首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
Benthic fluxes of soluble reactive phosphorus (SRP) and dissolved inorganic carbon (DIC) were measured in situ using autonomous landers in the Gulf of Finland in the Baltic Sea, on four expeditions between 2002 and 2005. These measurements together with model estimates of bottom water oxygen conditions were used to compute the magnitude of the yearly integrated benthic SRP flux (also called internal phosphorus load). The yearly integrated benthic SRP flux was found to be almost 10 times larger than the external (river and land sources) phosphorus load. The average SRP flux was 1.25?±?0.56?mmol?m?2?d?1 on anoxic bottoms, and ?0.01?±?0.08?mmol?m?2?d?1 on oxic bottoms. The bottom water oxygen conditions determined whether the SRP flux was in a high or low regime, and degradation of organic matter (as estimated from benthic DIC fluxes) correlated positively with SRP fluxes on anoxic bottoms. From this correlation, we estimated a potential increase in phosphorus flux of 0.69?±?0.26?mmol?m?2?d?1 from presently oxic bottoms, if they would turn anoxic. An almost full annual data set of in situ bottom water oxygen measurements showed high variability of oxygen concentration. Because of this, an estimate of the time which the sediments were exposed to oxygenated overlying bottom water was computed using a coupled thermohydrodynamic ocean?Csea and ecosystem model. Total phosphorus burial rates were calculated from vertical profiles of total phosphorus in sediment and sediment accumulation rates. Recycling and burial efficiencies for phosphorus of 97 and 3%, respectively, were estimated for anoxic accumulation bottoms from a benthic mass balance, which was based on the measured effluxes and burial rates.  相似文献   

2.
受热带季风气候和周边陆源输入的影响,低纬泰国湾海—陆相互作用强烈,是研究海洋沉积有机碳与陆源输入、海洋初级生产力等气候环境变化响应关系的理想区域.通过对泰国湾泥质区T43柱样中总有机碳(TOC)、总氮(TN)、稳定碳同位素(δ13C)以及粒度等指标的分析,基于210Pb建立的高分辨年代地层框架,重建了该区百年来有机碳的...  相似文献   

3.
The quantification of carbon burial in lake sediments, and carbon fluxes derived from different origins are crucial to understand modern lacustrine carbon budgets, and to assess the role of lakes in the global carbon cycle. In this study, we estimated carbon burial in the sediment of Lake Qinghai, the largest inland lake in China, and the carbon fluxes derived from different origins. We find that: (1) The organic carbon burial rate in lake sediment is approximately 7.23 g m−2 a−1, which is comparable to rates documented in many large lakes worldwide. We determined that the flux of riverine particulate organic carbon (POC) is approximately 10 times higher than that of dissolved organic carbon (DOC). Organic matter in lake sediments is primarily derived from POC in lake water, of which approximately 80% is of terrestrial origin. (2) The inorganic carbon burial rate in lake sediment is slightly higher than that of organic carbon. The flux of riverine dissolved inorganic carbon (DIC) is approximately 20 times that of DOC, and more than 70% of the riverine DIC is drawn directly and/or indirectly from atmospheric CO2. (3) Both DIC and DOC are concentrated in lake water, suggesting that the lake serves as a sink for both organic and inorganic carbon over long term timescales. (4) Our analysis suggests that the carbon burial rates in Lake Qinghai would be much higher in warmer climatic periods than in cold ones, implying a growing role in the global carbon cycle under a continued global warming scenario.  相似文献   

4.
李文宝  王汝建  万随 《沉积学报》2017,35(4):730-739
由水体到沉积物,不同沉积阶段的沉积过程也有所不同。通过对比南海南部(SCS-S)水体沉降颗粒物、海底表层沉积物和岩芯柱状沉积物(上部3 m)中Globigerinoides ruber氧、碳同位素(δ18O、δ13C)值和有机碳(TOC)含量及堆积速率的变化,系统分析了TOC、δ18O、δ13C等环境演变指标参数在沉积过程中的变化特征。结果显示:1)整个沉积过程中,TOC及同位素等环境演变指标参数的变化情况并不一致。不过,由下层水体沉降到海底表层的过程中,TOC及堆积速率(分别由4.20%、0.38 g/(cm2·ka)下降到1.182%、0.039 g/(cm2·ka)、δ18O、δ13C值(分别偏重0.196 ‰、0.855 ‰) 均出现了明显变化。而一旦形成表层沉积物并被埋藏覆盖形成海底沉积物层(以岩芯柱状沉积物代表)以后,在不考虑冰期-间冰期气候旋回的影响下,除TOC外,δ18O、δ13C值等则基本保持不变;2)不同沉积阶段,TOC含量变化与δ18O、δ13C值的相关性分析表明,岩芯柱状沉积物中TOC含量变化与δ18O、δ13C变化之间的相关性最为明显,特别是TOC含量与δ18O 变化间呈显著正相关(r=0.74),即由下层水体到表层沉积物这一沉降过程中,TOC含量与堆积速率的突变及其对应的底层水中溶解氧(O2)、二氧化碳(CO2)含量变化可能是诱导δ18O、δ13C大幅偏重的主要因素。因此,利用TOC等指标参数进行古环境变化分析时有必要考虑不同沉积过程的影响。  相似文献   

5.
We examined high frequency fluctuations in water quality parameters in two tropical coastal plain estuaries in response to changing tidal flow conditions. The variability in total suspended sediments (TSS), volatile suspended solids (VSS), total organic carbon (TOC) concentrations, and indicators of water quality, including pH, temperature, salinity, and dissolved oxygen, over one spring tidal cycle during the early wet monsoon season was measured in two estuaries in eastern Sumatra. The relatively high rainfall experienced throughout the year, in combination with the recent extensive vegetation clearing and modification of the landscape, resulted in significant concentrations of TSS, VSS, and TOC being discharged to coastal waters. Maximum values are reached on the ebb tide (TSS > 1,013 mg l−1; VSS > 800 mg l−1; TOC >60 mg l−1). The influence of freshwater discharge and tidal flow on water properties of the lower estuaries is also marked by the variability in salinity, dissolved oxygen, and pH over the tidal cycle, with minimum values for each of these parameters following maximum current velocities and after the completion of the strong ebb tide. Estimation of seaward sediment fluxes, which are of significant interest in a region where rapid environmental change is occurring, would require further examination of sedimentary processes, such as resuspension and advection of sediment, as well as a consideration of neap-spring tidal variations and the effect of seasonality on estuarine circulation.  相似文献   

6.
Global riverine carbon concentrations and fluxes have been impacted by climate and human-induced changes for many decades. This paper aims to reconstruct the longterm carbon concentrations and carbon fluxes of the Red River, a system under the coupled pressures of environmental change and human activity. Based on (1) the relationships between particulate and dissolved organic carbon (POC, DOC) or dissolved inorganic carbon (DIC), and suspended sediments (TSS) or river water discharge and on (2) the available detailed historical records of river discharge and TSS concentration, the variations of the Red River carbon concentration and flux were estimated for the period 1960–2015. The results show that total carbon flux of the Red River averaged 2555?±?639 kton C year?1. DIC fluxes dominated total carbon fluxes, representing 64% of total, reflecting a strong weathering process from carbonate rocks in the upstream basin. Total carbon fluxes significantly decreased from 2816 kton C year?1 during the 1960s to 1372 kton C year?1 during the 2010s and showed clear seasonal and spatial variations. Organic carbon flux decreased in both quantity and proportion of the total carbon flux from 40.9% in 1960s to 14.9% in 2010s, reflecting the important impact of dam impoundment. DIC flux was also reduced over this period potentially as a consequence of carbonate precipitation in the irrigated, agricultural land and the reduction of the Red River water discharge toward the sea. These decreases in TSS and carbon fluxes are probably partially responsible for different negatives impacts observed in the coastal zone.  相似文献   

7.
Numerous studies of marine environments show that dissolved organic carbon (DOC) concentrations in sediments are typically tenfold higher than in the overlying water. Large concentration gradients near the sediment–water interface suggest that there may be a significant flux of organic carbon from sediments to the water column. Furthermore, accumulation of DOC in the porewater may influence the burial and preservation of organic matter by promoting geopolymerization and/or adsorption reactions. We measured DOC concentration profiles (for porewater collected by centrifugation and “sipping”) and benthic fluxes (with in situ and shipboard chambers) at two sites on the North Carolina continental slope to better understand the controls on porewater DOC concentrations and quantify sediment–water exchange rates. We also measured a suite of sediment properties (e.g., sediment accumulation and bioturbation rates, organic carbon content, and mineral surface area) that allow us to examine the relationship between porewater DOC concentrations and organic carbon preservation. Sediment depth-distributions of DOC from a downslope transect (300–1000 m water depth) follow a trend consistent with other porewater constituents (ΣCO2 and SO42−) and a tracer of modern, fine-grained sediment (fallout Pu), suggesting that DOC levels are regulated by organic matter remineralization. However, remineralization rates appear to be relatively uniform across the sediment transect. A simple diagenetic model illustrates that variations in DOC profiles at this site may be due to differences in the depth of the active remineralization zone, which in turn is largely controlled by the intensity of bioturbation. Comparison of porewater DOC concentrations, organic carbon burial efficiency, and organic matter sorption suggest that DOC levels are not a major factor in promoting organic matter preservation or loading on grain surfaces. The DOC benthic fluxes are difficult to detect, but suggest that only 2% of the dissolved organic carbon escapes remineralization in the sediments by transport across the sediment-water interface.  相似文献   

8.
The cycle of organic carbon burial and exhumation moderates atmospheric chemistry and global climate over geologic timescales. The burial of organic carbon occurs predominantly at sea in association with clay-sized particles derived from the erosion of uplifted continental rocks. It follows that the history of the fine-grained particles on land may bear on the nature of the organic carbon buried. In this study, the evolution of clay-associated organic matter was followed from bedrock source to the seabed in the Eel River sedimentary system of northern California using natural abundance 13C and 14C tracers. Approximately half of the fine-grained organic carbon delivered to the shelf is derived from ancient sedimentary organic carbon found in the uplifted Mesozoic-Tertiary Franciscan Complex of the watershed. The short residence time of friable soils on steep hill slopes, coupled with rapid sediment accumulation rates on the shelf-slope, act to preserve the ancient organic carbon. A comparable quantity of modern organic carbon is added to particles in the watershed and on the shelf and slope. The bimodal mixture of ancient and modern C in soils and sediments may be characteristic of many short, mountainous rivers. If the Eel River chemistry is typical of such rivers, more than 40 Tg of ancient organic C may be delivered to the world’s oceans each year. A flux of that magnitude would have a significant influence on marine and global C-cycles.  相似文献   

9.
The effects of freshwater infaunal invertebrates on sediment geochemical properties were studied through an experimental approach using indoor microcosms during a 56-day experiment. The bioturbating organisms were tubificid worms, which consume sediment at depth and deposit undigested material at the sediment?Cwater interface. Bioturbation intensity was determined using fluorescent tracers, and the distribution of redox-sensitive compounds was studied from replicate experimental units handled 7, 14, 21, 28 and 56?days after tubificid colonization. Worm activity transferred reduced particles and pore water at the sediment surface at a rate of 0.14?cm?day?1. Compared to control experimental units, this recycled material represented at the end a several centimetre-thick layer enriched in water content, dissolved nitrate and sulphate, and depleted in oxygen, ammonium and dissolved Mn(II). Tubificids consumed O2 in bottom water, so that the sediment was anoxic, allowing a direct flux of dissolved reduced species into overlying water. Lower ammonium and Mn(II) concentrations and fluxes in anoxic sediment possibly resulted from a decrease in anaerobic microbial metabolism due to competition for labile organic carbon with tubificids. Higher sulphate concentration resulted from burial of surface waters with particle at the sediment surface, but not from bio-irrigation of burrows. Nitrate was produced in anoxic condition, as observed in almost every mixed modern sediments.  相似文献   

10.
Polycyclic aromatic hydrocarbon (PAH) compositions were determined in plankton, sediment-trap-collected particulate material and sediment cores from Dabob Bay using a high performance liquid Chromatographie (HPLC)/fluorescence technique. The annual flux of individual PAH measured in a series of sediment traps was compared with the flux of corresponding compounds determined from 210Pb dated bottom sediments. Systematic seasonal variations in the fluxes and concentrations of PAH, Al and organic carbon in the trap-collected particulates and seasonally collected plankton were also investigated to determine whether or not PAH are associated with either terrestrial or marine-derived materials.Concentrations of all PAH studied increased tenfold within the last 80–100 yr of sediment deposition, except for perylene which displayed a reasonably constant concentration profile. This suggests at least two sources contribute to the observed sedimentary PAH compositions in Dabob Bay, i.e., anthropogenic combustion and a natural source. Plankton and sediment trap-collected particulates contained PAH mixtures qualitatively similar to underlying surface sediments. Microscopic examination indicated fecal pellets were the major form of particulate material in the sediment traps. The fecal pellets collected in the sediment trap time series quantitatively account for essentially 100% of the PAH fluxes measured in the 210Pb dated sediments, implying Zooplankton fecal pellets control the removal of PAH to Dabob Bay sediments. These measurements provide clear evidence that the PAH studied are not produced after sediment deposition. The observed seasonal covariations of PAH and Al in both sediment trap and plankton samples further indicate that PAH originate from terrestrially-based sources, are introduced into the marine environment by runoff and erosion or atmospheric deposition and are not produced by marine plankton.  相似文献   

11.
Remobilization of authigenic uranium in marine sediments by bioturbation   总被引:1,自引:0,他引:1  
Uranium behaves as a nearly conservative element in oxygenated seawater, but it is precipitated under chemically reducing conditions that occur in sediments underlying low-oxygen bottom water or in sediments receiving high fluxes of particulate organic carbon. Sites characterized by a range of bottom-water oxygen (BWO) and organic carbon flux (OCF) were studied to better understand the conditions that determine formation and preservation of authigenic U in marine sediments. Our study areas are located in the mid latitudes of the northeast Pacific and the northwest Atlantic Oceans, and all sites receive moderate (0.5 g/cm2 kyr) to high (2.8 g/cm2 kyr) OCF to the sediments. BWO concentrations vary substantially among the sites, ranging from <3 to ∼270 μM. A mass balance approach was used to evaluate authigenic U remobilization at each site. Within each region studied, the supply of particulate nonlithogenic U associated with sinking particles was evaluated by means of sediment traps. The diffusive flux of U into sediments was calculated from pore-water U concentration profiles. These combined sources were compared with the burial rate of authigenic U to assess the efficiency of its preservation. A large fraction (one-third to two-thirds) of the authigenic U precipitated in these sediments via diffusion supply is later regenerated, even under very low BWO concentrations (∼15 μM). Bioturbating organisms periodically mix authigenic U-containing sediment upward toward the sediment-water interface, where more oxidizing conditions lead to the remobilization of authigenic U and its loss to bottom waters.  相似文献   

12.
大陆边缘海是不同来源、不同性质有机碳沉积和埋藏的主要场所,在全球碳的生物地球化学循环过程中具有重要地位。东海内陆架接收大量陆源有机碳,并且具有较高的海洋生产力,是研究沉积有机碳来源、输运和埋藏的理想场所,已取得大量研究成果。在对相关文献进行系统整理的基础上,以沉积学的视角对前人研究成果进行了梳理,旨在为后续相关研究提供参考。全样分析(如TOC/TN、δ13C等)和生物标志化合物(如正构烷烃、甾醇类、木质素等)方法揭示东海内陆架有机碳的来源受沉积环境影响,由海向陆方向陆源组分整体显著增加,并具有季节性特征。东海内陆架沉积物在沿岸方向具有“夏储冬输”的宏观输运格局,该动力过程影响着陆源有机碳沿岸的输运路径和最终归宿;在东海29° N附近存在一个“舌形”的跨陆架输运通道,可能会存在陆源有机碳的跨陆架输运,影响深海有机碳的源—汇过程;另外,人类活动和极端气候事件也显著影响东海内陆架沉积物和有机碳的沉积过程和沉积记录,需要进一步研究。东海内陆架泥质区是陆源有机碳的重要埋藏区域,其埋藏效率受区域沉积有机碳含量和沉积速率控制,并与早期成岩过程中有机质矿化路径有关。沉积物中埋藏有机碳的地球化学特征可以用来重建长时间尺度的海平面变化、初级生产力、古海洋和古气候演化等,相关研究为理清东海内陆架地质历史时期的环境演化提供了依据。  相似文献   

13.
We present a weathering mass balance of the presently glaciated Rhône and Oberaar catchments, located within the crystalline Aar massif (central Switzerland). Annual chemical and physical weathering fluxes are calculated from the monthly weighted means of meltwater samples taken from July, 1999 to May, 2001 and are corrected for precipitation inputs. The meltwater composition issuing from the Oberaar and Rhône catchments is dominated by calcium, which represents 81% and 55% of the total cation flux respectively (i.e. 555 and 82-96 keq km−2 yr−1). The six to seven times higher Ca2+ denudation flux from the Oberaar catchment is attributed to the presence of a strongly foliated gneissic zone. The gneissic zone has an elevated calcite content (as reflected by the 4.6 times higher calcite content of the suspended sediments from Oberaar compared to Rhône) and a higher mechanical erosion rate (resulting in a higher flux of suspended sediment). The mean flux of suspended calcite of the Oberaar meltwaters during the ablation period is 7 times greater than that of the Rhône meltwaters. Taking the suspended calcite as a proxy for the total (including sub-glacial sediments) weathering calcite surface area, it appears that the available surface area is an important factor in controlling weathering rates. However, we also observe an increased supply of protons for carbonate dissolution in the Oberaar catchment, where the sulphate denudation flux is six times greater. Carbonic acid is the second important source of protons, and we calculate that three times as much atmospheric CO2 is drawn down (short term) in the Oberaar catchment. Silica fluxes from the two catchments are comparable with each other, but are 100 kmol km2 yr−1 lower than fluxes from physically comparable, non-glaciated basins.  相似文献   

14.
Long-term carbon cycling and climate change are strongly dependent on organic carbon (OC) burial in marine sediments. Radiocarbon (14C) has been widely used to constrain the sources, sinks, and processing of sedimentary OC. To elucidate the dominant controls on the radiocarbon content of total organic carbon (14CTOC) accumulating in surface sediments we construct a box model that predicts 14CTOC in the sediment mixed layer (measured as fraction modern, Fm). Our model defines three distinct OC pools (“degradable,” “semi-labile,” and “refractory”) and assumes that 14CTOC flux to sediments is exclusively derived from surface ocean primary productivity, and hence follows a “generic” surface ocean dissolved inorganic carbon (DIC) bomb curve. Model predictions are compared to a set of 75 surface sediment samples, which span a wide geographic range and reflect diverse water column and depositional conditions, and for which sedimentation rate and mixed-layer depth are well characterized. Our model overestimates the Fm value for a majority (65%) of these sites, especially at shallow water depths and for sites characterized by depleted δ13CTOC values. The model is most sensitive to sedimentation rate and mixed-layer depth. Therefore, slight changes to these parameters can lead to a match between modeled and measured Fm values at many sites. Yet, in some cases, we find that measured Fm values cannot be simulated without large and unrealistic changes to sedimentation rate and mixed-layer depth. These results point to sources of pre-aged OC to surface sediments and implicate soil-derived terrestrial OC, reworked marine OC, and/or anthropogenic carbon as important components of the organic matter present in surface sediments. This approach provides a valuable framework within which to explore controls on sedimentary organic matter composition and carbon burial over a range of spatial and temporal scales.  相似文献   

15.
This study reports the first ethanol and acetaldehyde measurements in sediment porewaters collected at multiple freshwater locations. Ethanol concentrations ranged from 11 to 2535 nM and acetaldehyde concentrations ranged from 6 to 320 nM. A significant positive correlation (p < 0.001) was observed between ethanol concentrations and the percent organic carbon content of sediments (TOC). Porewater depth profiles at two sites within the same lake indicated potential diffusion of ethanol into sediments from the overlying water at a lower TOC site and upwards diffusion from sediment into the water column at a higher TOC site. Diffusion of water column ethanol into sediments was observed at individual sites from October to January, whereas the opposite was true from June to August indicating the seasonal variability of ethanol flux from sediments. Changes in ethanol concentrations during a long-term sediment incubation experiment showed an inverse relation with acetaldehyde concentrations. The lack of a quantitative conversion was likely due to other sources and sinks that control their abundance. Our study provided new information on the biogeochemistry of ethanol in freshwater sediments and shed light on the potential role of ethanol in the global carbon cycle.  相似文献   

16.
利用元素分析仪对2007年获取的黄河口及邻近渤海海域悬浮体和沉积物进行了有机碳、氮含量分析.结果表明,在同一站位有机碳大体上的分布为,表层沉积物中TOC含量≤底层悬浮体中POC含量<表层悬浮体中POC含量;依据表层沉积物中TOC、TN含量和悬浮体中POC的分布,研究区可划分为5个区,依次为莱州湾西部靠近黄河口区(Ⅰ和Ⅱ...  相似文献   

17.
The goal of this paper is to find out whether suspended mussel culture affects the vertical fluxes of biogenic particles in the Ría de Vigo on a seasonal scale. With this aim, vertical fluxes of particulate organic carbon (POC) and the magnitude and composition of vertical export of phytoplankton carbon (Cphyto) collected in sediment traps were examined by comparing data obtained inside a mussel farming area (RaS) with those found at a reference station (ReS) not affected by mussels. Our results indicate that mussel farming has a strong impact on sedimentation fluxes under the rafts, not only increasing POC flux but also altering the magnitude and composition of Cphyto fluxes. Average POC flux at RaS (2564?±?1936 mg m?2 day?1) was four times higher than at ReS (731?±?276 mg m?2 day?1), and much of this increase was due to biodeposit fluxes (Cbiodep) which accounted for large proportion of POC flux (35–60 %). Indeed, because of this high Cbiodep flux, only a small proportion of the POC flux was due to Cphyto flux (3–12 %). At the same time, we observed an increased sedimentation of phytoplankton cells at RaS that could be explained by a combination of mechanisms: less energetic hydrodynamic conditions under mussel rafts, ballast effect by sinking mussel feces, and diatom aggregates. Moreover, mussel farming also altered the quality of the Cphyto flux by removing part of the predatory pressure of zooplankton and thus matching diatom composition in water column and sediment traps.  相似文献   

18.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

19.
北黄海沉积物中氮的地球化学特征及其早期成岩作用   总被引:15,自引:0,他引:15  
本文首次报道对北黄海沉积物中氮的形态及其早期成岩作用的研究成果。结果表明 ,北黄海沉积物中占主导地位的是细粒度组分 ,其结构和性质直接影响着沉积物中化学元素的形态、含量与分布 ,使自然粒度沉积物中各形态氮的垂向分布与细粒度组分中各形态氮的分布非常相近。在氮的早期成岩过程中 ,粒度也起着非常重要的作用 ,沉积物的粒度越细 ,沉积物中有机氮的分解速率越小 ,即细粒度沉积物中有机氮的分解矿化速率最小 ,易于富集有机氮。对于不同站位的沉积物来说 ,因其沉积速率的差异 ,致使沉积物中各形态氮的埋藏通量有很大差异 ,沉积速率越大 ,沉积物中各形态氮的埋藏通量越大 ,在沉积速率最大的 C4站位 ,各形态氮的埋藏通量最大。  相似文献   

20.
The paper presents the molybdenum isotope data, along with the trace element content, to investigate the geochemical behavior of authigenic Mo during long-term burial in sediments in continental margin settings of the Yangtze block, as well as their indication to the burial of original organic carbon. The burial rate of original organic carbon was estimated on the basis of the amount of sedimentary sulfur (TS content), whilst the carbon loss by aerobic degradation was estimated according to calculated Mn contents. On these points, the original organic carbon flux was calculated, exhibiting a large range of variation (0.17–0.67 mmol/m2/day). The strong correlation between sedimentary Mo isotope values and organic carbon burial rates previously proposed on the basis of the investigations on modern ocean sediments, was also used here to estimate the organic carbon burial rate. The data gained through this model showed that organic carbon burial rates have large variations, ranging from 0.43–2.87 mmol/m2/day. Although the two sets of data gained through different geochemical records in the Yangtze block show a deviation of one order of magnitude, they do display a strong correlation. It is thus tempting to speculate that the Mo isotope signature of sediments may serve as a tracer for the accumulation rate of original organic carbon in the continental margin sediments. __________ Translated from Earth Science—Journal of China University of Geosciences, 2007, 32(6) [译自: 地球科学—中国地质大学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号