首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The variability of the optical and X-ray fluxes from the binary GS 1826-238 is investigated. An epoch-folding analysis of the optical data obtained with the RTT-150 telescope in 2003–2004 has revealed periodic brightness variations in the source with a period P orb = 2.24940 ± 0.00015 h with a high statistical significance. When estimating the detection significance of the periodic signal, we have specially taken into account the presence of a powerful aperiodic component (“red noise”) in the source’s brightness variability. The source’s power density spectra in the frequency range ∼10−5–0.01 Hz have been obtained. We have detected a statistically significant break in the power density spectrum of GS 1826-238 at a frequency ν br ≈ (8.48 ± 0.14) × 10−5 Hz in both optical and X-ray energy bands. We have estimated the orbital period of the binary GS 1826-238 using the correlation between the break frequency in the power density spectrum and the orbital period of binaries, P orb ∝ 1/ν br, found by Gilfanov and Arefiev (2005): P orb = 3.7 ± 0.8 h and P orb = 11.3 ± 5.9 h when using Sco X-1 and 1H 16267-273, respectively, as reference sources. It seems to us that the method for estimating the orbital periods of low-mass X-ray binaries using the correlation P orb ∝ 1/ν br may turn out to be very promising, especially for persistent low-luminosity X-ray binaries.  相似文献   

2.
We present the results of 10 years of photometric CCD observations of the intermediate polar V709 Cas obtained by using different instruments during 2003–2013. We detected a new variability with a period of Pnew = 0.d016449979(5) which seems to be real. The spin variability is not clearly seen in all our data, so we are unable to study any evolution of the white dwarf rotation. From the best night (in 2010) we obtained a spin period of Pspin = 311.s8(5). We analyzed the orbital variability using (OC) analysis. We found no variations of the orbital period on a timescale of 10 years, but the linear fit to the (OC) diagram shows that the value of the orbital period is Porb = 0.d2222123(6), which is close to the earlier published values. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The time evolution behaviour of the superhumps of the dwarf nova1RXS J232953.9+ 062814 is investigated with the wavelet analysis method. On the basis of two nights CCD photometry performed during its first superoutburst as well as other published brightness data, we reveal the superhump's time-dependence as a function of periods and time. Our light curves, which phased in the rapid decay ending portion of the superoutburst and in the dawn of a following normal outburst, are important to help trace the superhump evolution for the star. Both the superhump period and the orbital period of the binary system are detected in the present data. We obtain P sh=0.0458±0.0002d and P orb=0.0450±0.0002d. They agree with those existing values. The two periods exchanged their roles during the superhump evolution. The general profile of brightness fading over the outbursts roughly followed an exponential decay law or a form of a five-order polynomial. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We present the results of photometric observations of a bright cataclysmic variable TT Ari with an orbital period of 0.13755 days. CCD observations were carried out with the Russian-Turkish RTT 150 telescope in 2001 and 2004 (13 nights). Multi-color photoelectric observations of the system were obtained with the Zeiss 600 telescope of SAO RAS in 1994–1995 (6 nights). In 1994–1995, the photometric period of the system was smaller than the orbital one (0 . d 132 and 0 . d 134), whereas it exceeded the latter (0 . d 150 and 0 . d 148) in 2001, 2004. An additional period exceeding the orbital one (0 . d 144) is detected in 1995 modulations. We interpret it as indicating the elliptic disc precession in the direction of the orbital motion. In 1994, the variability in colors shows periods close to the orbital one (0 . d 136, b-v), as well as to the period indicating the elliptic disk precession (0 . d 146, w-b). We confirm that during the epochs characterized by photometric periods shorter than the orbital one, the quasi-periodic variability of TT Ari at time scales about 20 min is stronger than during epochs with long photometric periods. In general, the variability of the system can be described as a “red” noise with increased amplitudes of modulations at characteristic time scales of 10–40 min.  相似文献   

5.
Molkov  S. V.  Lutovinov  A. A.  Falanga  M. 《Astronomy Letters》2015,41(10):562-574

We have investigated the temporal variability of the X-ray flux measured from the high-mass X-ray binary LMCX-4 on time scales from several tens of days to tens of years, i.e., exceeding considerably the orbital period (~1.408 days). In particular, we have investigated the 30-day cycle of modulation of the X-ray emission from the source (superorbital or precessional variability) and refined the orbital period and its first derivative. We show that the precession period in the time interval 1991–2015 is near its equilibrium value P sup = 30.370 days, while the observed historical changes in the phase of this variability can be interpreted in terms of the “red noise” model. We have obtained an analytical law from which the precession phase can be determined to within 5% in the entire time interval under consideration. Using archival data from several astrophysical observatories, we have found 43 X-ray eclipses in LMC X-4 that, together with the nine eclipses mentioned previously in the literature, have allowed the parameters of the model describing the evolution of the orbital period to be determined. As a result, the rate of change in the orbital period ? orb/P orb = (1.21 ± 0.07) × 10?6 yr?1 has been shown to be higher than has been expected previously.

  相似文献   

6.
《New Astronomy》2002,7(6):349-358
The properties of the photometric orbital modulation of the X-ray binary HZ Her/Her X-1 and its variations over a long time interval (decades) are studied by the statistical methods using photographic plates of Sonneberg Observatory. The moving averages of the light curve in the long-lasting active state (1959–1993) show that both the smoothed orbital light curve and the smoothed scatter of its residuals σmag display striking asymmetries with respect to the orbital phase φorb=0.5; they are apparent both in the whole data set and in the segments of the 35 day cycle. The light curve near the orbital phase 0.5 can be characterized by the maximum either flat-topped and symmetric or sharp and lagging behind φorb=0.5. The course of σmag is largely asymmetric with respect to the primary minimum, usually with a smooth decrease of σmag within φorb=0.2–0.6 and a steep rise within φorb=0.6–0.85. All these facts suggest the presence of an additional source of variations, in addition to the geometric effects of the precessing disk. The role of the interaction of the mass stream with the precessing warped disk is suggested as a possible explanation. Our data for the extended active state within the years 1959–1993 revealed that the mean brightness at all orbital phases remains stable and displays at most marginal secular trends. The brightness during the short active states (1934–1937 and 1941–1949) is shown to be lower than in the active state within 1959–1993 and is attributed to a lower degree of heating of the secondary star.  相似文献   

7.
Long-term photometric and spectroscopic observations of the yellow symbiotic star LT Del are analyzed. UBV light curves are presented. Based on the observations of 20 cycles, we have refined the orbital period of the star, P = 476 · d 0 ± 1 · d 0. The brightness has been found to be unstable at some orbital phases with an amplitude up to 0 · m 3. We have measured the fluxes in hydrogen and helium emission lines and in continuum and investigated their relationship to the orbital period. The fluxes in hydrogen and HeI lines follow the UBV light curves in phase; the He II 4686 Å flux does not depend on the phase and is constant within the accuracy of our measurements. The intensity ratio of the 4686 Å andHβ lines changes from 0.2 to 0.9 over the period. We interpret the spectroscopic observations based on the hypothesis of heating and ionization of the stellar wind from a cool component by high-frequency radiation from a hot star with a temperature of 105 K. We have estimated the spectral type of the cool star from our photometry and its continuum energy distribution as a bright K2–4 red giant branch halo star. The bolometric luminosity and mass loss rate have been estimated for the K component to be L bol ~ 700L and \(\dot{M}\) ~ 10?8 M yr?1, respectively.  相似文献   

8.
We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes t = 4.57 × 109 yr closely corresponds to our Sun. We show that a planet of one Jupiter mass revolving around a star of one solar mass will fall onto the star in the main-sequence lifetime of the star due to dynamical tides if the initial orbital period of the planet is less than P orb ≈ 2.8 days. Planets of one Jupiter mass with an orbital period P orb ≈ 2 days or shorter will fall onto a star of one and a half and two solar masses in the mainsequence lifetime of the star.  相似文献   

9.
We present the results of spectroscopic and photometric studies of a new polar CRTS CSS130604 J 215427+155714, conducted at the telescopes of the SAO RAS. Analysis of the photometric series of observations allowed to clarify the orbital period of the system, P o = 0. d 0672879 (±0.0000003). We build radial velocity curves and trace the intensity variations in the Hβ and Hγ hydrogen lines and He II λ 4686 ?A ionized heliumline. Based on the Hβ and He II lines we build Doppler maps. It is shown that the line formation region is localized near the Lagrange point. The following parameter estimates of the system are obtained:M 1 = 0.83 ± 0.10M , M 2 = 0.15 ± 0.01M , q = M 2/M 1 = 0.18 ± 0.03, i = 53? ± 5?. Based on the results of spectral, photometric and previously published polarimetric observations the possible geometric model of the system is discussed.  相似文献   

10.
B andV photometry of DM UMa obtained between January, 1980 and June, 1984 is presented. Analysis yields a mean photometric period 7d.478±0d.010, compared to the known oribital period of 7d.492±0d.009. Light curves obtained during any two seasons do not agree in any of the following: shape, amplitude, phases of the light maxima and minima, mean light level, or brightness at the light maxima and minima. From the change inB-V over the photometric period, we concludethat the hemisphere visible during the light minimum is cooler than that seen during light maximum. The mean colorB-V=1m.065±0m.002 is consistent with K1 III or K2 IV. Phases of light minima lie on two well-separated groups with different slopes; the corresponding periods are 7d.471±0d.002 and 7d.481±0d.001, in dicating that both migrate linearly towards decreasing orbital phase. In terms of the starspot model this indicates that two respective centers of activity were situated at different longitudes and latitudes on a differentially rotating star. From circumstantial evidence we infer that the dark region seen from 1979 onwards disintegrated sometime between the 1982 and 1983 observing seasons, leaving behind an area of relatively high surface brightness. We can put a lower limit of about four years on the lifetime of a center of activity.  相似文献   

11.
We present new radial velocities of the high‐mass X‐ray binary star 4U 2206+54 based on optical spectra obtained with the Coudé spectrograph at the 2 m RCC telescope of the Rozhen National Astronomical Observatory, Bulgaria in the period November 2011–July 2013. The radial velocity curve of the He I δ6678 Å line is modeled with an orbital period Porb = 9.568 d and an eccentricity of e = 0.3. These new measurements of the radial velocity resolve the disagreements of the orbital period discussions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
R and I band CCD observations of the nova V1494 Aql during July-November 2002 are reported and the V, R, and I light curves are analyzed. The orbital light curve of this nova has an eclipse-like form with two unequal humps before and after the eclipse. The approach to the eclipse lasts twice as long as the emergence from it. The overall duration of the eclipse is about 0.45P orb. The depth of eclipse increases with wavelength and averages 0m.3 (V), 0m.5 (R), and 0m.7 (I). The secondary, shallow minimum has an average depth of 0m.1 in R and I and about 0m.03 in V. The hump at phase 0.65 is higher than the one at phase 0.17. The most probable explanation for the observed variations in the light with the phase of the orbital period may be self eclipsing of the accretion column in the magnetic exploding variable (white dwarf) together with partial eclipsing of the accretion region by the secondary component.  相似文献   

13.
NewUBV photometry, obtained between late 1965 and early 1969, is presented and combined with existing published photometry to derive an improved ephemeris for times of maximum brightness: 2439758.00+4 d . .1328n. On leave from Dyer Observatory, Vanderbilt University, Nashville, Tennessee, U.S.A.  相似文献   

14.
We present the 2005–2010 outburst history of the SU UMa-type dwarf HS 0417+7445, along with a detailed analysis of extensive time-series photometry obtained in March 2008 during the second recorded superoutburst of the system. The mean outburst interval is 197 ± 59 d, with a median of 193 d. The March 2008 superoutburst was preceded by a precursor outburst, had an amplitude of 4.2 magnitudes, and the whole event lasted about 16 days. No superhumps were detected during the decline from the precursor outburst, and our data suggests instead that orbital humps were present during that phase. Early superhumps detected during the rise to the superoutburst maximum exhibited an unusually large fractional period excess of ? = 0.137 (Psh = 0.0856(88) d). Following the maximum, a linear decline in brightness followed, lasting at least 6 days. During this decline, a stable superhump period of Psh = 0.07824(2) d was measured. Superimposed on the superhumps were orbital humps, which allowed us to accurately measure the orbital period of HS 0417+7445, Porb = 0.07531(8) d, which was previously only poorly estimated. The fractional superhump period excess during the main phase of the outburst was ? = 0.037, which is typical for SU UMa dwarf novae with similar orbital period. Our observations are consistent with the predictions of the thermal-tidal instability model for the onset of superoutbursts, but a larger number of superoutbursts with extensive time-series photometry during the early phases of the outburst would be needed to reach a definite conclusion on the cause of superoutbursts.  相似文献   

15.
Based on high-resolution spectra taken near the He I 6678 Å line for the massive binary system 103 Tau, we have detected a weak absorption component belonging to the binary’s secondary component. We have measured the radial velocities of both components, improved the previously known orbital parameters, and determined the new ones. The binary has an orbital period P orb = 58.305d, an orbital eccentricity e = 0.277, a radial velocity semi-amplitude of the bright component K A = 44.8 km s?1, and a component mass ratio M A /M B = 1.77. The absence of photometric variability and the estimates of physical parameters for the primary component suggest that the binary most likely has a considerable inclination of the orbital plane to the observer, i ≈ 50°?60°. In this case, the secondary component is probably a normal dwarf of spectral type B5–B8. Based on the spectra taken near the H α line, we have studied the variability of the emission profile. It is shown to be formed in the Roche lobe of the secondary component, but no traces of active mass exchange in the binary have been detected.  相似文献   

16.
A total of 321 observations of the Delta Scuti star BD –6°4932, obtained in 1968 by Hall and Mallama (1970), are analyzed. We find four frequencies which represent the light curves satisfactorily.The three periods:P 1=0 . d 240,P 3=0 . d 182 andP 4=0 . d 114 seem to correspond to the radial modes of pulsation withK=0, 1, and 3, respectively. The last periodP 2=0 . d 220 can be related to a non-radial mode.  相似文献   

17.
We report the physical and orbital parameters of the visible component of the spectroscopic binary HD37737 (m V = 8.03). The observations were performed with the 1.2-m telescope of the Kourovka Astronomical Observatory of the Ural Federal University in 2012 and the 6-m BTA telescope of the SAO RAS in 2007 and 2009. Radial velocities were measured separately from each spectral line of the list by the cross-correlation method with a synthetic spectrum. The latter was calculated using the grids of non-LTE model atmospheres with solar chemical compositions. A significant difference in the epochs of observations (2005–2012) allowed to refine the orbital period of the star (7 · d 84705) and the orbital elements of the binary system. We obtained an estimate of the mass function f(m) = 0.23 ± 0.02M . The best agreement between the synthetic and observed spectra is achieved at T eff = 30 000 K and log g = 3.50 according to the observations on both instruments. The obtained parameters correspond to a star of spectral type O9.5 III, with mass estimated at 26 ± 2M . The minimum mass estimate of the secondary component of the binary is 6.2 ± 0.5M . We have discovered a fact that the velocities, obtained from different spectral lines, differ, which is typical for giant stars. Engaging additional spectra, obtained in 2005 with the 2.1-m KPNO telescope, we investigated the effect of this fact on the estimate of the speed of the system’s center of mass. The difference in the velocities of various lines is approximately the same in the spectra, obtained at all the three instruments. The obtained ratios suggest that the deeper layers of the atmosphere of the star are moving with a greater velocity than the outer layers. Depending on the line, the estimate of the heliocentric velocity of the binary’s center of mass varies in the range from ?11 to 1 km/s.  相似文献   

18.
Differential photometry of the KI IV-III RS CVn-type binary HR 7275 in 1978, 1979, and 1980 at nine different observatories shows it definitely to be variable, thus confirming the suspicion of Herbst. The photometric period determined two ways was 27 . d 91 or 27 . d 65, thus about 3% shorter than the spectroscopically determined orbital period of 28 . d 59. The total variation observed during the three years was 0 . m 22 in theV. The light curve was always asymmetrical, with a stillstand on the rising branch in 1978 but on the falling branch in 1980.Kitt Peak National Observatory, operated by the Association of Universities for Research in Astronomy, under contract with the National Science Foundation.Of the AAVSO.  相似文献   

19.
The “Big Trio” program is conducted at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) aiming to investigate a sample of sources with steep and ultra-steep spectra fromthe RCcatalog obtained on the basis of observational data of the “Cold” survey. The population of distant FRII type radio galaxies with steep spectra is of particular interest, since new data indicate the presence of black holes with masses of more than 109 M which already formed in these giant stellar systems in the first billion years of life of the Universe, as well as their connection with emerging clusters. There are three sources with z sp > 3 in the sample. According to the observations of the 6-m SAO RAS telescope, the archival data of Subaru and Spitzer, an increased density of objects and several Lyα-emitters have been detected near one of the most powerful radio galaxies, RCJ0311+0507 (4C+04.11) with z = 4.51, which is the second most distant of the known FRII-type galaxies. Another object— RCJ1740+0502 with z = 3.57, is a possible dual AGN candidate. The third source, RCJ0105+0501, is an FRII-type galaxy (z = 3.138) with a host galaxy of a complex structure, possibly generated by interaction in a close pair of galaxies. These radio sources have high radio luminosity (L 500MHz ≈ 1028–1029WHz?1), which requires the presence of a giant black hole with a sufficient accretion rate, and also with a rapid rotation, which in turn can be provided by major merging.  相似文献   

20.
We present the analysis of the optical radiation of the young pre-cataclysmic variable TW Crv. Spectroscopic and photometric observations were obtained at the SAO RAS 6-m BTA telescope and at the Russian-Turkish RTT-150 telescope. The light curves of the system posses nearly sinusoidal shapes with the amplitudes of Δm > 0.m7, what is typical for young pre-cataclysmic variables with sdO-subdwarfs and orbit inclinations of less than 45?. The optical spectrum contains dominant radiation of the hot subdwarf with the HI and He II absorption lines and strong emission lines, which are formed in the atmosphere of the secondary owing to the reflection effects. Radial velocities of the cool star were measured by analyzing the λλ 4630–4650 Å Bowen blend, which for the first time allowed to determine the component masses. A numerical simulation of the light curves and spectra of TW Crv, obtaining a complete set of systems fundamental parameters was carried out. The hot star parameters prompt its belonging to the sdOsubdwarf class at the stage of transition to the cooling white dwarf sequence. The absence of its observable planetary nebula is caused by a long-lasting evolution of the system after the common envelope state. The secondary component has a luminosity excess, which is typical for other young sdO-subdwarf precataclysmic variables. Its position on the “age??luminosity excess” diagram points at the accuracy of the obtained set of TW Crv fundamental parameters and at the similarity of its evolutionary and physical conditions with that of other BE UMa-type objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号