首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The effect of the interplanetary parameters on the latitudinal position of the substorm westward electrojet is studied in the work. The data from the IMAGE chain of magnetic stations and POLAR and WIND satellites for the period close to the solar activity minimum (1995–1996) and for the period of the solar activity maximum (2000) have been used for this purpose. It has been indicated that the electrojet poleward edge reaches, on average, higher latitudes at a higher solar wind velocity and at a larger (B s ) IMF southward component. It has been indicated that the average latitude of the westward electrojet center increases with increasing solar wind velocity and decreases with increasing IMF southward component, as a result of which the electrojet center is, specifically, not observed at high geomagnetic latitudes at large values of the IMF southward component.  相似文献   

2.
In the present study, the deterministic chaotic behaviour of interplanetary magnetic field (IMF) under various geomagnetic conditions of low and high solar active periods was analyzed, using the time series of IMF |B| and Bz, by employing chaotic quantifiers like, Lyapunov exponent, Tsallis entropy, correlation dimension, and non-linear prediction error. We have investigated whether the chaotic behaviour of interplanetary magnetic field would modify, when it produces major geomagnetic storms, and how it depends on the phase of solar activity. The yearly average values of Lyapunov exponent for the time series of IMF |B| and Bz, show solar flux dependence, whereas those values of entropy, correlation dimension and non-linear prediction error had no significant solar flux dependence. The yearly average values of entropy for quiet periods are higher compared to those values for major storm periods belonging to low/high solar active conditions, for both the time series |B| and Bz.  相似文献   

3.
The seven CAWSES interplanetary fast forward shocks and their geomagnetic effects during 2004–2005 have been analyzed. It is found that the arrival time of the shocks at Earth can be estimated within an accuracy of ~5 min. Furthermore, AL decreases are found to occur within 10 min of shock impingement on the magnetopause. It was also determined that there is a direct correlation between the interplanetary magnetic field southward directed (IMF Bs) prior to shock arrival and substorms triggered by the shocks. If the IMF is northward prior to shock arrival, the geomagnetic activity is present but is low. One interpretation of this result is that the preconditioning energy stored in the magnetotail leaks away rapidly. A correlation between substorm peak AL and shock strength (Mach number) has also been noted, which could imply that shock strength is important for the amount of energy released into the magnetosphere/ionosphere.  相似文献   

4.
The dominant interplanetary phenomena that are frequently associated with intense magnetic storms are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two such interplanetary structures, involving an intense and long duration Bs component of the IMF are: the sheath region behind a fast forward interplanetary shock, and the CME ejecta itself. Frequently, these structures lead to the development of intense storms with two-step growth in their main phases.These structures, when combined, lead sometimes to the development of very intense storms, especially when an additional interplanetary shock is found in the sheath plasma of the primary structure accompanying another stream. The second stream can also compress the primary cloud, intensifying the Bs field, and bringing with it an additional Bs structure. Thus, at times very intense storms are associated with three or more Bs structures.Another aspect that can contribute to the development of very intense storms refers to the recent finding that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense magnetospheric energization.  相似文献   

5.
The solar wind velocity and polarity of the B x-component of the interplanetary magnetic field have been analyzed for the first eight months of 2005. The interplanetary magnetic field had a four-sector structure, which persisted during nine Carrington rotations. Three stable clusters of a high-speed solar wind stream and one cluster of a low-speed stream were observed during one solar rotation. These clusters were associated with the interplanetary magnetic field sectors. The predicted solar wind velocity was calculated since July 2005 one month ahead as an average over several preceding Carrington rotations. The polarity of the B x-component of the interplanetary magnetic field was predicted in a similar way based on the concept of the sector structure of the magnetic field and its relation to maxima of the solar wind velocity. The results indicate a satisfactory agreement of the forecast for two rotations ahead in July–August 2005 and pronounced violation of agreement for the next rotation due to a sudden reconfiguration of the solar corona and strong sporadic processes in September 2005.  相似文献   

6.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

7.
The results of studying the Pc4–5 pulsation parameters based on the method of bistatic backscatter of radio waves, using the EISCAT/Heating HF facility (Tromsø, Norway) and IMAGE ground-based magnetometers (Scandinavia), are presented. The observations were performed during the morning hours on October 3, 2006, when a substorm developed on the nightside. An analysis of the observational data obtained from 1000 to 1020 UT indicated that wave-like disturbances with periods corresponding to Pc4–5 pulsations (80–240 s) existed at that time. The variations in the full vector of the ionospheric irregularity motion and the electric field strength in an artificially disturbed high-latitude ionospheric F region has been reconstructed based on simultaneous Doppler observations on two paths. A general conformity is observed among the time variations in Pc4–5 pulsations in the magnetic and ionospheric data: between the velocity amplitude (|V|) and the X component of the Earth’s magnetic field and between the irregularity motion azimuth and the Y component. Large-scale waves, corresponding to the natural resonances of magnetic field lines (small values of the azimuthal number |m| ~ 2–4), and small-scale waves (large values |m| ~ 17–20) were simultaneously registered during the experiment based on magnetic data. It has been indicated that the periods of wave-like processes registered using the method of bistatic backscatter and ground-based magnetometers were in agreement with one another. The formation of wave-like processes is explained by the nonstationary impact of the solar wind and IMF on the Earth’s magnetosphere. The variations in the IMF, according to the ACE satellite measurements, were characterized by a sharp increase in the solar wind plasma dynamic pressure that occurred at about 09 UT on October 3, 2006, and was accompanied by rapid polarity reversals of the north-ward-southward (B z) and transverse (B y) IMF components.  相似文献   

8.
A fully three-dimensional (3D), time-dependent, MHD interplanetary global model (3D IGM) has been used, for the first time, to study the relationship between different forms of solar activity and transient variations of the north-south component, Bz, of the interplanetary magnetic field (IMF) at 1 AU. One form of solar activity, the flare, is simulated by using a pressure pulse at different locations near the solar surface and observing the simulated IMF evolution of B (=-Bz) at 1 AU. Results show that, for a given pressure pulse, the orientation of the corresponding transient variation of Bz has a strong relationship to the location of the pressure pulse and the initial conditions of the IMF. Two initial IMF conditions are considered: a unipolar Archimedean spiral with outward polarity and a flat heliospheric current sheet (HCS) with outward polarity in the northern hemisphere and which gradually reverses polarity in the solar equatorial plane to inward polarity in the southern heliospheric hemisphere. The wave guide effect of the HCS is also demonstrated.  相似文献   

9.
The regularities of the variations in the IMF B z component have been studied based on the data on the solar wind streams and their solar sources. Isolated solar wind streams such as magnetic clouds and shock layers before them, undisturbed heliospheric current sheets (HCSs), leading edges and bodies of high-speed streams from coronal holes (HSSs from CHs) have been considered. It has been revealed that each type of isolated streams in the interplanetary medium has it own features in the variations in the value and direction of the B z component related to the stream immanent properties and conditions of propagation in the interplanetary plasma. The appearance of the southward B z component is obligatory for all these streams which are, therefore, geoeffective.  相似文献   

10.
Earth’s bow shock is the result of interaction between the supersonic solar wind and Earth’s magnetopause. However, data limitations mean the model of the shape and position of the bow shock are based largely on near-Earth satellite data. The model of the bow shock in the distant magnetotail and other factors that affect the bow shock, such as the interplanetary magnetic field (IMF) By, remain unclear. Here, based on the bow shock crossings of ARTEMIS from January 2011 to January 2015, new coefficients of the tail-flaring angle α of the Chao model (one of the most accurate models currently available) were obtained by fitting data from the middle-distance magnetotail (near-lunar orbit, geocentric distance -20RE>X>-50RE). In addition, the effects of the IMF By on the flaring angle α were analyzed. Our results showed that: (1) the new fitting coefficients of the Chao model in the middle-distance magnetotail are more consistent with the observed results; (2) the tail-flaring angle α of the bow shock increases as the absolute value of the IMF By increases. Moreover, positive IMF By has a greater effect than negative IMF By on flaring angle. These results provide a reference for bow shock modeling that includes the IMF By.  相似文献   

11.
The difficulties associated with calculating the parameters of the interplanetary magnetic field (IMF) from solar magnetic data have been considered. All conventional calculation patterns and available input databases have been analyzed from a unified standpoint. It has been shown that these assumptions and limitations cannot affect the general structure and dependence on cycle of solar and interplanetary data. At the same time, the measured solar field values are underestimated as a result of the magnetograph signal saturation effect. It has been shown that the correction should depend on the heliocentric observation latitude and cycle phase. The correction method responsible for good agreement between the calculated and measured values has been proposed. The created database makes it possible to quantitatively calculate the magnetic fields in the solar wind near the Earth.  相似文献   

12.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   

13.
An algorithm for retrieving the AL index dynamics from the parameters of solar-wind plasma and the interplanetary magnetic field (IMF) has been developed. Along with other geoeffective parameters of the solar wind, an integral parameter in the form of the cumulative sum Σ[N*V 2] is used to determine the process of substorm formation. The algorithm is incorporated into a framework developed to retrieve the AL index of an Elman-type artificial neural network (ANN) containing an additional layer of neurons that provides an “internal memory” of the prehistory of the dynamical process to be retrieved. The ANN is trained on data of 70 eight-hour-long time intervals, including the periods of isolated magnetospheric substorms. The efficiency of this approach is demonstrated by numerical neural-network experiments on retrieving the dynamics of the AL index from the of solar wind and IMF parameters during substorms.  相似文献   

14.
The time variations in the CR geomagnetic cutoff rigidity and their relation to the interplanetary parameters and the Dst index during a strong magnetic storm of November 18–24, 2003, have been analyzed. The Tsyganenko (Ts03) model of a strongly disturbed magnetosphere [Tsyganenko, 2002a, 2002b; Tsyganenko et al., 2003] have been used to calculate effective geomagnetic thresholds with the help of the method for tracing CR particle trajectories in the magnetospheric magnetic field. The geomagnetic thresholds have been calculated using the method of global spectrographic survey (GSS), based on the data from the global network of CR stations, and the results have been compared with the effective geomagnetic cutoff rigidities. The daily anisotropy of effective geomagnetic thresholds during the Dst variation minimum have been estimated. The relation of the theoretical and experimental geomagnetic thresholds, obtained using the GSS method, to the interplanetary parameters and Dst variation is analyzed. The Dst variations, IMF B z , and solar wind density are most clearly defined in the geomagnetic thresholds during this storm. The correlation between B y and experimental geomagnetic thresholds is higher than such a correlation between this parameter and theoretical thresholds by a factor 2–3, which suggests that a real dawn-dusk asymmetry during this storm was stronger than such an asymmetry represented by the Ts03 model.  相似文献   

15.
This study seeks to establish a new system characteristic describing dayside convective flows in the coupled magnetosphere–ionosphere: the low-pass filter function through which interplanetary magnetic field (IMF) fluctuations are processed as they are communicated from the magnetopause to the high-latitude ionosphere near local noon. In doing so, this study confirms that variations in the ionospheric flows at high-latitudes near local noon are well correlated with variations in the IMF orientation and magnitude on short timescales. We construct the filter function by comparing time series of the ionospheric equivalent flows at a fixed location at magnetic local noon and 80° latitude with time series of the IMF. The coherence spectra of these two parameters—averaged over 330 h of comparison—indicate that there is a low-pass cutoff in the ionospheric response to IMF driving at a periods shorter than 20 min (frequencies higher than 0.8 mHz). When there is sufficient power in the IMF fluctuations, this cutoff is relatively sharp—the coherence drops by roughly a factor of three between the periods 32 and 21 min (0.5 and 0.8 mHz). The results also show that on average the coherence between the east–west component of the equivalent flows and IMF By tends to be less than the coherence between the north–south component of the equivalent flows and IMF Bz.  相似文献   

16.
Yearly averages of geomagnetic activity indices Ap for the years 1967–1984 are compared to the respective averages of v2 · Bs, where v is the solar wind velocity and Bs is the southward interplanetary magnetic field (IMF) component. The correlation of both quantities is known to be rather good. Comparing the averages of Ap with v2 and Bs separately we find that, during the declining phase of the solar cycle, v2 and during the ascending phase Bs have more influence on Ap. According to this observation (using Fourier spectral analysis) the semiannual and 27 days, Ap variations for the years 1932–1993 were analysed separately for years before and after sunspot minima. Only those time-intervals before sunspot minima with a significant 27-day recurrent period of the IMF sector structure and those intervals after sunspot minima with a significant 28–28.5-day recurrent period of the sector structure were used. The averaged spectra of the two Ap data sets clearly show a period of 27 days before and a period of 28–29 days after sunspot minimum. Moreover, the phase of the average semiannual wave of Ap is significantly different for the two groups of data: the Ap variation maximizes near the equinoxes during the declining phase of the sunspot cycle and near the beginning of April and October during the ascending phase of the sunspot cycle, as predicted by the Russell-McPherron (R-M) mechanism. Analysing the daily variation of ap in an analogue manner, the same equinoctial and R-M mechanisms are seen, suggesting that during phases of the solar cycle, when ap depends more on the IMF-Bs component, the R-M mechanism is predominant, whereas during phases when ap increases as v increases the equinoctial mechanism is more likely to be effective.  相似文献   

17.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

18.
We study the influence of the interplanetary magnetic field (IMF) and convection electric field on the rate and destination of polar wind and other thermal (low-energy) ion outflows, and its resulting effects on magnetosphere–ionosphere coupling, using single-particle trajectory simulations in conjunction with ion velocity distribution measurements on Akebono and IMF and ionospheric convection data. We find that the ions preferentially feed the dusk sector of the plasma sheet when the IMF is duskward (By>0), and are more evenly distributed in the plasma sheet when the IMF is dawnward. The flow of oxygen ions originating from the noon or dusk sectors of the polar cap has a higher probability of reaching the magnetosphere and beyond compared with that from the dawn or midnight sectors, due to the increased centrifugal acceleration associated with the larger magnetic field curvature near noon and the increased convection electric field in the dusk sector. The flow is enhanced and confined to lower L-shells at times of strongly southward IMF, compared with that at times of northward IMF. The outflow rate to both the plasma sheet and the magnetotail correlates strongly with the ion temperature. As a result, the IMF and the convection electric fields affect both the overall magnitude and the detailed distribution of mass transfer from the ionosphere to the magnetosphere in magnetosphere–ionosphere coupling.  相似文献   

19.
We have combined ∼300 h of tristatic measurements of the field-perpendicular F region ionospheric flow measured overhead at Tromsø by the EISCAT UHF radar, with simultaneous IMP-8 measurements of the solar wind and interplanetary magnetic field (IMF) upstream of the Earth’s magnetosphere, in order to examine the response time of the ionospheric flow to changes in the north-south component of the IMF (Bz). In calculating the flow response delay, the time taken by field changes observed by the spacecraft to first effect the ionosphere has been carefully estimated and subtracted from the response time. Two analysis methods have been employed. In the first, the flow data were divided into 2 h-intervals of magnetic local time (MLT) and cross-correlated with the “half-wave rectifier” function V2Bs, where V is the solar wind speed, and Bs is equal to IMF Bz if the latter is negative, and is zero otherwise. Response delays, determined from the time lag of the peak value of the cross-correlation coefficient, were computed versus MLT for both the east-west and north-south components of flow. The combined data set suggests minimum delays at ∼1400 MLT, with increased response times on the nightside. For the 12-h sector centred on 1400 MLT, the weighted average response delay was found to be 1.3 ± 0.8 min, while for the 12-h sector centred on 0200 MLT the weighted average delay was found to increase to 8.8 ± 1.7 min. In the second method we first inspected the IMF data for sharp and enduring (at least ∼5 min) changes in polarity of the north-south component, and then examined concurrent EISCAT flow data to determine the onset time of the corresponding enhancement or decay of the flow. For the case in which the flow response was timed from whichever of the flow components responded first, minimum response delays were again found at ∼1400 MLT, with average delays of 4.8 ± 0.5 min for the 12-h sector centred on 1400 MLT, increasing to 9.2 ± 0.8 min on the nightside. The response delay is thus found to be reasonably small at all local times, but typically ∼6 min longer on the nightside compared with the dayside. In order to make an estimate of the ionospheric information propagation speed implied by these results, we have fitted a simple theoretical curve to the delay data which assumes that information concerning the excitation and decay of flow propagates with constant speed away from some point on the equatorward edge of the dayside open-closed field line boundary, taken to lie at 77° magnetic latitude. For the combined cross-correlation results the best-fit epicentre of information propagation was found to be at 1400 MLT, with an information propagation phase speed of 9.0 km s−1. For the combined event analysis, the best-fit epicentre was also found to be located at 1400 MLT, with a phase speed of 6.8 km s−1.  相似文献   

20.
Based on the observations in six pairs of almost conjugate high-latitude stations in the Arctic and Antarctic regions, the spectral and spatial-temporal structures of long-period geomagnetic pulsations (f = 2–5 mHz) during the magnetic storm of April 16–17, 1999, which is characterized by a high (up to 20 nPa) solar wind dynamic pressure, have been studied. It has been indicated that the magnetic storm sudden commencement is accompanied by a symmetrical excitation of np pulsations near the dayside polar cusps with close amplitudes. Under the conditions when IMF B z > 0 and B y < 0, strong magnetic field variations with the periods longer than 15–20 min were observed only in the northern polar cap. When IMF B z and B y became close to zero, geomagnetic pulsation bursts in both hemispheres were registered simultaneously but differed in the spectral composition and spatial distribution. In the Northern Hemisphere, pulsations were as a rule observed in a more extensive latitude region than in the Southern Hemisphere. In the Northern Hemisphere, the oscillation amplitude maximum was observed at higher latitudes than in the Southern Hemisphere. The pulsation amplitude at geomagnetic latitude lower than 74° was larger in the Arctic Regions than in the Antarctic Regions. This can be explained by sharply different geographic longitudes in the polar cap and latitudes in the auroral zone, which results in a different ionospheric conductivity affecting the amplitude of geomagnetic pulsations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号