首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To clarify the generating mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and the induced tsunami, we determined high-resolution tomographic images of the Northeast Japan forearc. Significant lateral variations of seismic velocity are visible in the megathrust zone, and most large interplate thrust earthquakes are found to occur in high-velocity (high-V) areas. These high-V zones may represent high-strength asperities at the plate interface where the subducting Pacific plate and the overriding Okhotsk plate are coupled strongly. A shallow high-V zone with large coseismic slip near the Japan Trench may account for the mainshock asperity of the 2011 Tohoku-oki earthquake. Because it is an isolated asperity surrounded by low-velocity patches, most stress on it was released in a short time and the plate interface became decoupled after the Mw 9.0 earthquake. Thus the overriding Okhotsk plate there was shot out toward the Japan Trench and caused the huge tsunami.  相似文献   

2.
The recent geodynamics of Sakhalin Island is best described by the convergence of the Eurasian and North American (Sea of Okhotsk) lithospheric plates, which is manifested in the high seismic activity of the island. In North Sakhalin, the plate boundary is thought to correspond to a system of roughly N-S-trending faults, which belong to the North Sakhalin deep fault, and the Upper-Piltun fault; the latter was ruptured by the 1995 M 7.2 Neftegorsk earthquake. This study first confirmed that the stationary motion of the Sea of Okhotsk plate is retarded on this fault to form with time a series of drag folds and stress field anomalies. The latter are released during the subsequent (in a 400⦒o 1000-year period) strong earthquakes by seismic sliding on the flanks of the Upper Piltun fault. The 2003–2006 GPS observations revealed the free state of this fault zone with relative slip rates of 5–6 mm/yr.  相似文献   

3.
This paper presents the results of reconstruction of the modern tectonic stress field of the northern part of the Kuril–Okhotsk region prior to the May 24, 2013 deep-focus earthquake. This earthquake is the strongest deep-focus earthquake not only in the Okhotsk region but also in the world over the entire period of seismic observations. The tectonic stress field is reconstructed using the method of cataclastic analysis (MCA) of the earthquake source mechanism data. New data on the depth variations of regional tectonic stress field are obtained.  相似文献   

4.
It has been observed that the intensity of underwater gas flares unexpectedly increased after the deep-focus (625.9 km) earthquake that occurred in the Sea of Okhotsk on August 14, 2012. In this regard, we have analyzed the data resulting from interpretation of the focal mechanism for the strike-slip earthquakes which occurred in the Benioff seismic zone of the subducting Pacific Plate within the Sea of Okhotsk region over the period from 1977 to 2010. The NNW sinistral and NE dextral faults are found to form a conjugate system due to the WNW stress field. We have established that the dextral faults are mostly common at a depth of about 200 km along the Kuril Islands extension, while the sinistral ones are concentrated in the Nosappu Fracture Zone and traced to the NNW down to a depth of 680 km. The area of the gas flare discharge and gas hydrate accumulations have the same (NNW) direction. Thus, we have revealed that the Nosappu Fracture Zone appears to be a structure which controls fluid fluxes, providing permeability of the subducting slab of the Pacific Plate for ascending fluids from the lower mantle.  相似文献   

5.
The Okhotsk deep focus earthquake (M w = 8.3), the largest in the history of instrumental seismology, occurred on May 24, 2013, at 05:45 UTC in the Sea of Okhotsk near the western coast of the Kamchatka Peninsula. For the first time we have succeeded in catching the field of horizontal and vertical coseismic offsets generated by a strong deep seismic event, and investigating its characteristics using continuous GPS measurements. Based on these data and taking into account the seismological information, we have developed a dislocation model of the Okhotsk deep focus earthquake.  相似文献   

6.
Detailed seismic zoning of Sakhalin based on seismological, tectonic, geomorphological, hydrogeological, and other data is discussed. It is shown that strong crustal earthquakes occurred at the boundary between the Eurasian and Okhotsk plates and their recurrence in Central Sakhalin is equal to the duration of the tectonic cycle (75 years). This boundary in North Sakhalin is marked by the Upper-Piltun fault, which was the epicenter of the 1995 Neftegorsk earthquake with an intensity of 9. The analysis of paleosoils in the fault zone showed that such events repeat with an interval of 400 years. The development of large oil and gas reservoirs on the Sakhalin shelf will be accompanied by intensification of the seismicity, which can reach a magnitude of M = 6.0–6.5 in the Lunskoye field.  相似文献   

7.
对强震发生后周围断层及未来强震形势的影响研究具有非常重要的意义.青藏高原东北缘强震频发,对该区的历史强震进行研究很有必要.以青藏高原东北缘及邻区为目标建立3D黏弹性有限元模型,依据中国大陆Ⅰ级块体和青藏高原Ⅱ级块体划分及活动断裂分布确定模型块体边界及断裂位置,使用GPS观测资料作为模型边界条件,数值模拟1900年以来7级以上强震发生的动力学过程.计算结果表明:① 青藏高原东北缘及邻区区域水平构造应力场特征大致呈从西向东,从南向北减小分布.② 模拟结果说明强震主要发生在背景场应力和强震引起的等效应力加载的断层上.③ 历史强震序列对1970年以来地震的影响:康定地震加速触发了炉霍地震的发生;康定、炉霍地震对松潘地震无加速触发作用;康定、炉霍、松潘地震对共和地震无加速触发作用;炉霍、松潘、共和地震对汶川地震的影响较小;汶川地震延缓了芦山地震的发生.   相似文献   

8.
This study looks at 102 typhoons that passed nearby or traversed Taiwan from 1995 to 2011 and their potential association with ordinary earthquakes. The study found an overall association of 63.75?%. Interestingly, prior to the September 21, 1999, M w ?=?7.6 Chi-Chi earthquake, only 4 of 24 typhoons (16.67?%) were potentially associated with the earthquakes. This figure increased substantially after the Chi-Chi earthquake to 78 typhoons being possibly associated with earthquakes (78.21?%). From the results of the chi-square test, both correlations between the typhoons and their possible triggered earthquakes before and after Chi-Chi earthquake have significant difference. The results are discussed in terms of changes in crustal conditions after the Chi-Chi earthquake and potential mechanisms, for example, heavy rainfall and atmospheric pressure causing the ordinary earthquakes. The atmospheric pressure effect predominates over the rainfall effect during the typhoon time period by statistical multivariate approach. However, to test rainfall effect is a non-neglected mechanism; seven small earthquakes without typhoon occurring near a region experiencing heavy rainfall and earthquake activity related to accumulated rainfall values from January 1995 to July 2012 are examined.  相似文献   

9.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

10.
Two recent and three historical earthquakes which occurred along the Nankai trough, marking the northern plate boundary between the Philippine Sea and the Asian Plate, are studied mainly on the basis of the data of crustal deformations and tsunami waves. These earthquakes are the 1946 Nankaido, the 1944 Tonankai, the 1854 Ansei I, II and the 1707 Hoei earthquakes. They are all interpreted as low-angle thrust faults at the plate boundary, with the oceanic side underthrusting northwestward against southwestern Japan. The fault parameters of the historical earthquakes are assumed here to be common to those of the recent two earthquakes, except for the magnitude of dislocation.The entire fault region, which extends for 530 km from western Shikoku Island in the west to the Tokai district in the east, is divided into four fault planes, which are denoted the planes A, B, C and D, from west to east, respectively. Then, the five earthquakes may be attributed to the planes A, B, C and D, in the following manner: the Nankaido earthquake, A + B; the Tonankai earthquake, C; the Ansei II earthquake, A + B; the Ansei I earthquake, C + D; and the Hoei earthquake, A + B + C + D.The latest cycle of earthquake migration seems incomplete as proved by the recent inactivity in D. Consequently, the future major earthquake next to occur is expected there, off the Tokai district. Eight further ancient earthquakes from A.D. 684 to 1605 are also discussed. Taking the results of the foregoing studies into consideration, their sequence is well interpreted by the four migration cycles. Topographical data, tilt of coastal terraces and location of hinge lines, prove that the thrusting has continued all along the extension of the Nankai trough for at least 300,000 years.  相似文献   

11.
It is shown that the deep structure of the lithosphere played a decisive role in the recent deformations and seismicity in the Far East. The regional variations in the composition of the mantle xenoliths and Neogene-Quaternary basalts provided grounds for mapping the NE-extending wedge-shaped block of the Fe-rich mantle at the base of Sikhote Alin. Its boundaries continue the Yilan-Yiton and Fushun-Mishan strike-slip faults of the Tan-Lu zone, along which this mantle block was displaced along the continental margin in the Jurassic-Cretaceous. The localization of strong (M ≥ 5.0) earthquake epicenters in the Amur region shows that such a mantle structure determines the key features of the regional deformations and seismotectonics. Under the dominant western compression due to the Amur Plate’s motion, the mantle wedge is extruded in the northeastern direction to provide an additional stress at the Okhotsk Plate boundary. This process resulted in the formation of the Sakhalin high-seismicity zone at the front of the mantle block. In its characteristics, the zone is similar to the convergence area between the Indian and Eurasian plates. In both cases, the main deformation and seismicity features were caused by the horizontal pressure of the tectonic block, the frontal part of which is marked by regularly alternating compression and extension zones. In Sakhalin, strong earthquakes with M ≥ 6.0 are confined to the seismic suture 50 km wide with concentrated compression. This structure is discordant relative to the main faults of the island, being parallel to the front of the mantle wedge. The two migration cycles established for the Sakhalin earthquakes with M ≥ 6.0 correspond to periods of 1907–1971 and 1995–2007. During both cycles, the first shocks occurred in the north and subsequently migrated in the southeastern direction simultaneously decreasing in the depths of the earthquake foci. The systematic migration implies that asymmetrical compression is responsible for both the extrusion of the mantle wedge and its southeastward clockwise rotation. The latter plays the decisive role in the initiation of strong earthquakes on Sakhalin.  相似文献   

12.
断块大地构造与地震活动的构造物理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
马瑾 《地质科学》2009,44(4):1063-1082
断块大地构造理论几乎涉及地震活动的各个方面: 1)地震记录表明不但是强震,大多数6级以上地震也分布在构造块体边界上,构造块体控制了地震分布; 2)地震活动规律体现在块体整体活动中。例如,鄂尔多斯地块周边单个断陷带的地震活跃期与平静期长短不一,无明显规律。但当把鄂尔多斯地块周边作为一个整体,其地震活动在时间上显示了准周期性; 3)地块运动通过周边断层交替活动实现。从断层活动相互作用的时间间隔和错动形式出发可把它分为强震交替活动型(又可分长时间间隔和短时间间隔两类)和强震与弱震或断层蠕动交替活动型。强震交替活动型中时间间隔很短的双震活动较早被发现。强震交替活动型中时间间隔很长的类型虽然不易识别,但是依赖于中国历史地震目录,还是发现鄂尔多斯地块周边山西断陷带与渭河断陷带在历史上的3次交替活动等; 强震与弱震或断层蠕动型的交替活动型很不容易被发现,仅在台网较密,观测条件较好的北京地区观测到。4)利用一些实验结果讨论了交替活动的规律。此外,结合断块大地构造理论对一些地震现象进行了讨论。  相似文献   

13.
Doklady Earth Sciences - The GPS-based coseismic observations in the epicentral zone of the earthquake on the Sea of Okhotsk of May 24, 2013, are analyzed. The peculiarities of the changes in...  相似文献   

14.
极震区的地震动与潜在震源区内重大工程安全   总被引:11,自引:4,他引:7  
潜在震源区是未来可能发生破坏性地震的震源所在地区 ,区内的地震属近场或直下型 ,其地震破坏和地震动特征相应于已发生地震的极震区。近期国内外诸多强烈地震的实际资料和相关研究成果表明 ,直下型地震不仅地震峰值加速度大 ,且竖向和水平峰值加速度比值也有别于远场地震的统计关系。文中从极震区岩土体破坏、地震动特点及地震地质灾害等方面对潜在震源区内的重大工程问题进行了探讨  相似文献   

15.
Hourly monitoring of electrical conductivity (EC) of groundwater along with groundwater levels in the 210 m deep boreholes (specially drilled for pore pressure/earthquake studies) and soil Rn gas at 60 cm below ground level in real time, in the Koyna-Warna region (characterized by basaltic rocks, >1500 m thick, and dotted with several sets of fault systems), western India, provided strong precursory signatures in response to two earthquakes (M 4.7 on 14/11/09, and M 5.1 on 12/12/09) that occurred in the study region. The EC measured in Govare well water showed precursory perturbations about 40 h prior to the M 5.1 earthquake and continued further for about 20 h after the earthquake. In response to the M 4.7 earthquake, there were EC perturbations 8 days after the earthquake. In another well (Koyna) which is located 4 km north of Govare well, no precursory signatures were found for the M 4.7 earthquake, while for M 5.1 earthquake, post-seismic precursors were found 18 days after the earthquake. Increased porosity and reduced pressure head accompanied by mixing of a freshwater component from the top zone due to earthquakes are the suggested mechanisms responsible for the observed anomalies in EC. Another parameter, soil Rn gas showed relatively proportional strength signals corresponding to these two earthquakes. In both the cases, the pre-seismic increase in Rn concentration started about 20 days in advance. The co-seismic drop in Rn levels was less by 30% from its peak value for the M 4.7 earthquake and 50% for the M 5.1 earthquake. The Rn anomalies are attributed to the opening and closing of micro-fractures before and during the earthquake. On line monitoring of these two parameters may be useful to check the entire chemistry change due to earthquake which may help to forecast impending earthquakes.  相似文献   

16.
《Gondwana Research》2010,17(3-4):512-526
The spatial distribution of deep slow earthquake activity along the strike of the subducting Philippine Sea Plate in southwest Japan is investigated. These events usually occur simultaneously between the megathrust seismogenic zone and the deeper free-slip zone on the plate interface at depths of about 30 km. Deep low-frequency tremors are weak prolonged vibrations with dominant frequencies of 1.5–5 Hz, whereas low-frequency earthquakes correspond to isolated pulses included within the tremors. Deep very-low-frequency earthquakes have long-period (20 s) seismic signals, and short-term slow-slip events are crustal deformations lasting for several days. Slow earthquake activity is not spatially homogeneous but is separated into segments some of which are bounded by gaps in activity. The spatial distribution of each phase of slow earthquake activity is usually coincident, although there are some inconsistencies. Very-low-frequency earthquakes occur mainly at edges of segments. Low-frequency earthquakes corresponding to tremors of relatively large amplitude are concentrated at spots where tremors are densely distributed within segments. The separation of segments by gaps suggests large differences in stick-slip and stable sliding caused by frictional properties of the plate interface. Within each segment, variations in the spatial distribution of slow earthquakes reflected inhomogeneities corresponding to the characteristic scales of events.  相似文献   

17.
地震成因综述   总被引:2,自引:0,他引:2  
本文从地质、地球物理、地球化学和能量等方面分析了地震的成因。源于地核地幔的流体携带大量热能,为岩浆起源、地震形成和地热田提供了充足的能量,然而岩石聚集的应变能不足以产生中等以上的地震。大地震(M≥6.0)绝大部分分布在海沟、火山岛弧和大陆裂谷带等拉张性构造带,如环太平洋海沟、东印度洋海沟、大洋中脊、非洲裂谷、地中海-黑海-里海-波斯湾、欧亚大陆中部的伊塞克湖-阿拉湖-乌布苏湖-库苏古尔湖-贝加尔湖裂谷。流体在地球深部物质运动、地壳运动、地震和火山活动中扮演着重要作用。全球到处发育的隐爆角砾岩表明隐爆作用的普遍性。深部流体向上运移、向地表逃逸的过程中发生爆炸,在地球内部产生了不同震级和震源深度的地震。因此,隐爆应该是产生地震的主要机制。地震成因的隐爆模型不仅能够更好地解释不连续、各向异性的非弹性介质中发生的各类地震,譬如中深源震、震群、慢地震和非双力偶性地震等,而且能够更好地诠释全球地震、火山和地热带在空间上的吻合以及隐爆角砾岩型矿藏的形成。  相似文献   

18.
Volcanic earthquakes on Kamchatka can be divided into two large groups: earthquakes with depths of 0–40 km generated by stresses which arise during magma migration in the Earth's crust under volcanos (the first group), and the earthquakes directly connected with the eruptions (volcanic tremor, explosive earthquakes, etc.—the second group). This paper presents a review of some energetic, spectral and spatio-temporal characteristics of the Kamchatkan volcanic earthquakes of the first group and their relationship with volcanic phenomena.

Seismicity related to volcanic activity has the following specific features: a local and predominantly swarm-like pattern of earthquake origination; iteration of earthquake swarms in the same seismically active zones; many shallow and relatively small events; a small magnitude limit (up to 5.5–6); the existence of longer-period variations of volcanic earthquake foci as compared to the tectonic one; and a comparatively high value of the slope of the earthquake recurrence plot. At the same time, similarity in behaviour of some parameters of the seismic regime during the preparation and development of eruptions and prior to large earthquakes, as well as the destruction of samples, are noted.  相似文献   


19.
本文是作者在1975~1977年间青藏铁路(格尔木-那曲地段)沿线水文地质、工程地质调查所获资料基础上,参考了后期他人在该区段研究的成果撰写而成。文中主要涉及活动构造、地质灾害及工程评价三大部分,其中特别是活动构造部分,除了所表现的一般标志外,重点探讨了活动构造与现代地震和古地震的关系、活动构造带与地震构造带的对应关系、活动断裂的活动年龄及其活动速率、活动断裂与地震地表破裂以及主要地震构造带中的地震活动周期等诸多方面的问题,并结合铁路沿线地质灾害类型,在综合分析基础上,首次较系统地将铁路沿线工程地质评价划分为:①良好的;②一般的;③不良好的和④极不良好的等四大类型工程地质地段,从而为现今青藏铁路建设进一步详查和评价提供了重要依据。   相似文献   

20.
In view of the potential importance of long-period ground motion in the design of large structures, near-field ground displacement is computed by the elastic dislocation theory for several earthquake fault models. The validity of such computations is confirmed by comparing the computed seismogram with the observed long-period seismogram of the 1923 Kanto earthquake. The ground motions are computed for three hypothetical earthquakes, a hypothetical Kanto earthquake, Tokai earthquake and Nemuro-Oki earthquake. The location and the nature of the faulting of these earthquakes are predicted by plate tectonics and precise earthquake mechanism studies. Major conclusions are: Tokyo may suffer, in the hypothetical Kanto earthquake, ground motions about half as large as those experienced in the 1923 Kanto earthquake; Hamamatsu, a large city on the Tokai coast, may experience in the hypothetical Tokai earthquake ground motions which are as large as, or even larger than, those experienced in the epicentral area of the 1923 Kanto earthquake; the hypothetical Nemuro-Oki earthquake may cause ground motions as large as those experienced in the 1968 Tokachi-Oki earthquake on the coastal cities in Hokkaido.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号