首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The famous neutron star Geminga was until quite lately the only pulsar undetected in the radio regime, though observed as a strong pulsating γ- and X-ray source. Three independent groups from the Pushchino Radio Astronomy Observatory (Russia) reported recently the detection of pulsed radio emission from Geminga at 102.5 MHz, i.e., the first detection of the radio pulsar PSR J0633 + 1746 by Kuz'min &38; Losovskii, Malofeev &38; Malov and Shitov &38; Pugachev. This pulsar exhibits the weakest radio luminosity known. Its average pulse profile appears to be very wide, filling an entire 360° pulse window according to Kuz'min &38; Losovskii.   We present a model explaining the peculiarities of the Geminga radio pulsar, based on the assumption that it is an almost aligned rotator. The electromagnetic waves generated in the inner magnetosphere reach the region within the light cylinder with a weak magnetic field (at distances of a few light cylinder radii), where they are strongly damped due to the cyclotron resonance with particles of magnetospheric electron–positron plasma. The lowest frequencies that can escape are determined by the value of the magnetic field in the region where the line of sight passes through the light cylinder. The specific viewing geometry of an almost aligned rotator implies that the observer's line of sight probes the emission region near the bundle of the last open field lines. This explains the unusually weak emission from Geminga's low-frequency radio pulsar.  相似文献   

2.
Cool stars at giant and supergiant evolutionary phases present low-velocity and high-density winds, responsible for the observed high mass-loss rates. Although presenting high luminosities, radiation pressure on dust particles is not sufficient to explain the wind acceleration process. Among the possible solutions to this still unsolved problem, Alfvén waves are, probably, the most interesting for their high efficiency in transfering energy and momentum to the wind. Typically, models of Alfvén wave driven winds result in high-velocity winds if they are not highly damped. In this work, we determine self-consistently the magnetic field geometry and solve the momentum, energy and mass conservation equations, to demonstrate that even a low-damped Alfvén wave flux is able to reproduce the low-velocity wind. We show that the magnetic flux tubes expand with a super-radial factor of S > 30 near the stellar surface, larger than that used in previous semi-empirical models. The rapid expansion results in a strong spatial dilution of the wave flux. We obtained the wind parameter profiles for a typical supergiant star of  16 M  . The wind is accelerated in a narrow region, coincident with the region of high divergence of the magnetic field lines, up to 100 km s−1. For the temperature, we obtained a slight decrease near the surface for low-damped waves, because the wave heating mechanism is less effective than the radiative losses. The peak temperature occurs at   r ≃ 1.5  r 0  reaching 6000 K. Propagating outwards, the wind cools down mainly due to adiabatic expansion.  相似文献   

3.
赵金松 《天文学报》2023,64(3):36-246
在无碰撞等离子体中,波粒相互作用会引起电磁场与粒子之间能量转移,其结果之一是重塑粒子速度分布函数.因而,如何定量化波粒相互作用是日球层和天体等离子体研究中的一个基础问题.近年来,在定量化波粒相互作用问题的研究中,取得了很多重要成果.将主要介绍相关理论研究上的进展,特别是,将重点介绍新近提出的度量共振和非共振波粒相互作用的理论方法.还将介绍该方法在度量内日球层阿尔文模式波、质子束流不稳定性和电子热流不稳定性中波粒相互作用上的应用.  相似文献   

4.
In this paper we report the results of axisymmetric relativistic magnetohydrodynamic (MHD) simulations for the problem of a Kerr black hole immersed in a rarefied plasma with 'uniform' magnetic field. The long-term solution shows properties that are significantly different from those of the initial transient phase studied recently by Koide. The topology of magnetic field lines within the ergosphere is similar to that of the split-monopole model with a strong current sheet in the equatorial plane. Closer inspection reveals a system of isolated magnetic islands inside the sheet and ongoing magnetic reconnection. No regions of negative hydrodynamic 'energy at infinity' are seen inside the ergosphere and the so-called MHD Penrose process does not operate. However, the rotational energy of the black hole continues to be extracted via the purely electromagnetic Blandford–Znajek mechanism. In spite of this, no strong relativistic outflows from the black hole are seen to be developing. Combined with results of other recent simulations, our results signal a potential problem for the standard MHD model of relativistic astrophysical jets should they be found at distances as small as a few tens of gravitational radii from the central black hole.  相似文献   

5.
We performed cosmological, magnetohydrodynamical simulations to follow the evolution of magnetic fields in galaxy clusters, exploring the possibility that the origin of the magnetic seed fields is galactic outflows during the starburst phase of galactic evolution. To do this, we coupled a semi-analytical model for magnetized galactic winds as suggested by Bertone, Vogt & Enßlin to our cosmological simulation. We find that the strength and structure of magnetic fields observed in galaxy clusters are well reproduced for a wide range of model parameters for the magnetized, galactic winds and do only weakly depend on the exact magnetic structure within the assumed galactic outflows. Although the evolution of a primordial magnetic seed field shows no significant differences to that of galaxy cluster fields from previous studies, we find that the magnetic field pollution in the diffuse medium within filaments is below the level predicted by scenarios with pure primordial magnetic seed field. We therefore conclude that magnetized galactic outflows and their subsequent evolution within the intracluster medium can fully account for the observed magnetic fields in galaxy clusters. Our findings also suggest that measuring cosmological magnetic fields in low-density environments such as filaments is much more useful than observing cluster magnetic fields to infer their possible origin.  相似文献   

6.
We demonstrate that when charged particles interact with a plane electromagnetic wave which possesses a random amplitude, then the particles are accelerated to high energy because they are pushed along by the wave's Poynting vector. Not only are they so accelerated, as they are carried along by the wave, but also they diffuse at right angles to the direction of the Poynting flux (i.e. in the direction of the wave's electric field). The ultimate energy that such particles can reach is determined when they radiate as much energyper unit time as they receive from the plane wave. For numbers believed typical of the Crab nebula this ultimate energy is of order 1010 mc 2. We have done these calculations to show that turbulent electromagnetic waves are quite efficient in generating high energy particles from low energy particles. Thus when the low frequency coherent waves emitted by a magnetized rotating neutron star are turned into incoherent waves because of wave-plasma interactions in a surrounding nebula, they still accelerate particles to rather high energies. Accordingly, while it obviously takes less time to produce high energy particles with a coherent wave than with a turbulent wave, the calculations given here show that the bulk of the relativistic electrons in the Crab nebula could still be energized by the turbulent remnants of a coherent wave.  相似文献   

7.
In the hard X-ray spectra of some X-ray binaries line features at around 500 keV are detected. We interpret these as arising from pair annihilation in relativistic outflows leading to a significant Doppler shift of the frequencies of the lines. We show how this can be used to accurately determine the bulk velocity and orientation to the line of sight of the outflows. Constraints on the energy requirements of such outflows are also derived. Furthermore, we show that a small fraction of pairs escaping the annihilation region may give rise to the radio synchrotron emission observed in some of these objects. We apply these ideas to the hard X-ray and radio observations of Nova Muscae 1991. In this object, the energy requirements seem to rule out a large proton fraction in the outflows.  相似文献   

8.
We present a numerical model in which a cold pair plasma is ejected with relativistic speed through a polar cap region and flows almost radially outside the light cylinder. Stationary axisymmetric structures of electromagnetic fields and plasma flows are self-consistently calculated. In our model, motions of positively and negatively charged particles are assumed to be determined by electromagnetic forces and inertial terms, without pair creation and annihilation or radiation loss. The global electromagnetic fields are calculated by the Maxwell's equations for the plasma density and velocity, without using ideal magnetohydrodynamic condition. Numerical result demonstrates the acceleration and deceleration of plasma due to parallel component of the electric fields. Numerical model is successfully constructed for weak magnetic fields or highly relativistic fluid velocity, i.e. kinetic energy dominated outflow. It is found that appropriate choices of boundary conditions and plasma injection model at the polar cap should be explored in order to extend present method to more realistic pulsar magnetosphere, in which the Poynting flux is dominated.  相似文献   

9.
We study relativistically expanding electromagnetic fields of cylindrical geometry. The fields emerge from the side surface of a cylinder and are invariant under translations parallel to the axis of the cylinder. The expansion velocity is in the radial direction and is parametrized by   v = R /( ct )  . We consider force-free magnetic fields by setting the total force the electromagnetic field exerts on the charges and the currents equal to zero. Analytical and semi-analytical separable solutions are found for the relativistic problem. In the non-relativistic limit, the mathematical form of the equations is similar to equations that have already been studied in static systems of the same geometry.  相似文献   

10.
Sharp fronts observed by the Chandra satellite between dense cool cluster cores moving with near-sonic velocity through the hotter intergalactic gas, require strong suppression of thermal conductivity across the boundary. This may be due to magnetic fields tangential to the contact surface separating the two plasma components. We point out that a super-Alfvenic motion of a plasma cloud (a core of a merging galaxy) through a weakly magnetized intercluster medium leads to 'magnetic draping', formation of a thin, strongly magnetized boundary layer with a tangential magnetic field. For supersonic cloud motion,   M s≥ 1  , magnetic field inside the layer reaches near-equipartition values with thermal pressure. Typical thickness of the layer is  ∼ L / M 2A≪ L   , where L is the size of the obstacle (plasma cloud) moving with Alfvén Mach number   M A≫ 1  . To a various degree, magnetic draping occurs for both subsonic and supersonic flows, random and ordered magnetic fields and it does not require plasma compressibility. The strongly magnetized layer will thermally isolate the two media and may contribute to the Kelvin–Helmholtz stability of the interface. Similar effects occur for radio bubbles, quasi-spherical expanding cavities blown up by active galactic nucleus jets; in this case, the thickness of the external magnetized layer is smaller,  ∼ L / M 3A≪ L   .  相似文献   

11.
We introduce a new Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars in the limit of very strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the one-dimensional flow along each, subject to pressure, radiative, gravitational and centrifugal forces. We solve these equations numerically for a large ensemble of field lines to build up a three-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star σ Ori E. Since the flow along each field line can be solved independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment.
The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disc defined by the locus of minima of the effective (gravitational plus centrifugal) potential. However, a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to  ∼3000 km s−1  ) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disc can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.  相似文献   

12.
Hydrostatic equilibrium of the multiphase interstellar medium in the solar vicinity is reconsidered, with the regular and turbulent magnetic fields treated separately. The regular magnetic field strength required to support the gas is consistent with independent estimates, provided that energy equipartition is maintained between turbulence and random magnetic fields. Our results indicate that a mid-plane value of B 0=4 μG for the regular magnetic field near the Sun leads to more attractive models than B 0=2 μG . The vertical profiles of both the regular and random magnetic fields contain disc and halo components, the parameters of which we have determined. The layer at 1≲| z |≲4 kpc can be overpressured and an outflow at a speed of about 50 km s−1 may occur there, presumably associated with a Galactic fountain flow, if B 0≃2 μG .
We show that hydrostatic equilibrium in a warped disc must produce asymmetric density distributions in z , in rough agreement with H  i observations in the outer Galaxy. This asymmetry may be a useful diagnostic of the details of the warping mechanism in the Milky Way and other galaxies. We find indications that gas and magnetic field pressures are different above and below the warped midplane in the outer Galaxy, and quantify the difference in terms of turbulent velocity and/or magnetic field strength.  相似文献   

13.
Starforming factories in galaxies produce compact clusters and loose associations of young massive stars. Fast radiation-driven winds and supernovae input their huge kinetic power into the interstellar medium in the form of highly supersonic and superalfvenic outflows. Apart from gas heating, collisionless relaxation of fast plasma outflows results in fluctuating magnetic fields and energetic particles. The energetic particles comprise a long-lived component which may contain a sizeable fraction of the kinetic energy released by the winds and supernova ejecta and thus modify the magnetohydrodynamic flows in the systems. We present a concise review of observational data and models of nonthermal emission from starburst galaxies, superbubbles, and compact clusters of massive stars. Efficient mechanisms of particle acceleration and amplification of fluctuating magnetic fields with a wide dynamical range in starburst regions are discussed. Sources of cosmic rays, neutrinos and multi-wavelength nonthermal emission associated with starburst regions including potential galactic “PeVatrons” are reviewed in the global galactic ecology context.  相似文献   

14.
We explore the occurrence of dust in M-type Mira atmospheres and its effect on limb darkening under schematic assumptions about dust temperatures and dust particle properties. Dust particles that are thermodynamically coupled to the surrounding gas may form and may affect limb darkening, though only by very little in infrared continuum bandpasses. Dust particles that assume the equilibrium temperature given by the mean intensity of the radiation field only form under rare circumstances. Unexpectedly large or wavelength-dependent infrared continuum radii observed by interferometry are unlikely to be caused by atmospheric dust, except possibly near 1 μm; however, radius measurements may be significantly affected by molecular band contamination.  相似文献   

15.
We present 2.5D time-dependent simulations of the non-linear evolution of non-relativistic outflows from the surface of Keplerian accretion discs. The gas is accelerated from the surface of the disc (which is a fixed platform in these simulations) into a cold corona in stable hydrostatic equilibrium. We explore the dependence of the resulting jet characteristics upon the mass loading of the winds. Two initial configurations of the threading disc magnetic field are studied: a potential field and a uniform vertical field configuration.
We show that the nature of the resulting highly collimated, jet-like outflows (steady or episodic) is determined by the mass load of the disc wind. The mass load controls the interplay between the collimating effects of the toroidal field and the kinetic energy density in the outflow. In this regard, we demonstrate that the onset of episodic behaviour of jets appears to be determined by the quantity     which compares the speed for a toroidal Alfvén wave to cross the diameter of the jet, with the flow speed v p along the jet. This quantity decreases with increasing load. For sufficiently large N (small mass loads), disturbances appear to grow leading to instabilities and shocks. Knots are then generated and the outflow becomes episodic. These effects are qualitatively independent of the initial magnetic configuration that we employed and are probably generic to a wide variety of magnetized accretion disc models.  相似文献   

16.
The expected lifetimes for molecular clouds has become a topic of considerable debate as numerical simulations have shown that MHD turbulence, the nominal means of support for clouds against self-gravity, will decay on short timescales. Thus it appears that either molecular clouds are transient features or they are resupplied with turbulent energy through some means. Jets and molecular outflows are recognized as a ubiquitous phenomena associated with star formation. Stars however form not isolation but in clusters of different density and composion. The ubiquity and high density of outflows from young stars in clusters make them an intriguing candidate for the source of turbulence energy in molecular clouds. In this contribution we present new studies, both observational and theoretical, which address the issue of jet/outflow interactions and their abilityto drive turbulent flows in molecular clouds. Our studies focus on scales associated with young star forming clusters. In particular we first show that direct collisions between active outflows are not effective at stirring the ambient medium. We then show that fossil cavities from “extinct” outflows may provide the missing link in terms of transferring momentum and energy to the cloud.  相似文献   

17.
In this paper, we present an expanding disc model to derive the polarization properties of the Crab nebula. The distribution function of the plasma and the energy density of the magnetic field are prescribed as functions of the distance from the pulsar using the model derived by Kennel and Coroniti with  σ= 0.003  , where σ is the ratio of the Poynting flux to the kinetic energy flux in the bulk motion just before the termination shock. Unlike the case for previous models, we introduce a disordered magnetic field, which is parametrized by the fractional energy density of the disordered component. The flow dynamics are not solved, and the mean field is toroidal.
The averaged degree of polarization over the disc is obtained as a function of the inclination angle and fractional energy density of the disordered magnetic field. It is found for the Crab Nebula that the disordered component contains about 60 per cent of the magnetic field energy. This value is supported by the facts that the disc appears not as 'lip-shaped' but as 'rings' in the observed intensity map, and that the highest degree of polarization of ∼40 per cent is reproduced for rings, which is consistent with the observations.
We suggest that, because the disordered field contributes to the pressure rather than to the tension, the pinch force may have been overestimated in previous relativistic magnetohydrodynamic simulations. The disruption of the oppositely directed magnetic fields, which is proposed by Lyuvarsky, may actually take place. The relativistic flow speed, which is indicated by the front–back contrast, can be detected in the asymmetry of distributions of the position angle and depolarization.  相似文献   

18.
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping rate and associated currents in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te) affect the dispersion relation, damping-rate and associated currents in both cases (warm and cold electron limits). The treatment of kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. The resonant particles participate in an energy exchange process, whereas the non-resonant particles support the oscillatory motion of the wave.  相似文献   

19.
The recent discovery, by the Chandra satellite, that jets of blazars are strong X-ray emitters at large scales     , lends support to the hypothesis that emitting plasma is still moving at highly relativistic speeds on these scales. In this case in fact the emission via inverse Compton scattering off cosmic background photons is enhanced and the resulting predicted X-ray spectrum accounts well for the otherwise puzzling observations. Here we point out another reason to favour relativistic large-scale jets, based on a minimum power argument: by estimating the Poynting flux and bulk kinetic powers corresponding to, at least, the relativistic particles and magnetic field responsible for the emission, one can derive the value of the bulk Lorentz factor for which the total power is minimized. It is found that both the inner and extended parts of the jet of PKS     satisfy such a condition.  相似文献   

20.
We study the dynamic efficiency of conversion of kinetic-to-thermal/magnetic energy of internal shocks in relativistic magnetized outflows. We model internal shocks as being caused by collisions of shells of plasma with the same energy flux and a non-zero relative velocity. The contact surface, where the interaction between the shells takes place, can break up either into two oppositely moving shocks (in the frame where the contact surface is at rest), or into a reverse shock and a forward rarefaction. We find that for moderately magnetized shocks (magnetization  σ≃ 0.1  ), the dynamic efficiency in a single two-shell interaction can be as large as 40 per cent. Thus, the dynamic efficiency of moderately magnetized shocks is larger than in the corresponding unmagnetized two-shell interaction. If the slower shell propagates with a sufficiently large velocity, the efficiency is only weakly dependent on its Lorentz factor. Consequently, the dynamic efficiency of shell interactions in the magnetized flow of blazars and gamma-ray bursts is effectively the same. These results are quantitatively rather independent on the equation of state of the plasma. The radiative efficiency of the process is expected to be a fraction   f r < 1  of the estimated dynamic one, the exact value of f r depending on the particularities of the emission processes which radiate away the thermal or magnetic energy of the shocked states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号