首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. ‘Semi-arid’ (500–800 mm of mean annual rainfall), ‘sub-humid’ (800–1,200 mm/year) and ‘humid’ (1,200–1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<±5 %), EC versus TZ+ (~0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is ‘hard’ to ‘very hard’ in terms of Ca–Mg hardness. Polluted wells are identified (>40 % of pollution) and eliminated for the characterization. Piper’s diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl ~14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration–depth profiles are in support of the geological stratification i.e., ~18 m of saprolite and ~25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into ‘deep’ and ‘shallow’ based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using ‘recharge–discharge’ concept based on rainfall intensity instead of traditional monsoon–non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge–discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.  相似文献   

2.
The Kouh-e Zar mining area with iron oxide-rich types of Cu–Au (IOCG)-type gold mineralization is located in a fractured zone between two main “Darouneh” and “Taknar” faults in 35 km northwest of Torbat-e Heydarieh. In this study, the hydrogeochemistry and water quality of groundwater were examined for irrigation uses. Totally, 11 groundwater samples were collected in semi-arid area surrounding the mine. According to the irrigation water quality indices such as sodium absorption ratio, sodium percentage, residual sodium carbonate, residual sodium bicarbonate, potential salinity, salinity index, salinity hazard, permeability index and magnesium hazard, the water resources were appraised suitable to unsuitable. Na+ was a dominant cation and HCO3? was a dominant anion in the water samples. Fortunately, SO42? content is low (<?250 mg/L) in the water samples because of low-sulfide content mineralization in this mine. Water–rock interaction was defined as the controlling process on groundwater chemistry based on the Gibbs diagram. Calculated saturation indices revealed that the anion and cations in groundwater originated from dissolution of minerals and evaporation process. In the case of dominant Ca2+ and Mg2+, they were originated by dissolution of carbonate minerals such as calcite, dolomite and aragonite. Na+ was likely originated by plagioclase weathering in the brecciated volcanic rocks. Though the sulfidic mineralization is not so high in the Kouh-e Zar area, however, considering the existence of metalogenic mineralization in the Kouh-e Zar area, there is also a risk potential of release of toxic elements into the groundwater on which further deep investigation is ongoing in the area.  相似文献   

3.
Hydrochemical and environmental isotope methods were used to characterize the groundwater quality in ten wells belonging to the Euphrates alluvial aquifer in Syria, with the aim to assess the origin and dynamic of groundwater salinization in this system. The Euphrates River (ER) water along its entire course in Syria is rather fresh (TDS < 0.5 g/L), and thus, it is suitable for drinking and irrigation purposes. Groundwater salinity progressively increases from north to south, changing from almost freshwater (TDS < 0.6 g/L), with a Ca–Mg and HCO3 type near the Syrian–Turkish border to brackish water (1 < TDS < 3 g/L), with a Ca–Mg or Na–Ca–Mg and SO4–HCO3 type in the vicinity of Al-Raqqa, and hence it can safely be used for irrigation. Downstream Deir-Ezzor the groundwater quality becomes fairly saline to very saline (3 < TDS < 29 g/L), with a Na–Cl type, and therefore it has an absolute hazard (SAR > 5) for irrigation uses. This pattern of chemical evolution, which is also clearly reflected in the variations of groundwater ionic ratios, completely agrees with the thermodynamic simulation results obtained by an experimental evaporation essay of a water sample taken from the ER near Deir-Ezzor. Stable isotopes permit the distinction between three main evaporation processes: under high, intermediate and low humidity conditions. Radioisotopes (3H and 14C) indicate the recent age and renewability of groundwater in this aquifer and confirm that its origin is entirely belonged to the ER water, either by direct bilateral interconnection or by vertical infiltration of the irrigation water totally taken from the ER. Relationships between major ions and δ18O values of the groundwater allow to differentiate between two main enrichment processes: either evaporation only or evaporation plus dissolution, that can explain altogether the development of groundwater salinity in such a dry area.  相似文献   

4.
This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 °C and the hot waters from 32.1 to 68.2 °C. All waters exhibited a near-neutral pH of 6.0–7.6. The thermal waters had a high total dissolved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0–852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca–Na–SO4 type (Hammam Righa) and cold waters in the recharge zone of the Ca–Na–HCO3 type (Zaccar Mount). Reservoir temperatures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95 °C for HR4, HR2, and HR1, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1–2.2 km. The hot waters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca–Na–SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich groundwater, resulting in waters that plot in the immature water field in the Na–K–Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 < R < 29.2 %. We summarize these results with a geothermal conceptual model of the Hammam Righa geothermal field.  相似文献   

5.
The multilayered Djeffara aquifer system, south-eastern Tunisia, has been intensively used as a primary source to meet the growing needs of the various sectors (drinking, agricultural and industrial purposes). The analysis of groundwater chemical characteristics provides much important information useful in water resources management. Detailed knowledge of the geochemical evolution of groundwater and assessing the water quality status for special use are the main objective of any water monitoring study. An attempt has been made for the first time in this region to characterize aquifer behavior and appreciate the quality and/or the suitability of groundwater for drinking and irrigation purposes. In order to attend this objective, a total of 54 groundwater samples were collected and analyzed during January 2008 for the major cations (sodium, calcium, magnesium and potassium), anions (chloride, sulfate, bicarbonate), trace elements (boron, strontium and fluoride), and physicochemical parameters (temperature, pH, total dissolved salts and electrical conductivity). The evolution of chemical composition of groundwater from recharge areas to discharge areas is characterized by increasing sodium, chloride and sulfate contents as a result of leaching of evaporite rock. In this study, three distinct chemical trends in groundwater were identified. The major reactions responsible for the chemical evolution of groundwater in the investigated area fall into three categories: (1) calcite precipitation, (2) gypsum and halite dissolution, and (3) ion exchange. Based on the physicochemical analyses, irrigation quality parameters such as sodium absorption ratio (SAR), percentage of sodium, residual sodium carbonate, residual sodium bicarbonate, and permeability index (PI) were calculated. In addition, groundwater quality maps were elabortaed using the geographic information system to delineate spatial variation in physico-chemical characteristics of the groundwater samples. The integration of various dataset indicates that the groundwater of the Djeffara aquifers of the northern Gabes is generally very hard, brackish and high to very high saline and alkaline in nature. The water suitability for drinking and irrigation purposes was evaluated by comparing the values of different water quality parameters with World Health Organization (WHO) guideline values for drinking water. Piper trilinear diagram was constructed to identify groundwater groups where the relative major anionic and cationic concentrations are expressed in percentage of the milliequivalent per liter (meq/l), and it was demonstrated that the majority of the samples belongs to SO4–Cl–Ca–Na, Cl–SO4–Na–Ca and Na–Cl hydrochemical facies. As a whole, all the analyzed waters from this groundwater have revealed that this water is unsuitable for drinking purposes when comparing to the drinking water standards. Salinity, high electric conductivity, sodium adsorption ratio and sodium percentages indicate that most of the groundwater samples are inappropriate for irrigation. The SAR vary from medium (S2) to very high (S4) sodicity. Therefore, the water of the Djeffara aquifers of the northern Gabes is dominantly of the C4–S2 class representing 61.23 % of the total wells followed by C4–S3 and C4–S4 classes at 27.27 and 11.5 % of the wells, respectively. Based on the US Salinity Classification, most of the groundwater is unsuitable for irrigation due to its high salt content, unless certain measures for salinity control are undertaken.  相似文献   

6.
A hydrogeochemical investigation was conducted in a coastal region of Cuddalore district to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. The geology of the study area comprises of sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 18 groundwater samples were analyzed for 14 different water quality parameters and the result indicates higher concentrations of ions like Cl (3,509 mg/l), Na (3,123 mg/l), and HCO3 (998 mg/l) when compared with WHO, BIS, and ISI standards. A positive correlation (r 2?=?0.82) was observed between Na and Cl, indicating its sources from salt water intrusion. Three factors were extracted with a total variance of 64% which indicates the sources of salinization, cation exchange, and anthropogenic impact to the groundwater. The Piper trilinear diagram indicates both Na–Cl and mixed Na–HCO3–Cl-type, indicating that groundwater was strongly affected by anthropogenic activities. The plot of (Ca?+?Mg)/(K?+?Na) indicates evidences of cation exchange and salt water intrusion. The (Ca–0.33*HCO3)/ SO4 plot indicates salt water intrusion for elevated SO4 levels rather than gypsum dissolution. The spatial distribution of total dissolved solid indicates the saline water encroachment along the SW part of the study area. As per sodium adsorption ratio (SAR), 50% of the samples with <10 SAR are suitable for irrigation and >10 SAR indicates that water is unsuitable for irrigation purposes. The residual sodium carbonate classification indicates that 50% of the samples fall in safe and 50% of the samples fall in bad zones and prolonged usage of this water will affect the crop yield. The Chloro Alkaline Index of water indicates disequilibrium due to a higher ratio of Cl?>?Na–K, indicating the influence of salt water intrusion. The Permeability Index of the groundwater indicates that the groundwater from the study area is moderate to good for irrigation purposes.  相似文献   

7.
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities.  相似文献   

8.
The Varahi Irrigation project site is located at 13°39′15″N (latitude) and 74°57′E (longitude) in Hole Shankaranarayana village, approximately 6 km from Siddapura, Kundapura taluk, Udupi district. A total of 59 groundwater samples were collected from dug and tube wells in November 2008 to evaluate hydrochemistry and suitability for drinking and irrigation purposes. The physico-chemical parameters estimated include pH, electrical conductivity (EC), total dissolved solids (TDS), redox potential (Eh), total hardness (TH), total alkalinity (TA), temperature, major cations and anions, besides irrigation quality parameters like boron, sodium absorption ratio (SAR), % Na, residual sodium carbonate (RSC), residual sodium bicarbonate (RSBC), chlorinity index, soluble sodium percentage (SSP), exchangeable sodium ratio (ESR), non-carbonate hardness, potential salinity (PS), permeability index (PI), Kelly index (KI), magnesium hazard (MH), magnesium ratio (MR), index of base exchange. Chloride, sulphate and bicarbonate concentrations classified the groundwater samples into normal chloride, normal sulphate and normal bicarbonate water types, respectively. The Salinity (Class I; 98.3%), Chlorinity (Class I; 100%) and Sodicity (Class 0; 96.6%) indices suggest the suitability of groundwater for irrigation. The Wilcox diagram illustrates that 96.6% of the samples belongs to excellent to good category, while the US Salinity Laboratory (USSL) diagram indicates the low salinity/low sodium content in 86.44% of samples (C1S1). Positive index of base exchange in majority of the samples (91.52%) indicates direct base exchange reaction or chloro-alkaline equilibrium in the study area. The positive value of RSC in majority of samples signifying higher concentrations of HCO3 over alkaline earths indicates that groundwater are base exchange-softened water as there is an exchange of alkaline earths for Na+ ions. Majority of water samples fall in the precipitation dominance field based on Gibbs’ ratio.  相似文献   

9.
Hydrogeochemical characteristics of groundwater and its suitability for domestic, irrigation, and industrial purposes were evaluated in Nanded Tehsil. A total of 50 representative groundwater samples were collected from dug/bore wells during post monsoon season 2012 and analyzed for major cations and anions. The order of dominance of cation and anions were Na > Ca > Mg > K and HCO3 > Cl > CO3 > SO4 > NO3, respectively. The rock weathering and evaporation processes are dominant in controlling the groundwater quality in the study area. Electrical conductivity (EC) and total dissolved solid (TDS) show high positive correlation with total Hardness (TH), Ca, Na, and Cl. As per the WHO and BIS standards for domestic water purposes, TDS, TH, Ca, Mg, Na, and Cl exceed the safe limits in 16, 22, 6, 18, 12, and 15 %, respectively; therefore, majority of samples show that the groundwater is suitable for drinking. The spatial distribution maps of physicochemical parameters were prepared in ArcGIS. The suitability of groundwater for agriculture purpose was evaluated from EC, TDS, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), and %Na which ranges from excellent to unsuitable, so majority of the groundwater samples are suitable for irrigation. The U.S. Salinity Laboratory (USSL) diagram shows that most of the groundwater samples are characterized as in high salinity-low sodium hazard type water (C3-S1). All the groundwater samples are suitable for industrial use except sample numbers 44 and 48. Thus, most of the groundwater samples from this study confirm the beneficial use of aquifers in the area for domestic, agricultural, and irrigation purposes. However, sample numbers 44 and 48 identify the two aquifers in the study area which are problematic and need particular remedial measures if they are to have beneficial use.  相似文献   

10.
Various groundwater potential zones for the assessment of groundwater availability in the Bojnourd basin have been investigated using remote sensing, GIS, and a probabilistic approach. Five independent groundwater factors, including topography, ground slope, stream density, geology units, lineament density, and a groundwater productivity factor, i.e., springs’ discharge, were applied. Discharge rates of 226 springs over the area were collected, and the probabilistic model was designed by the discharge rates of springs as the dependent variable. For training the probabilistic model, a ratio of 70/30% of springs’ discharge was applied and discharge rates of 151 springs were selected to randomly train the model. The frequency ratio for each factor was calculated, and the groundwater potential zones were extracted by summation of frequency ratio maps. The groundwater potential map was also classified into four classes, viz., “very good” (with a frequency ratio of >6.75), “good” (5.5FR6.75), “moderate” (4.75FR5.5), and “poor” (FR4.75). Then, the model was verified based on a success-rate curve method which resulted in obtaining an accuracy ratio of 75.77%. Finally, sensitivity analysis was applied by a factor removal method in five steps. Results reveal that topography factor has the biggest effect on the groundwater potential map and removing this factor eventuates in the lowest accuracy of the final map (AUC = 63. 73%). The groundwater potential map is fairly affected by removing the lineament density factor with an accuracy of 68.80%. Removing the lineament density factor has the lowest effect on the final map with accuracy of 68.80%.  相似文献   

11.
The assessment of the suitability of groundwater for drinking and irrigation uses was carried out in the alluvial plain of Low-Isser in the north of Algeria. The plain covers an area of 533 km2 and lies in a Mediterranean sub-humid climate. Groundwater is the main source for domestic uses and agricultural activities in this area. Groundwater samples were collected from 15 wells during dry and wet seasons in 2015, and they were analyzed for major cations and anions and compared with drinking and irrigation specification standards. The comparison of chemical concentration with WHO drinking water standards of 2006 shows that more than 30% of groundwater samples are unsuitable for drinking, and the majority of groundwater samples fell on the hard and very hard categories. Suitability of groundwater for drinking was also evaluated based on the water quality index (WQI). It shows more than 80% of samples have good or permissible water quality for dry and wet seasons. In terms of the irrigation usage, generally, groundwater in the study area is suitable for different uses in both seasons according to SAR, %Na, RSBC, and PI. However, water rock exchange processes and groundwater flow have been responsible for the dominated water type Ca–Mg–Cl.  相似文献   

12.
Most human activities and hydrogeological information on small young volcanic islands are near the coastal area. There are almost no hydrological data from inland areas, where permanent springs and/or boreholes may be rare or nonexistent. A major concern is the excessive salinity of near-the-coast wells. Obtaining a conceptual hydrogeological model is crucial for groundwater resources development and management. Surveys of water seepages and rain for chemical and environmental isotope contents may provide information on the whole island groundwater flow conditions, in spite of remaining geological and hydrogeological uncertainties. New data from Easter Island (Isla de Pascua), in the Pacific Ocean, are considered. Whether Easter Island has a central low permeability volcanic “core” sustaining an elevated water table remains unknown. Average recharge is estimated at 300–400 mm/year, with a low salinity of 15–50 mg/L Cl. There is an apron of highly permeable volcanics that extends to the coast. The salinity of near-the-coast wells, >1,000 mg/L Cl, is marine in origin. This is the result of a thick mixing zone of island groundwater and encroached seawater, locally enhanced by upconings below pumping wells. This conceptual model explains what is observed, in the absence of inland boreholes and springs.  相似文献   

13.
Groundwater and surface water samples from 47 locations (28 groundwater, 10 tanks and 9 stream channel) were collected during the pre-monsoon (May–June) and post-monsoon season (November) from Chinnaeru River basin. Chinnaeru River basin is situated 30 km east of Hyderabad City and its area covers 250 km2 and falls in the Survey of India Toposheet No. 56 K/15. The extensive agricultural, industrial and urbanization activities resulted in the contamination of the aquifer. To study the contamination of groundwater, water samples were collected from an area and analyzed for major cations and anions. Various widely accepted methods such as salinity, sodium absorption ratio, Kelly’s ratio, residual sodium carbonate, soluble sodium percentage, permeability index and water quality index are used to classify groundwater and surface water (tank and stream) for drinking as well as irrigation purposes. Besides this, Piper trilinear diagram, Wilcox diagram, Doneen’s classification and Gibb’s plot were studied for geochemical controls, and hydrogeochemistry of groundwater and surface water samples were studied.  相似文献   

14.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

15.
Mostaganem City, located in the northwestern part of Algeria, has grown and has been urbanized rapidly. The city and surrounding areas depend heavily on groundwater as a resource for drinking water, as well as domestic, industrial, and agricultural uses. Understanding the groundwater chemistry provides insight into the interactions of water with the environment and contributes to better resource management. In total, 12 groundwater samples from wells in Mostaganem City have been analyzed for major physical–chemical elements and metals. The results show that the waters have pH values ranging between 7.1 and 8.1, salinity between 226 and 1,073 mg/L, and nitrate concentrations between 15 and 47.7 mg/L. The high concentration of nitrates is explained by the utilization of chemical fertilizers in agriculture. Almost all samples are of type Na–SO4 and Na–HCO3, and the trace metal concentrations are within the admissible standard ranges. We conclude that the groundwater in Mostaganem may safely be used for drinking, domestic, agricultural, and industrial purposes.  相似文献   

16.
The demand for water is rapidly increasing in Egypt, because of high population and agriculture production growth rate, which makes research of water resources necessary. The regional multi-aquifer system of the Miocene–Pleistocene age is discharged in Wadi El Natrun area. Intensive aquifer overexploitation and agricultural development in the area are related to groundwater quality deterioration. Hydrochemical and hydrogeological data was evaluated to determine the groundwater origin and quality in the south-eastern part of wadi, which appears to be more significant for water supply owing to lower groundwater salinity. The dominance of the high mineralised Cl groundwater type was found; however, also less mineralised SO4 and HCO3 types were identified there. Based on the ion relations, halite and gypsum dissolution and ion exchange are the most important hydrochemical processes forming the groundwater chemical composition. The Cl dominated groundwater matches the discharge part of the regional hydrogeological system. Contrary, the presence of HCO3 and SO4 hydrochemical types corresponds to the infiltration and transferring parts of the hydrogeological system indicating the presence of zones conducting low mineralised groundwater. The discharge area of the over-pumped aquifer in Wadi El-Natrun lies 23 m beneath the sea level with the shoreline being at the distance of 100 km, thus there is a real risk of seawater intrusion. Using the hydrochemical facies evolution diagram, four samples in the centre of the discharge area indicate advanced seawater intrusion. The zones of the highest demand for groundwater quality protection were indicated based on a spatial pattern of hydrogeochemical composition.  相似文献   

17.
Groundwater in Farashband plain, Southern Iran, is the main source of water for domestic and agricultural uses. This study was carried out to assess the overall water quality and identify major variables affecting the groundwater quality in Farashband plain. The hydrochemical study was undertaken by randomly collecting 84 groundwater samples from observation wells located in 13 different stations covering the entire plain in order to assess the quality of the groundwater through analysis of major ions. The water samples were analyzed for various physicochemical attributes. Groundwater is slightly alkaline and largely varies in chemical composition; e.g., electrical conductivity (EC) ranges from 2314 to 12,678 μS/cm. All the samples have total dissolved solid values above the desirable limit and belong to a very hard type. The abundance of the major ions is as follows: Na+ > Ca2+ > Ma2+ > K+ and Cl? > SO4 2– > HCO3 ?. Interpretation of analytical data shows three major hydrochemical facies (Ca–Cl, Na–Cl, and mixed Ca–Mg–Cl) in the study area. Salinity, total dissolved solids, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purposes. Based on the US salinity diagram, most of samples belong to high salinity and low to very high sodium type.  相似文献   

18.
Groundwater is the most important source of water in meeting irrigation, drinking, and other needs in India. The assessment of the potential zone for its recharge is critical for sustainable usage, quality management, and food security. This study reports alternative mapping of the groundwater recharge potential of a selected block by including large-scale soil data. Thematic layers of soil, geomorphology, slope, land use land cover, topographical wetness index, and drainage density of Darwha block (District Yavatmal, Maharashtra, India) were generated and integrated in a geographic information system environment. The topographic maps, thematic maps, field data, and satellite image were processed, classified, and weighted using analytical hierarchical process for their contribution to groundwater recharge. The layers were integrated by weighted linear combination method in the GIS environment to generate four groundwater potential zones viz., “poor,” “poor to moderate,” “moderate to high,” and “high.” Based on the generated groundwater potential map, about 9830 ha (12%) of the study area was categorized as high potential for recharge, 25,558 ha (31%) as poor to moderate, 33,398 ha (40%) as moderate to high, and 12,565 ha (15%) as poor potential zone. The zonation corresponds well with the field data on greater well density (0.22/ha) and irrigated crop area (27%) in the high potential zone as against 0.02 wells/ha and only 6% irrigated area in the poor zone. The map is recommended for use in regulating groundwater development decisions and judicious expenditure on drilling new wells by farmers and the state authorities.  相似文献   

19.
The Choptank River, Chesapeake Bay’s largest eastern-shore tributary, is experiencing increasing nutrient loading and eutrophication. Productivity in the Choptank is predominantly nitrogen-limited, and most nitrogen inputs occur via discharge of high-nitrate groundwater into the river system’s surface waters. However, spatial patterns in the magnitude and quality of groundwater discharge are not well understood. In this study, we surveyed the activity of 222Rn, a natural groundwater tracer, in the Choptank’s main tidal channel, the large tidal tributary Tuckahoe Creek, smaller tidal and non-tidal tributaries around the basin, and groundwater discharging into those tributaries, measuring nitrate and salinity concurrently. 222Rn activities were <100 Bq m?3 in the main tidal channel and 100–700 Bq m?3 in the upper Choptank River and Tuckahoe Creek, while the median Rn activities of fresh tributaries and discharging groundwater were 1,000 and 7,000 Bq m?3, respectively. Nitrate-N concentrations were <0.01 mg L?1 throughout most of the tidal channel, 1.5–3 mg L?1 in the upper reaches, up to 13 mg L?1 in tributary samples, and up to 19.6 mg L?1 in groundwater. Nitrate concentrations in tributary surface water were correlated with Rn activity in three of five sub-watersheds, indicating a groundwater nitrate source. 222Rn and salinity mass balances indicated that Rn-enriched groundwater discharges directly into the Choptank’s tidal waters and suggested that it consists of a mixture of fresh groundwater and brackish re-circulated estuarine water. Further sampling is necessary to constrain the Rn activity and nitrate concentration of discharging groundwater and quantify direct discharge and associated nitrogen inputs.  相似文献   

20.
The Central Godavari delta is located along the Bay of Bengal Coast, Andhra Pradesh, India, and is drained by Pikaleru, Kunavaram and Vasalatippa drains. There is no groundwater pumping for agriculture as wells as for domestic purpose due to the brackish nature of the groundwater at shallow depths. The groundwater table depths vary from 0.8 to 3.4 m and in the Ravva Onshore wells, 4.5 to 13.3 m. Electrical Resistivity Tomography (ERT) surveys were carried out at several locations in the delta to delineate the aquifer geometry and to identify saline water aquifer zones. Groundwater samples collected and analyzed for major ions for assessing the saline water intrusion and to identify the salinity origin in the delta region. The results derived from ERT indicated low resistivity values in the area, which can be attributed to the existence of thick marine clays from ground surface to 12–15 m below ground level near the coast and high resistivity values are due to the presence of coarse sand with freshwater away from the coast. The resistivity values similar to saline water <0.01 Ω m is attributed to the mixing of the saline water along surface water drains. In the Ravva Onshore Terminal low resistivity values indicated up coning of saline water and mixing of saline water from Pikaleru drain. The SO 4 ?2 /Cl?and Na+2/Cl?ratios did not indicate saline water intrusion and the salinity is due to marine palaeosalinity, dilution of marine clays and dissolution of evaporites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号