morphology and luminosity profiles of the residual host galaxies and the results of 2D cross-correlation model fitting implies that five of the objects have elliptical host galaxies and two have disc host galaxies. The luminosities vary from slightly fainter than L * to about 1.3 mag brighter than L *.   We discuss the properties of the complete sample of 14 quasars. Nine of the objects appear to have elliptical host galaxies (all six of the radio-loud quasars in the sample as well as three radio-quiet quasars). Two further radio-quiet quasars appear to lie in disc galaxies. The other three objects (radio-quiet, ultraluminous infrared quasars) all lie in violently interacting systems. The sample as a whole has an average luminosity about 0.8 mag brighter than L *, although the radio-loud objects have hosts on average 0.7 mag brighter than the radio-quiet objects.   We compare our results with those from HST imaging of quasars by other authors. Taken together, our observations are in broad agreement with those of Bahcall et al. Radio-loud quasars appear to lie in luminous elliptical galaxies whereas radio-quiet quasars are found to lie in either elliptical or spiral hosts. Host galaxy luminosities (of radio-quiet and radio-loud quasars) are much brighter than would be expected if they followed a Schechter luminosity function.  相似文献   

2.
We present the results of a deep K -band imaging study which reveals the host galaxies around a sample of luminous radio-quiet quasars. The K -band images, obtained at UKIRT, are of sufficient quality to allow accurate modelling of the underlying host galaxy. Initially, the basic structure of the hosts is revealed using a modified clean deconvolution routine optimized for this analysis. Two of the 14 quasars are shown to have host galaxies with violently disturbed morphologies which cannot be modelled by smooth elliptical profiles. For the remainder of our sample, 2D models of the host and nuclear component are fitted to the images using the χ 2 statistic to determine goodness of fit. Host galaxies are detected around all of the quasars. The reliability of the modelling is extensively tested, and we find the host luminosity to be well constrained for nine quasars. The derived average K -band absolute K -corrected host galaxy magnitude for these luminous radio-quiet quasars is 〈 M K 〉=25.15±0.04, slightly more luminous than an L * galaxy. The spread of derived host galaxy luminosities is small, although the spread of nuclear-to-host ratios is not. These host luminosities are shown to be comparable to those derived from samples of quasars of lower total luminosity, and we conclude that there is no correlation between host and nuclear luminosity for these quasars. Nuclear-to-host ratios break the lower limit previously suggested from studies of lower nuclear luminosity quasars and Seyfert galaxies. Morphologies are less certain but, on the scales probed by these images, some hosts appear to be dominated by spheroids while others appear to have disc-dominated profiles.  相似文献   

3.
We investigate the MBH-O'.relation for radio-loud quasars with redshift z<0.83 in Data Release 3 of the Sloan Digital Sky Survey (SDSS).The sample consists of 3772 quasars with better models of the H/~ and [O III] lines and available radio luminosity,including 306 radio-loud quasars,3466 radio-quiet quasars with measured radio luminosity or upper-limit of radio luminosity (181 radio-quiet quasars with measured radio luminosity).The virial supermassive black hole mass (MBH) is calculated from the broad H/line,and the host stellar velocity dispersion (σ*) is traced by the core [O III] gaseous velocity dispersion.The radio luminosity and radio loudness are derived from the FIRST catalog.Our results are as follows:(1) For radio-quiet quasars,we confirm that there is no obvious deviation from the MBH-O".relation defined for inactive galaxies when the uncertainties in MBH and the luminosity bias are concerned.(2) We find that the radio-loud quasars deviate more from the MBH-σ.relation than do the radio-quiet quasars.This deviation is only partly due to a possible cosmological evolution of the MBH-σ* relation and the luminosity bias.(3) The radioluminosity is proportional to M128 0.23-0.16 BH(LBol/LEdd)1.29 0.31-0.24 for radio-quiet quasars and to M3.10 0.6.-0.70(LBol.LEdd)4.18 1.40-1.10 for radio-loud quasars.The weaker dependence of the radio luminosity on the mass and the Eddington ratio for radio-loud quasars shows that other physical effects would account for their radio luminosities,such as the spin of the black hole.  相似文献   

4.
We present the results of fitting deep off-nuclear optical spectra of radio-quiet quasars, radio-loud quasars and radio galaxies at z ≃0.2 with evolutionary synthesis models of galaxy evolution. Our aim was to determine the age of the dynamically dominant stellar populations in the host galaxies of these three classes of powerful active galactic nuclei (AGN). Some of our spectra display residual nuclear contamination at the shortest wavelengths, but the detailed quality of the fits longward of the 4000-Å break provides unequivocal proof, if further proof were needed, that quasars lie in massive galaxies with (at least at z ≃0.2) evolved stellar populations. By fitting a two-component model we have separated the very blue (starburst and/or AGN contamination) from the redder underlying spectral energy distribution, and find that the hosts of all three classes of AGN are dominated by old stars of age 8–14 Gyr. If the blue component is attributed to young stars, we find that, at most, 1 per cent of the visible baryonic mass of these galaxies is involved in star formation activity at the epoch of observation, at least over the region sampled by our spectroscopic observations. These results strongly support the conclusion reached by McLure et al. that the host galaxies of luminous quasars are massive ellipticals which have formed by the epoch of peak quasar activity at z ≃2.5.  相似文献   

5.
We present optical (∼3200 to ∼9000 Å) off-nuclear spectra of 26 powerful active galaxies in the redshift range 0.1≤ z ≤0.3, obtained with the Mayall and William Herschel 4-m class telescopes. The sample consists of radio-quiet quasars, radio-loud quasars (all with −23≥ M V ≥−26) and radio galaxies of Fanaroff–Riley Type II (with extended radio luminosities and spectral indices comparable to those of the radio-loud quasars). The spectra were all taken approximately 5 arcsec off-nucleus, with offsets carefully selected so as to maximize the amount of galaxy light falling into the slit, whilst simultaneously minimizing the amount of scattered nuclear light. The majority of the resulting spectra appear to be dominated by the integrated stellar continuum of the underlying galaxies rather than by light from the non-stellar processes occurring in the active nuclei, and in many cases a 4000-Å break feature can be identified. The individual spectra are described in detail, and the importance of the various spectral components is discussed. Stellar population synthesis modelling of the spectra will follow in a subsequent paper.  相似文献   

6.
7.
We have observed the galaxy environments around a sample of 21 radio-loud, steep-spectrum quasars at 0.5≤ z ≤0.82, spanning several orders of magnitude in radio luminosity. The observations also include background control fields used to obtain the excess number of galaxies in each quasar field. The galaxy excess was quantified using the spatial galaxy–quasar correlation amplitude, B gq, and an Abell-type measurement, N 0.5. A few quasars are found in relatively rich clusters, but on average, they seem to prefer galaxy groups or clusters of approximately Abell class 0. We have combined our sample with literature samples extending down to z ≈0.2 and covering the same range in radio luminosity. By using the Spearman statistic to disentangle redshift and luminosity dependences, we detect a weak, but significant, positive correlation between the richness of the quasar environment and the radio luminosity of the quasar. However, we do not find any epoch dependence in B gq, as has previously been reported for radio quasars and galaxies. We discuss the radio luminosity–cluster richness link and possible explanations for the weak correlation that is seen.  相似文献   

8.
We incorporate a simple scheme for the growth of supermassive black holes into semi-analytic models that follow the formation and evolution of galaxies in a cold dark matter-dominated Universe. We assume that supermassive black holes are formed and fuelled during major mergers. If two galaxies of comparable mass merge, their central black holes coalesce and a few per cent of the gas in the merger remnant is accreted by the new black hole over a time-scale of a few times 107 yr. With these simple assumptions, our model not only fits many aspects of the observed evolution of galaxies, but also reproduces quantitatively the observed relation between bulge luminosity and black hole mass in nearby galaxies, the strong evolution of the quasar population with redshift, and the relation between the luminosities of nearby quasars and those of their host galaxies. The strong decline in the number density of quasars from z ∼2 to z =0 is a result of the combination of three effects: (i) a decrease in the merging rate; (ii) a decrease in the amount of cold gas available to fuel black holes, and (iii) an increase in the time-scale for gas accretion. The predicted decline in the total content of cold gas in galaxies is consistent with that inferred from observations of damped Ly α systems. Our results strongly suggest that the evolution of supermassive black holes, quasars and starburst galaxies is inextricably linked to the hierarchical build-up of galaxies.  相似文献   

9.
《New Astronomy Reviews》2002,46(2-7):171-174
We summarise the results of our recently completed HST R-band study of low-redshift (0.1<z<0.25) FRII radio galaxies along with the host galaxies of quasars of similar redshifts. We find that, like radio galaxies, the hosts of radio-loud quasars and all but the least luminous radio-quiet quasars are massive elliptical galaxies with relatively large scalelengths (≃10 kpc) and luminosities (>2L*). Indeed the quasar hosts are essentially indistinguishable from the radio galaxies in our sample. Apart from the nuclear activity there is little to distinguish the AGN hosts from inactive massive elliptical galaxies.  相似文献   

10.
We report on the search for distant radio-loud quasars in the Cosmic Lens All Sky Survey (CLASS) of flat spectrum radio sources with S 5GHz>30 mJy . Unresolved optical counterparts were selected from APM scans of POSS-I plates, with e <19.0 and red o − e >2.0 colours, in an effective area of ∼6400 deg2. Four sources were found to be quasars with z >4 , of which one was previously known. This sample bridges the gap between the strong radio surveys with S 5GHz>200 mJy and the samples of radio-weak quasars that can be generated via radio observations of optically selected quasars. In addition, four new quasars at z >3 have been found. The selection criteria result in a success-rate of ∼1:7 for radio-loud quasars at z >4 , which is a significant improvement over previous studies. This search yields a surface density of 1 per 1600 deg2, which is about a factor of ∼15 lower than that found in a similar search for radio-quiet quasars at z >4 . The study presented here is strongly biased against quasars beyond z >4.5 , since the e -passband of the POSS-I only samples the spectra shortward of 1200 Å at these redshifts.  相似文献   

11.
In this paper, we collect the redshift, bolometric luminosity, the full- width at half maximum of the Hβ emission line, the monochromatic luminosity at 5100 Å and the radio loudness for the sample of 117 quasars, including 20 radio-quiet quasars (RQQs) and 97 radio-loud quasars (RLQs). With the reverberation mapping method we calculate the black hole mass and Eddington ratio for this sample, as well as the radio luminosity from the total 5 GHz ?ux density. By analyzing the correlations among them, we obtain the following conclusions: (1) The black hole mass has weak correlations with the bolometric luminosity, radio loudness and radio luminosity for the RQQs, and has strong correlations with the bolometric luminosity, radio loudness and radio luminosity for the RLQs; (2) For the RQQs, the bolometric luminosity has weak correlations with the radio luminosity and 5 100 Å monochromatic luminosity, and for the RLQs, the bolometric luminosity has strong correlations with the radio luminosity and 5 100 Å monochromatic luminosity; (3) The RQQs and RLQs differ in the distributions of the black hole mass, emission line width and Eddington ratio. Based on these results, we suggest: the difference of emission line width between RQQs and RLQs is probably caused by the difference of black hole mass; the fundamental difference between RQQs and RLQs is caused by the difference of their intrinsic physical nature; the black hole mass, black hole spin, Eddington ratio, and host galaxy morphology are the important parameters to explain the origin of radio loudness and the double-peaked distribution; and the radio jet is closely related with the accretion rate of disk.  相似文献   

12.
We present the results of a K -band imaging survey of 40 arcmin2 in fields around 14 radio-loud active galactic nuclei (AGN), comprising six radio galaxies and eight quasars, with z >1.5. The survey, which is 80 per cent complete to K <19.2 mag and complemented by R -band imaging, aimed at investigating whether extremely red objects are present in excess around high- z AGN, and to study the environment of z >1.5 radio galaxies and radio-loud quasars. At 18< K <19 mag, the differential galaxy counts in our fields suggest a systematic excess over the general field counts. At K <19.2 mag we find an excess of galaxies with R − K >6 in comparison with the general field. Consistently, we also find that the R − K colour distribution of all the galaxies in the AGN fields is significantly redder than the colour distribution of the field galaxies. On the other hand, the distribution of the R − K colours is indistinguishable from that of galaxies taken from literature fields around radio-loud quasars at 1< z <2. We discuss the main implications of our findings and we compare the possible scenarios that could explain our results.  相似文献   

13.
We present the rest-frame optical and infrared colours of a complete sample of  1114 z < 0.3  galaxies from the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Legacy Survey and the Sloan Digital Sky Survey (SDSS). We discuss the optical and infrared colours of our sample and analyse in detail the contribution of dusty star-forming galaxies and active galactic nuclei (AGN) to optically selected red sequence galaxies.
We propose that the optical  ( g − r )  colour and infrared  log( L 24/ L 3.6)  colour of galaxies in our sample are determined primarily by a bulge-to-disc ratio. The  ( g − r )  colour is found to be sensitive to the bulge-to-disc ratio for disc-dominated galaxies, whereas the  log( L 24/ L 3.6)  colour is more sensitive for bulge-dominated systems.
We identify ∼18 per cent (195 sources) of our sample as having red optical colours and infrared excess. Typically, the infrared luminosities of these galaxies are found to be at the high end of star-forming galaxies with blue optical colours. Using emission-line diagnostic diagrams, 78 are found to have an AGN contribution and 117 are identified as star-forming systems. The red  ( g − r )  colour of the star-forming galaxies could be explained by extinction. However, their high optical luminosities cannot. We conclude that they have a significant bulge component.
The number densities of optically red star-forming galaxies are found to correspond to ∼13 per cent of the total number density of our sample. In addition, these systems contribute ∼13 per cent of the total optical luminosity density, and 28 per cent of the total infrared luminosity density of our SWIRE/SDSS sample. These objects may reduce the need for 'dry mergers'.  相似文献   

14.
We use semi-analytic modelling on top of the Millennium simulation to study the joint formation of galaxies and their embedded supermassive black holes. Our goal is to test scenarios in which black hole accretion and quasar activity are triggered by galaxy mergers, and to constrain different models for the light curves associated with individual quasar events. In the present work, we focus on studying the spatial distribution of simulated quasars. At all luminosities, we find that the simulated quasar two-point correlation function is fit well by a single power law in the range  0.5 ≲ r ≲ 20  h −1 Mpc  , but its normalization is a strong function of redshift. When we select only quasars with luminosities within the range typically accessible by today's quasar surveys, their clustering strength depends only weakly on luminosity, in agreement with observations. This holds independently of the assumed light-curve model, since bright quasars are black holes accreting close to the Eddington limit, and are hosted by dark matter haloes with a narrow mass range of a few  1012  h −1 M  . Therefore, the clustering of bright quasars cannot be used to disentangle light-curve models, but such a discrimination would become possible if the observational samples can be pushed to significantly fainter limits. Overall, our clustering results for the simulated quasar population agree rather well with observations, lending support to the conjecture that galaxy mergers could be the main physical process responsible for triggering black hole accretion and quasar activity.  相似文献   

15.
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41 ± 0.03 for   M r ≈−18  ellipticals and 0.76 ± 0.04 for   M r ≈−22.5  ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth.
There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS DR6 are consistent with flat discs with a mean and dispersion of thickness to diameter ratio of (21 ± 2) per cent, and a face-on ellipticity, e , of  ln( e ) =−2.33 ± 0.79  . Not including the effects of dust in the model leads to discs that are systematically rounder by up to 60 per cent. More luminous spiral galaxies tend to have thicker and rounder discs than lower luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies.
The marginalized value of the edge-on r -band dust extinction E 0 in spiral galaxies is   E 0≃ 0.45  mag for galaxies of median colours, increasing to   E 0= 1  mag for   g − r > 0.9  and   E 0= 1.9  for the luminous and most compact galaxies, with half-light radii  <2  h −1 kpc  .  相似文献   

16.
The relationship between the black hole mass and velocity dispersion indicated with [O  iii ] linewidth is investigated for a sample of 87 flat-spectrum radio quasars selected from the Sloan Digital Sky Survey Data Release 3 quasar catalogue. We found that the   M BH−σ[O III]  relation is different from the Tremaine et al. relation for nearby inactive galaxies, with a larger black hole mass at given velocity dispersion. There is no strong evidence of cosmology evolution in the   M BH−σ[O III]  relation up to   z ∼ 0.8  . A significant correlation between the [O  iii ] luminosity and broad-line region (BLR) luminosity is found. When transferring the [O  iii ] luminosity to narrow-line region (NLR) luminosity, the BLR luminosity is, on average, larger than the NLR one by about one order of magnitude. We found a strong correlation between the synchrotron peak luminosity and NLR luminosity, which implies a tight relation between the jet physics and accretion process.  相似文献   

17.
We present optical and infrared broad-band images, radio maps, and optical spectroscopy for the nuclear region of a sample of nearby galaxies. The galaxies have been drawn from a complete volume-limited sample for which we have already presented X-ray imaging. We modelled the stellar component of the spectroscopic observations to determine the star formation history of our targets. Diagnostic diagrams were used to classify the emission-line spectra and determine the ionizing mechanism driving the nuclear regions. All those sources classified as active galactic nuclei present small Eddington ratios  (∼10−3–10−6)  , implying a very slow growth rate of their black holes. We finally investigate the relative numbers of active and normal nuclei as a function of host galaxy luminosity and find that the fraction of active galaxies slowly rises as a function of host absolute magnitude in the   M B ∼−12  to −22 range.  相似文献   

18.
We have used far-infrared data from IRAS , Infrared Space Observatory ( ISO ), Spitzer Wide-Area Infrared Extragalactic (SWIRE), Submillimetre Common User Bolometer Array (SCUBA) and Max-Planck Millimetre Bolometer (MAMBO) to constrain statistically the mean far-infrared luminosities of quasars. Our quasar compilation at redshifts  0 < z < 6.5  and I -band luminosities  −20 < I AB < −32  is the first to distinguish evolution from quasar luminosity dependence in such a study. We carefully cross-calibrate IRAS against Spitzer and ISO , finding evidence that IRAS 100-μm fluxes at <1 Jy are overestimated by ∼30 per cent. We find evidence for a correlation between star formation in quasar hosts and the quasar optical luminosities, varying as star formation rate (SFR)  ∝ L 0.44±0.07opt  at any fixed redshift below   z = 2  . We also find evidence for evolution of the mean SFR in quasar host galaxies, scaling as  (1 + z )1.6±0.3  at   z < 2  for any fixed quasar I -band absolute magnitude fainter than −28. We find no evidence for any correlation between SFR and black hole mass at  0.5 < z < 4  . Our data are consistent with feedback from black hole accretion regulating stellar mass assembly at all redshifts.  相似文献   

19.
The spatial clustering amplitude ( B gq) is determined for a sample of 44 powerful active galactic nuclei (AGN) at z ≃0.2. No significant difference is detected in the richness of the cluster environments of the radio-loud and radio-quiet subsamples, both of which typically inhabit environments as rich as Abell class ≃0. Comparison with radio luminosity-matched samples from Hill & Lilly and Wold et al. suggests that there is no epoch-dependent change in environment richness out to at least z ≥0.5 for either radio galaxies or radio quasars. Comparison with the APM cluster survey shows that, contrary to current folklore, powerful AGN do not avoid rich clusters, but rather display a spread in cluster environment, which is perfectly consistent with being drawn at random from the massive elliptical population. Finally, we argue that virtually all Abell class ≃0 clusters contained an active galaxy during the epoch of peak quasar activity at z ∼2.5.  相似文献   

20.
We analyse the scaling of the X-ray power density spectra with the mass of the black hole in the examples of Cyg X-1 and the Seyfert 1 galaxy NGC 5548. We show that the high-frequency tail of the power density spectrum can be successfully used for the determination of the black hole mass. We determine the masses of the black holes in six broad-line Seyfert 1 galaxies, five narrow-line Seyfert 1 galaxies and two quasi-stellar objects (QSOs) using the available power density spectra. The proposed scaling is clearly appropriate for other Seyfert galaxies and QSOs. In all but one of the normal Seyferts, the resulting luminosity to Eddington luminosity ratio is smaller than 0.15, with the source MCG -6-15-30 being an exception. The applicability of the same scaling to a narrow-line Seyfert 1 is less clear and there may be a systematic shift between the power spectra of NLS1 and S1 galaxies of the same mass, leading to underestimation of the black hole mass. However, both the method based on variability and the method based on spectral fitting show that those galaxies have relatively low masses and a high luminosity to Eddington luminosity ratio, supporting the view of those objects as analogues of galactic sources in their high, soft or very high state, based on the overall spectral shape. The bulge masses of their host galaxies are similar to that of normal Seyfert galaxies, so they do not follow the black hole mass–bulge mass relation for Seyfert galaxies, being evolutionarily less advanced, as suggested by Mathur. The bulge mass–black hole mass relation in our sample is consistent with being linear, with the black hole to bulge ratio ∼0.03 per cent, similar to Wandel and Laor for low-mass objects, but significantly shifted from the relation of Magorrian et al. and McLure & Dunlop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号