首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to evaluate the mobility of trace elements during subduction metamorphism, the geochemistry of blueschists of the Dzhebash Group from the Kurtushibinsky Range of the Western Sayan (basins of the Koyard and Oresh rivers) was studied, and the chemical compositions of high-pressure rocks were compared with weakly altered basalts from the same region. The protoliths of the blueschists were probably metabasalts of similar age from the ophiolitic dike complex, the pillow lavas of the Verkhnekoyardsky Formation crowning them, and the pillow basalts of the Kurtushibinsky Formation. The spatial association of the blueschists with the Kurtushibinsky Formation basalts and identical trace element patterns in these rocks allow us to suppose the cogenetic character of their protoliths. Geological and geochemical data suggest their formation in an oceanic plateau setting, whereas the mafic rocks of the dike complex and the Verkhnekoyardsky Formation show island-arc affinity. A comparison of the Dzhebash Group blueschists with the chemically equivalent Kurtushibinsky basalts showed that high-pressure metamorphism caused only minor changes in their compositions. These rocks are almost indistinguishable with respect to such fluid-immobile components as Ti, P, Zr, Hf, Y, and middle and heavy rare earth elements. On the other hand, the blueschists are strongly depleted in potassium. The selective removal of Rb and Ba during blueschist metamorphism was observed only in those samples that showed the most extensive removal of potassium.  相似文献   

2.
In this paper, we present data on major and trace elements in highly metamorphosed mafic rocks from the granulite-gneiss complex of the Angara-Kan block (southwestern Siberian craton), identify igneous protoliths of the metabasites, and assess the mobility of elements during metamorphism. Two types of rocks with different geologic relations and compositions were recognized. Garnet-bearing two-pyroxene granulites (Cpx + Pl + Grt + Opx) occur as sheet- and boudin-like bodies, which were folded and deformed with their host paragneisses. Dikes, which in most cases underwent only brittle deformation, are composed of metabasites characterized by the assemblage Cpx + Hbl + Pl + Grt. The major element compositions of igneous protoliths for the mafic granulites and metabasite dykes correspond to variously differentiated basaltic magmas. The protoliths of the metabasites are depleted in K2O, LILE, Zr, Nb, and LREE and were derived from a depleted mantle source. The major and trace element compositions of the dike metabasites are similar to those of low-K tholeiitic basalts of oceanic island arcs. Continental intraplate basalts derived from an enriched mantle source are possible igneous protoliths for the mafic granulites enriched in Ba, LREE, Nb, Ta, Zr, and Hf. It is assumed that lower Rb, Th, and U contents in the mafic granulites compared with continental flood basalts, high K/Rb and La/Th, and moderate Th/U ratios reflect the loss of Rb, Th and U during granulite-facies metamorphism.  相似文献   

3.
ABSTRACT

Metaconglomerates in the lawsonite–blueschist facies unit of the Catalina Schist (California) contain gabbroic and dioritic clasts exhibiting evidence for extensive metasomatism during high-P/T metamorphism. We performed whole-rock and in situ analyses of these metaconglomerate clasts to better constrain the composition of infiltrating fluids and to elucidate the history of chemical alteration. Petrographic evidence for this alteration includes replacements of plagioclase by phengite and sodic amphibole rims developed on igneous hornblende. These observations regarding mineral replacement are reinforced by corresponding shifts in chemical compositions. Relative to compositions of presumed protoliths, whole-rock compositions of the metaconglomerate clasts show enrichments in elements that are relatively mobile in aqueous fluids (LILE: K, Rb, Cs, and Ba; Li, B, N), and elevated δ15N, and show depletions in Ca and Sr. Electron and ion microprobe data, and analyses of mineral separates, show that phengite and sodic amphibole are enriched in LILE and Li and B, respectively, relative to the igneous phases they have replaced. Oxygen and C isotope compositions of finely disseminated calcite in the clasts, and of calcite in veins cross-cutting or mantling the clasts, are consistent with crystallization from fluids previously equilibrated with metasedimentary rocks within the same unit. The same fluids are implicated as the source for the Li, B, N, and LILE enrichments. These metaconglomerate clasts provide unique records of forearc metasomatism due to the presumed extremely low and well-constrained concentrations of fluid-mobile elements in their protoliths and the previously published, larger-scale fluid–rock context into which the observed metasomatic changes can be placed.  相似文献   

4.
Study of the geochemical fingerprints of four geologically distinct suites of volcanic rocks on Cyprus are used to sketch a tectonic history of the island. Lavas from the Mamonia complex resemble alkalic within-plate basalts; lower pillow lavas and diabases of the Troodos Massif have features both of ocean-floor and island-arc tholeiites and could have been erupted in an interarc basin; the upper pillow lavas of the Troodos Massif resemble primitive tholeiitic basalts from island arcs; lavas from the Kyrenia range resemble transitional to alkalic within-plate basalts. The low TiO2 concentrations from the Troodos Massif may indicate a slow spreading rate. The Sr concentrations in the upper pillow lavas indicate an eruption at a maximum distance of 80 km above a Benioff zone. The results suggest formation of the Troodos Massif in the Campanian by spreading in an interarc basin followed by eruption of island-arc tholeiites. Obduction of continental material and ocean islands may have taken place in the Maestrichtian and Middle Miocene.  相似文献   

5.
The petrology and geochemistry of East Island have been investigated for the first time. The island is a deeply dissected remnant of a Pleistocene shield volcano, one of several emerging from an oceanic rise forming part of the southwest branch of the Indian Ocean ridge system. The lavas form a flat-lying sequence of oceanites, ankaramites, olivine basalts and feldsparphyric basalts, the ankaramites containing 1 cm phenocrysts of diopsidic clinopyroxene. X-Ray fluorescence analyses were made of 43 lavas for the major elements plus Cr, Ni, Rb, Sr, Ba, Pb, and Th and the minerals were analysed by electron microprobe. The elements Mg, Cr, and Ni are strongly concentrated in spinel, olivine and clinopyroxene phases and in the ankaramites and oceanite lavas with maximum concentrations of 18% MgO, 1,000 ppm Cr, 380 ppm Ni, while Al, Ti, K, Rb, Ba, Th, Na, P, Sr concentrate in the groundmass and in the feldspathic and aphyric basalts. The elements Si, Ca, Fe and Mn remain virtually constant throughout the series.Correlations of +0.95 or better exist between the concentrations of elements within the two groups given above, and negative correlations between elements in different groups. The fractionation trends are unique with respect to the constant Al/Ti ratio and K/Sr ratio, but all trends may be reproduced by calculating the effect of subtraction of suitable amounts of chromite, olivine and low Ti clinopyroxene from an alkaline olivine basalt parent. Either fractionation has taken place involving these three phases under low pressure conditions or it is the result of different degrees of partial melting of mantle material.A complex magnesian chrome spinel is found in the ankaramites and is often jacketed by a chromian titanomagnetite. A complete series of intermediate compositions appears to exist between the two end members.  相似文献   

6.
The geochemistry of pillow basalts from the Chonos Metamorphic Complex (CMC) and the Eastern Andes Metamorphic Complex of Aysén (EAMC) indicates contrasting tectonic environments for these basic lavas. They have E-MORB and continental alkaline affinities, respectively. The MORB-like basalts are metamorphosed in the pumpellyite–actinolite metamorphic facies, with mineral associations indicative of relatively high P/T metamorphism. The continental alkali basalts exhibit pumpellyite–chlorite assemblages developed in a low to intermediate P/T regime. These contrasting eruptive and metamorphic settings agree with recently established age differences between the complexes, and invalidate direct correlation between them.  相似文献   

7.
Bransfield Strait is a narrow basin separating the South Shetland Islands from the Antarctic Peninsula and is attributed to recent back-arc extension behind the South Shetland volcanic arc. The volcanic islands of Deception and Bridgeman are situated close to the axis of spreading, whereas Penguin Island lies slightly to the north of this axis. The mineralogy, petrology and geochemistry of the lavas of the three volcanoes have been studied in order to provide information on the nature of magmatism associated with the initial stages of back-arc spreading.Deception Island lavas range from olivine basalt to dacite, and all are highly sodic, with high Na/K, K/Rb, Ba/Rb and Zr/Nb ratios and with CeN/YbN = 2. Incompatible elements increase systematically between basalt and rhyodacite, while Sr decreases, suggesting that fractional crystallisation is the dominant process relating lava compositions. The rhyodacites have high concentrations of Zr, Y and the REE and negative Eu anomalies and are compositionally similar to oceanic plagiogranite. Bridgeman Island lavas are mostly basaltic andesites, but the levels of many incompatible elements, including REE, are significantly lower than those of Deception lavas, although CeN/YbN ratios and 87Sr/86Sr ratios (0.7035) are the same. Penguin Island lavas are magnesian, mildly alkaline olivine basalts with a small range of composition that can be accommodated by fractional crystallisation of olivine, clinopyroxene and/or chromite. Penguin lavas have higher 87Sr/86Sr (0.7039) and CeN/ YbN (4) ratios than Deception and Bridgeman lavas. The Rb/Sr ratios of Deception and Penguin basalts (ca. 0.01) are much too low to account for their present 87Sr/86Sr ratios.Modelling suggests that the source regions of the lavas of the three volcanoes share many geochemical features, but there are also some significant differences, which probably reflects the complex nature of the mantle under an active island arc combined with complex melting relationships attending the initial stages of back-arc spreading. Favoured models suggest that Bridgeman lavas represent 10–20% melting and the more primitive Deception lavas 5–10% melting of spinel-peridotite, whereas Penguin lavas represent less then 5% melting of a garnet-peridotite source. The mantle source for Bridgeman lavas seems to have undergone short-term enrichment in K, Rb and Ba, possibly resulting from dewatering of the subducted slab. Hydrous melting conditions may also account for the more siliceous, high-alumina nature and low trace element contents of Bridgeman lavas.  相似文献   

8.
《Geodinamica Acta》2013,26(5):349-361
The most widespread blocks within the Cretaceous ophiolitic mélange (North Anatolian ophiolitic mélange) in Central Anatolia (Turkey) are pillow basalts, radiolarites, other ophiolitic fragments and Jurassic-Cretaceous carbonate blocks. The pillow basalts crop out as discrete blocks in close relation to radiolarites and ophiolitic units in Cretaceous ophiolitic mélange.

The geochemical results suggest that analyzed pillow basalts are within-plate ocean island alkali basalts. The enrichment of incompatible elements (Nb, Ta, Light REE, Th, U, Cs, Rb, Ba, K) demonstrates the ocean island environment (both tholeiites and alkali basalts) and enriched MORB. Dated calcareous intrafills and biodetrital carbonates reveal an age span of Callovian—Early Aptian. The thin-shelled protoglobigerinids, belonging to the genus Globuligerina, in the calcareous intrafills between pillow basalt lobes indicates a Callovian—Barremian age interval, most probably, Valanginian to Late Barremian. The volcanic and radiolarite detritus-bearing orbitolinid—Baccinella biodetrital carbonates dated as Late Barremian-Early Aptian in age, were probably deposited around atolls and have a close relationship with the ocean island pillow basalts.

The results collectively support the presence of a seamount on the Neo-Tethyan oceanic crust during the Valanginian—Late Barremian and atolls during the Late Barremian-Early Aptian interval. The presence of an oceanic crust older than that seamount along the Northern Branch of Neo-Tethys is conformable with the geodynamic evolution of the Tethys.  相似文献   

9.
Abundances of some rare-earth elements (REE) in twelve pillow lavas from the Upper Pillow Lavas and Axis Sequence of the Troodos Massif are reported. The samples consist of three fresh basalts and nine zeolite facies metabasalts, metamorphosed at temperatures between 0 and 200° C. All give similar light rare-earth element (LREE) depleted patterns, indicating that hydrothermal metamorphism within this temperature range does not appreciably affect these REE patterns. The LREE depletion is consistent with a petrogenetic model in which Troodos formed at a spreading axis. Variations in profile shape indicate that mantle melting beneath the axis may have taken place during a series of discrete episodes.  相似文献   

10.
The Izmir-Ankara-Erzincan suture zone of Turkey is a broad zone of ophiolitic mélange containing numerous fragmented blocks ranging in age from Triassic to Cretaceous. Stratigraphic sequences for various mélange units are compared, together with the geochemistry of associated basaltic pillow lavas of Cretaceous age. A review of geochemical data for the pillow lavas demonstrate: (a) a dominant group of alkalic basalts with enriched incompatible elements, variable Zr/Y and Zr/Nb ratios, and (b) a range of tholeiitic basalts with slightly depleted to mildly enriched (normalized) rare earth patterns, (La/Yb)N 0.4-3.0, and generally low Zr/Y ratios. The alkalic basalts can be chemically matched to Pacific Ocean seamounts, although the close association of red radiolarites and cherts suggests that many basalts represent the margins of such structures, rather than the main seamount edifice. Nd-Sr isotope data are typical for ocean island basalts and represent an admixture of a dominant EM-1 source and a depleted MORB-like source. Enhanced δ18O compositions are a consequence of submarine alteration and not crustal contamination. Tholeiitic compositions have affinities with both N- and E-type MORB, although most are probably representative of tholeiitic ocean islands. Overall the basalts are mainly representative of structures built on the ocean floor, rather than the oceanic crust itself, being scraped off the subducting crust and preserved in the mélange of the accretionary wedge.  相似文献   

11.
黄建  黄方  肖益林 《地球科学》2019,44(12):4050-4056
贫碳酸盐的蚀变洋壳具有与新鲜洋中脊玄武岩一致的Mg同位素组成,说明低温和高温洋壳蚀变不会导致Mg同位素分馏.大别山港河和花凉亭的早期变质脉比榴辉岩具有偏高的δ56Fe-δ26Mg值,而且早期到晚期变质脉的δ56Fe-δ26Mg值逐渐降低.这些结果说明,在流体-岩石反应和流体演化过程中,Fe-Mg同位素发生了显著的分馏,且矿物溶解-再沉淀是同位素分馏的控制因素.相比洋中脊玄武岩,蚀变洋壳和变质脉具有相似或偏高的δ56Fe-δ26Mg值,说明蚀变洋壳脱水产生的流体富集重Fe-Mg同位素,不能解释弧岩浆岩的轻Fe/重Mg同位素组成.因此,弧岩浆岩异常的Fe-Mg同位素组成是熔体提取和富集54Fe-26Mg的蛇纹岩流体交代地幔楔两个过程共同作用的结果.   相似文献   

12.
黑龙江省五大连池、科洛、二克山火山岩的成因,是一个重要而又复杂的问题.作者根据岩相学、地球化学、模式计算等一系列工作,认为这组钾质玄武岩是含金云母的尖晶石二辉橄榄岩低度局部熔融的产物。岩浆在上升过程中,经历了结晶分异和同化混染,从而形成一套具成因联系的新生代大陆板内钾质碱性玄武岩。本文试从微量元素方面对此结论提供证据,并显示钾质熔岩及幔源包体的微量元素特征,由此说明地幔交代作用在钾质系列岩浆形成过程中的重要性。  相似文献   

13.
Pillow lavas in Bompoka island of the Andaman–Nicobar islands, forming a part of Sunda–Burmese forearc, are composed of plagioclase and clinopyroxene microphenocrysts in a fine-grained ferruginous groundmass along with glass. They are also characterized by several quench plagioclase and clinopyroxene morphologies. Zr/TiO2 versus Nb/Y relationship of these pillow lavas show that these are tholeiitic basalts in composition. These basalts have low MgO (5.19–6.12 wt%), Ni (84–118 ppm), and Cr (144–175 ppm) abundance and high FeO(T)/MgO (1.71–1.92) ratios, reflecting their fractionated nature. In Th/Yb versus Nb/Yb and Ti/Yb versus Nb/Yb binary diagrams, they show N-MORB affinity. However, La/Nb–Y and Ce/Nb–Th/Nb relationships along with a slight LREE depleted (LaN/YbN = 0.75–0.82) pattern and high Ba/Zr (0.28–0.40) ratios and LILE (K, Rb, Ba, Sr and Th) enrichment relative to N-MORB, suggest their back-arc basin basalt affinity. It is inferred that these pillow basalts have been derived from a metasomatised N-MORB-like mantle source in a trench-distal (wider) back-arc basin, probably near the leading edge of the Eurasian continent during Early to Late Cretaceous times, prior to the currently active Andaman–Java subduction system.  相似文献   

14.
 Mohns Ridge lavas between 71 and 72°30′N (∼360 km) have heterogeneous compositions varying between alkali basalts and incompatible-element-depleted tholeiites. On a large scale there is a continuity of incompatible element and isotopic compositions between the alkali basalts from the island Jan Mayen and Mohns Ridge tholeiites. The variation in isotopes suggests a heterogeneous mantle which appears to be tapped preferentially by low degree melts (∼5%) close to Jan Mayen but also shows its signature much further north on Mohns Ridge. Three lava types with different incompatible element compositions [e.g. chondrite-normalized (La/Sm)N<1 to >2] occur in the area at 72°N and were generated from this heterogeneous mantle. The relatively depleted tholeiitic melts were mixed with a small degree melt from an enriched source. The elements Ba, Rb and K of the enriched melt were probably buffered in the mantle by residual amphibole or phlogopite. That such a residual phase is stable in this region of oceanic mantle suggests both high water contents and low mantle temperatures, at odds with a hotspot origin for Jan Mayen. Instead we suggest that the melting may be induced by the lowered solidus temperature of a “wet” mantle. Mohns MORB (mid ocean ridge basalt) and Jan Mayen area alkali basalts have high contents of Ba and Rb compared to other incompatible elements (e.g. Ba/La >10). These ratios reflect the signature of the mantle source. Ratios of Ce/Pb and Rb/Cs are normal MORB mantle ratios of 25 and 80, respectively, thus the enrichments of Ba and Rb are not indicative of a sedimentary component added to the mantle source but were probably generated by the influence of a metasomatizing fluid, as supported by the presence of hydrous phases during the petrogenesis of the alkali basalts. Geophysical and petrological models suggest that Jan Mayen is not the product of hotspot activity above a mantle plume, and suggest instead that it owes its existence to the unique juxtaposition of a continental fragment, a fracture zone and a spreading axis in this part of the North Atlantic. Received: 3 May 1995 / Accepted: 6 November 1995  相似文献   

15.
Recent pantelleritic lavas comprise the whole of the isolated and outlying volcano of Mayor Island. Mineralogically, they are characterised by phenocrystic anorthoclase-sodic27 sanidine, quartz, sodic ferrohedenbergite, and cossyrite. Nine new chemical analyses of the lavas are presented (including one residual glass), confirming their strongly sodic and peralkaline nature. One analysis is also given of trachybasalt, which occurs as common inclusions in the mantling pumice deposits. These inclusions are characterised by abundant feldspar phenocrysts. Detailed trace element data is presented for five of the lava samples, representing the mam volcanic phases and the trachybasalt inclusions. The following conclusions are presented:
  1. The lavas exhibit a marked enrichment (relative to “average” granitic compositions) of the alkalis; rare earths; highly charged cations (e.g. Nb, Zr, Hf, Mo, U, Th); Ga, Be, and Cl. In contrast, they show a spectacular depletion of Sr, Ba, and Mg, and a less intense depletion of Ca, Sc, V, and Cr.
  2. The pantelleritic rare earth patterns show a similar degree of fractionation to the sedimentary pattern, and are dominated by a very strong Eu depletion. This suggests feldspar subtraction. The trachybasalt pattern shows a similar degree of fractionation, but exhibits enrichment of Eu.
  3. The trachybasalt inclusions are characterised by a trace element assemblage comparable to alkali basalts, except for higher Ba and exceedingly high K/Rb and K/Cs ratios. The chemical and mineralogical data suggest that they represent partial feldspar accumulate rocks.
  4. There is a progressive enrichment of nearly all trace and minor elements in the youngest lavas. This includes those elements that show an overall depletion in the lavas. The younger lavas are also enriched in Na and Fe, but further depleted in Al.
The data is interpreted to indicate that the pantellerites were derived by crystal differentiation from a postulated mildly alkali olivine basalt parent — feldspar fractionation is considered to have been extremely important in this process. It is shown that the element enrichment occurring in the younger lavas may not be wholely explained by crystallisation differentiation alone — it is possible that some additional process is required. It is also shown that the observed enrichment of sodium in the youngest lavas can only occur during crystal fractionation if quartz, as well as anorthoclase, separate from the magma. This is due to the higher alkali abundances of the anorthoclase phenocrysts, relative to the pantellerite compositions. There is limited evidence that post-eruptive devitrification of some of the lavas has resulted in some modification of the lava chemistry, notably sodium loss.  相似文献   

16.
Important mafic–ultramafic masses have been located for the first time in the intersection area between the Keraf Shear Zone and the Nakasib Suture Zone of the Nubian Shield. The masses, comprising most of the members of the ophiolite suite, are Sotrebab and Qurun complexes east of the Nile, and Fadllab complex west of the Nile. The new mafic–ultramafic masses are located on the same trend of the ophiolitic masses decorating the Nakasib Suture. A typical complete ophiolite sequence has not been observed in these complexes, nevertheless, the mafic–ultramafic rocks comprise basal unit of serpentinite and talc chlorite schists overlain by a thick cumulate facies of peridotites, pyroxenites and layered gabbros overlain by basaltic pillow lavas with dolerite dykes and screens of massive gabbros. Associated with pillow lavas are thin layers of carbonates and chert. The best section of cumulate mafic–ultramafic units has been observed in Jebel Qurun and El Fadlab complexes, comprising peridotites, pyroxenites and layered gabbros. Dolerite dykes and screens of massive gabbros have been observed with basaltic pillow lava sections in Wadi Dar Tawaiy. The basal ultramafic units of the complexes have been fully or partly retrograded to chlorite magnetite schist and talc to talc-carbonate rocks (listowenites), especially in the Jebel Qurun and Sotrebab complexes. Petrographically, the gabbros (layered and massive) and the basaltic pillow lavas show mineral assemblages of epidote amphibolite facies. The mafic members from the three complexes show a clear tholeiitic trend and oceanic floor affinity. The pillow lavas plot in the field of oceanic floor basalt, namely in the back arc field. Primitive mantle normalized spider diagram of the pillow lavas reveals a closer correspondence to Enrich-Mid-Oceanic Ridge Basalt (E-MORB) type, which is confirmed by the flat chondrite normalized Rare Earth Elements (REE) pattern. Field, petrographical and geochemical evidence supports ophiolitic origin of the three complexes. The newly discovered ophiolitic complexes mark the western continuation of the Nakasib Suture Zone.  相似文献   

17.
Mineralogy,geochemistry and petrogenesis of Kurile island-arc basalts   总被引:1,自引:0,他引:1  
Whole-rock (major- and trace-element) and mineral chemical data are presented for basaltic rocks from the main evolutionary stages of the Kurile island arc, NW Pacific. An outer, inactive arc contains a Cretaceous-Lower Tertiary sequence of tholeiitic, calcalkaline and shoshonitic basalts. The main arc (Miocene-Quaternary) is dominated by weakly tholeiitic, with lesser, alkalic basalts. The mineralogy of Kuriles basalts is characterised by An-rich plagioclases, a continuous transition from chromites to titanomagnetites, pyroxenes with low Fe3+ contents and without strong Fe-enrichment, abundance of groundmass pigeonites and the absence of amphiboles. There is an increase in K2O contents both along-arc (northwards) and towards the reararc side. The basalts show an exceptionally wide but continuous range of K2O contents (0.1–4.7%) which correlate with other LIL element contents. Tholeiitic basalts with low LIL element contents, La/Yb and Th/U, but high K/ Rb, P2O5/La and Zr/Nb were derived from depleted, lherzolitic mantle which had suffered fluid metasomatism by K, Rb, Cs, Sr, Ba, Pb and H2O only. Alkali basalts are also thought to be derived from depleted mantle but melt metasomatism involved addition of all LIL elements to a garnet lherzolite mantle. The Kuriles basalts and their mantle sources range continuously between these two end-member compositions. The metasomatic fluids/melts were probably released by early dehydration and later melting within subducted oceanic lithosphere though the process is not adequately constrained.  相似文献   

18.
The elements Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr and Ba have been determined by X-ray fluorescence for 65 basaltic and differentiated lavas from Anjouan, while Sc, V, Cr, Co, Ni, Cu, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba and Hf have been determined by spark-source mass spectrometry for selected lavas from Anjouan and Grande Comore, the most recently formed of the Comores Archipelago. Basaltic lavas studied range through nephelinite, basanite, alkali basalt and hypersthene-normative basalt, while differentiated lavas belong mainly to the trends: alkali basalt - trachyte and basanite - phonolite. The results indicate that during magmatic fractionation behaviour of large-ion elements such as Rb, Sr, Y, Zr, Ba and Nb is controlled by size/charge criteria, resulting in their exclusion from crystallising phases until the late trachytic and phonolitic stages. These elements are clearly fractionated by amphibole, plagioclase and alkali feldspar. Variation of transition elements due to crystal-liquid differentiation is largely in accord with the predictions of crystal field theory. The behaviour of Zn is not readily accounted for. Fractionation of K/Rb, K/Cs and probably Zr/Nb and discrepancies in abundance levels of large-ion elements between the main basaltic types are best accounted for in terms of high-pressure processes and probably also reflect inherent features of source-region geochemistry, coupled with the effects of variable partial melting.  相似文献   

19.
High-Mg lavas are characteristic of the mid-Miocene volcanism in Inner Asia.In the Vitim Plateau,small volume high-Mg volcanics erupted at 16-14 Ma.and were followed with voluminous moderate-Mg lavas at 14-13 Ma.In the former unit,we have recorded a sequence of(1) initial basaltic melts,contaminated by crustal material,(2) uncontaminated high-Mg basanites and basalts of transitional(K-Na-K) compositions,and(3) picrobasalts and basalts of K series;in the latter unit a sequence of(1) initial basalts and basaltic andesites of transitional(Na-K-Na) compositions and(2) basalts and trachybasalts of K-Na series.From pressure estimation,we infer that the high-Mg melts were derived from the sublithospheric mantle as deep as 150 km,unlike the moderate-Mg melts that were produced at the shallow mantle.The 14-13 Ma rock sequence shows that initial melts equilibrated in a garnet-free mantle source with subsequently reduced degree of melting garnet-bearing material.No melting of relatively depleted lithospheric material,evidenced by mantle xenoliths,was involved in melting,however.We suggest that the studied transition from high-to moderate-Mg magmatism was due to the mid-Miocene thermal impact on the lithosphere by hot sub-lithospheric mantle material from the Transbaikalian low-velocity(melting) domain that had a potential temperature as high as 1510℃.This thermal impact triggered rifting in the lithosphere of the Baikal Rift Zone.  相似文献   

20.
西藏白朗地区蛇绿岩火山岩中单斜辉石的化学特征   总被引:2,自引:0,他引:2       下载免费PDF全文
近年来,应用岩石的地球化学和矿物学特征区分不同构造位置的现代火山岩,已被人们所注意。同时,根据这种观测资料所确定的一般特征,亦已广泛地应用于古火山岩,并获得了一些古地质环境的概念。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号