首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Assessing nitrogen dynamics in the estuarine landscape is challenging given the unique effects of individual habitats on nitrogen dynamics. We measured net N2 fluxes, sediment oxygen demand, and fluxes of ammonium and nitrate seasonally from five major estuarine habitats: salt marshes, seagrass beds (SAV), oyster reefs, and intertidal and subtidal flats. Net N2 fluxes ranged from 332?±?116 μmol?N-N2?m?2?h?1 from oyster reef sediments in the summer to ?67?±?4 μmol?N-N2?m?2?h?1 from SAV in the winter. Oyster reef sediments had the highest rate of N2 production of all habitats. Dissimilatory nitrate reduction to ammonium (DNRA) was measured during the summer and winter. DNRA was low during the winter and ranged from 4.5?±?3.0 in subtidal flats to 104?±?34 μmol?15NH 4 + ?m?2?h?1 in oyster reefs during the summer. Annual denitrification, accounting for seasonal differences in inundation and light, ranged from 161.1?±?19.2 mmol?N-N2?m?2?year?1 for marsh sediments to 509.9?±?122.7 mmol?N-N2?m?2?year?1 for SAV sediments. Given the current habitat distribution in our study system, an estimated 28.3?×?106?mol of N are removed per year or 76 % of estimated watershed nitrogen load. These results indicate that changes in the area and distribution of habitats in the estuarine landscape will impact ecosystem function and services.  相似文献   

2.
Sediment oxygen uptake and net sediment-water fluxes of dissolved inorganic and organic nitrogen and phosphorus were measured at two sites in Fourleague Bay, Louisiana, from August 1981, through May 1982. This estuary is an extension of Atchafalaya Bay which receives high discharge and nutrient loading from the Atchafalaya River. Sediment O2 uptake averaged 49 mg m?2 h?1. On the average, ammonium (NH4 +) was released from the sediments (mean flux =+129 μmol m?2 h?1), and NO3 ? was taken up (mean flux =?19 μmol m?2h?1). However, very different NO3 ? fluxes were observed at the two sites, with sediment uptake at the upper, river-influenced, high NO3 ? site (mean flux =?112 μmol m?2 h?1) and release at the lower, marine-influenced low NO3 ? site (mean flux =+79 μmol m?2 h?1). PO4 3? fluxes were low and often negative (mean flux =?8 μmol m?2 h?1), while dissolved organic phosphorus fluxes were high and positive (mean flux =+124 μmol m?2 h?1). Dissolved organic nitrogen fluxes varied greatly, ranging from a mean of +305 μmol m?2 h?1 at the lower bay, to ?710 μmol m?2 h?1 at the upper bay. Total dissolved nitrogen and phosphorus fluxes indicated the sediments were a nitrogen (mean flux =+543 μmol m?2 h?1) and phosphorus source (mean flux =+30 μmol m?2 h?1) at the lower bay, and a nitrogen sink (mean flux =?553 μmol m?2 h?1) and phosphorus source (mean flux =+17 μmol m?2 h?1) in the upper bay. Mean annual O∶N ration of the positive inorganic sediment fluxes were 27∶1 at the upper bay and 18∶1 at the lower bay. Based on these data we hypothesize that nitrification and denitrification are important sediment processes in the upper bay. We further hypothesize that Atchafalaya River discharge affects sediment-water fluxes through seasonally high nutrient loading which leads to net nutrient uptake by sediments in the upper bay and release in the lower bay, where there is less river influnces.  相似文献   

3.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

4.
Sediment-water oxygen and nutrient (NH4 +, NO3 ?+NO2 ?, DON, PO4 3?, and DSi) fluxes were measured in three distinct regions of Chesapeake Bay at monthly intervals during 1 yr and for portions of several additional years. Examination of these data revealed strong spatial and temporal patterns. Most fluxes were greatest in the central bay (station MB), moderate in the high salinity lower bay (station SB) and reduced in the oligohaline upper bay (station NB). Sediment oxygen consumption (SOC) rates generally increased with increasing temperature until bottom water concentrations of dissolved oxygen (DO) fell below 2.5 mg l?1, apparently limiting SOC rates. Fluxes of NH4 + were elevated at temperatures >15°C and, when coupled with low bottom water DO concentrations (<5 mg l?1), very large releases (>500 μmol N m?2 h?1) were observed. Nitrate + nitrite (NO3 ?+NO2 ?) exchanges were directed into sediments in areas where bottom water NO3 ?+NO2 ? concentrations were high (>18 μM N); sediment efflux of NO3 ?+NO2 ? occurred only in areas where bottom water NO3 ?+NO2 ? concentrations were relatively low (<11 μM N) and bottom waters well oxygenated. Phosphate fluxes were small except in areas of hypoxic and anoxic bottom waters; in those cases releases were high (50–150 μmol P m?2 h?1) but of short duration (2 mo). Dissolved silicate (DSi) fluxes were directed out of the sediments at all stations and appeared to be proportional to primary production in overlying waters. Dissolved organic nitrogen (DON) was released from the sediments at stations NB and SB and taken up by the sediments at station MB in summer months; DON fluxes were either small or noninterpretable during cooler months of the year. It appears that the amount and quality of organic matter reaching the sediments is of primary importance in determining the spatial variability and interannual differences in sediment nutrient fluxes along the axis of the bay. Surficial sediment chlorophyll-a, used as an indicator of labile sediment organic matter, was highly correlated with NH4 ?, PO4 3?, and DSi fluxes but only after a temporal lag of about 1 mo was added between deposition events and sediment nutrient releases. Sediment O:N flux ratios indicated that substantial sediment nitrification-denitrification probably occurred at all sites during winter-spring but not summer-fall; N:P flux ratios were high in spring but much less than expected during summer, particularly at hypoxic and anoxic sites. Finally, a comparison of seasonal N and P demand by phytoplankton with sediment nutrient releases indicated that the sediments provide a substantial fraction of nutrients required by phytoplankton in summer, but not winter, especially in the mid bay region.  相似文献   

5.
Sediment denitrification was monthly evaluated in two tropical coastal lagoons with different trophic states using the 15N isotope pairing technique. Denitrification rates were very low in both environments, always <5.0 μmol N2 m?2 h?1 and were not significantly different between them. Oxygen consumption varied from 426 to 4248 μmol O2 m?2 h?1 and was generally three times higher in the meso-eutrophic than the oligotrophic lagoon. The low denitrification activity was ascribed to both low water NO3 ? concentrations (<2.0 μM) and little nitrate supply from nitrification. There was no correlation of denitrification with nitrate or ammonium fluxes. Sediments in temperate environments with similar oxygen consumption rates usually presented a higher proportion of nitrification–denitrification rates. Sediment oxygen consumption was a good predictor of sediment denitrification in both studied lagoons.  相似文献   

6.
The effects of fish farm activities on sediment biogeochemistry were investigated in Loch Creran (Western Scotland) from March to October 2006. Sediment oxygen uptake rates (SOU) were estimated along an organic matter gradient generated from an Atlantic salmon farm using a combination of in situ techniques: microelectrodes, planar optode and benthic chamber incubations. Sulphide (H2S) and pH distributions in sediment porewater were also measured using in situ microelectrodes, and dissolved inorganic carbon (DIC) fluxes were measured in situ using benthic chambers. Relationships between benthic fluxes, vertical distribution of oxidants and reduced compounds in the sediment were examined as well as bacterial abundance and biomass. Seasonal variations in SOU were relatively low and mainly driven by seasonal temperature variations. The effect of the fish farm on sediment oxygen uptake rate was clearly identified by higher total and diffusive oxygen uptake rates (TOU and DOU, respectively) on impacted stations (TOU: 70 ± 25 mmol O2 m?2 day?1; DOU: 70 ± 32 mmol O2 m?2 day?1 recalculated at the summer temperature), compared with the reference station (TOU: 28.3 ± 5.5 mmol O2 m?2 day?1; DOU: 21.5 ± 4.5 mmol O2 m?2 day?1). At the impacted stations, planar optode images displayed high centimetre scale heterogeneity in oxygen distribution underlining the control of oxygen dynamics by small-scale processes. The organic carbon enrichment led to enhanced sulphate reduction as demonstrated by large vertical H2S concentration gradients in the porewater (from 0 to 1,000 μM in the top 3 cm) at the most impacted site. The impact on ecosystem functions such as bioirrigation was evidenced by a decreasing TOU/DOU ratio, from 1.7 in the non-impacted sediments to 1 in the impacted zone. This trend was related to a shift in the macrofaunal assemblage and an increase in sediment bacterial population. The turnover time of the organic load of the sediment was estimated to be over 6 years.  相似文献   

7.
Cycling of methane (CH4) in Tomales Bay, a 28-km2 temperature estuary in northern California with relatively low inputs of organic carbon, was studied over a 1-yr period. Water column CH4 concentrations showed spatial and temporal variability (range=8–100 nM), and were supersaturated with respect to the atmosphere by a factor of 2–37. Rates of net water column CH4 production-oxidation were determined by in situ experiments, and were not found to be significantly different from zero. Fluxes across the sediment-water interface, determined by direct measurement using benthic chambers, varied from ?0.1 μmol m?2 d?1 to +16 μmol m?2 d?1 (positive fluxes into water). Methane concentrations in the two perennial creeks feeding the bay varied annually (140–950 nM); these creeks were a significant CH4 source to the bay during winter. In addition, mass-balance calculations indicate a significant additional inter CH4 source, which is hypothesized to result from storm-related runoff from dairy farms adjacent to the bay. Systemwide CH4 budgets of the 16-km2 inner bay indicate benthic production (110 mol d?1) and atmospheric evasion (110 mol d?1) dominated during summer, while atmospheric evasion (160 mol d?1) and runoff from dairy farms (90 mol d?1) dominated during winter.  相似文献   

8.
Atmospheric dust is considered to be the major cause of poor air quality due to its contribution to high particulate levels, but their interaction with the acidic gases helps in controlling the level of SO2 and NO2 through ambient neutralization reactions. In the present study, the interaction of acidic gases such as SO2 and NO2 with alkaline dust was investigated during October, 2013–July, 2014 at a site named as Babarpur located at the Trans-Yamuna region of Delhi. The concentration of SO2 ranged from 10 to 170 μg/m3 with an average of 36 μg/m3 while that of NO2 ranged from 15 to 54 μg/m3 with an average of 26?±?8 μg/m3. The results were observed to be well within the National Ambient Air Quality Standard (NAAQS) limits prescribed by the Central Pollution Control Board (CPCB). The average concentrations of SO2 during day and night time were recorded as 31?±?18 and 43?±?53 μg/m3 respectively while the mean concentrations of NO2 during day and night time were recorded as 26?±?7 and 27?±?12 μg/m3 respectively. A positive correlation between SO42? and NO3? was also observed indicating their secondary aerosol formation. In aerosol phase, average concentrations of SO42? during day and night time were 3.9?±?0.3 and 6.5?±?2.3 μg/m3 respectively while that of NO3? were 9.5?±?1.5 and 7.3?±?0.5 μg/m3 respectively. Molar ratios of Ca2+/SO42?, NH4+/SO42?, and NH4+/NO3? were observed as 8, 5, and 1.7 during daytime and 1.5, 0.4, and 0.8 during nighttime respectively. Such molar ratios confirmed high concentrations of sulphate (SO4)2? and low concentrations of nitrate (NO3?) during night time, thereby indicating different pathway of aerosol formation during day and night time. Surface morphology and elemental composition of aerosol samples showed various oval, globular, and platy shapes where the diameter varied from few nm to ~5 μm depending on their precursors. There were certain shapes like grossularite, irregular aggregate, grape-like, triangular, and flattened which indicate the crustal origin of aerosols and their possible role in SO2 and NO2 adsorption.  相似文献   

9.
Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O2 m?2 day?1) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O2 m?2 day?1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O2 m?2 day?1. The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem ? water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O2 m?2 day?1 but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O2 m?2 day?1 in spring to 86.7 mmol O2 m?2 day?1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.  相似文献   

10.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

11.
Large areas of natural coastal wetlands have suffered severely from human-driven damages or conversions (e.g., land reclamations), but coastal carbon flux responses in reclaimed wetlands are largely unknown. The lack of knowledge of the environmental control mechanisms of carbon fluxes also limits the carbon budget management of reclaimed wetlands. The net ecosystem exchange (NEE) in a coastal wetland at Dongtan of Chongming Island in the Yangtze estuary was monitored throughout 2012 using the eddy covariance technique more than 14 years after this wetland was reclaimed using dykes to stop tidal flooding. The driving biophysical variables of NEE were also examined. The results showed that NEE displayed marked diurnal and seasonal variations. The monthly mean NEE showed that this ecosystem functioned as a CO2 sink during 9 months of the year, with a maximum value in September (?101.2 g C m?2) and a minimum value in November (?8.2 g C m?2). The annual CO2 balance of the reclaimed coastal wetland was ?558.4 g C m?2 year?1. The ratio of ecosystem respiration (ER) to gross primary production (GPP) was 0.57, which suggests that 57 % of the organic carbon assimilated by wetland plants was consumed by plant respiration and soil heterotrophic respiration. Stepwise multiple linear regressions suggested that temperature and photosynthetically active radiation (PAR) were the two dominant micrometeorological variables driving seasonal variations in NEE, while soil moisture (M s) and soil salinity (PSs) played minor roles. For the entire year, PAR and daytime NEE were significantly correlated, as well as temperature and nighttime NEE. These nonlinear relationships varied seasonally: the maximum ecosystem photosynthetic rate (A max), apparent quantum yield (?), and Q 10 reached their peak values during summer (17.09 μmol CO2?m?2 s?1), autumn (0.13 μmol CO2?μmol?1 photon), and spring (2.16), respectively. Exceptionally high M s or PSs values indirectly restricted ecosystem CO2 fixation capacity by reducing the PAR sensitivity of the NEE. The leaf area index (LAI) and live aboveground biomass (AGBL) were significantly correlated with NEE during the growing season. Although the annual net CO2 fixation rate of the coastal reclaimed wetland was distinctly lower than the unreclaimed coastal wetland in the same region, it was quite high relative to many inland freshwater wetlands and estuarine/coastal wetlands located at latitudes higher than this site. Thus, it is concluded that although the net CO2 fixation capacity of the coastal wetland was reduced by land reclamation, it can still perform as an important CO2 sink.  相似文献   

12.
Oceanic upwelling results in the intermittent intrusion of cold ocean water enriched in nitrate, and to a lesser extent soluble reactive phosphorus (SRP), into the Kariega Estuary (South Africa). Laboratory measocosm experiments were conducted to determine the effects of such changes on fluxes of dissolved nutrients across the surface of a salt marsh within the estuary. When replicate mesocosms of the tidal creek and salt marsh were inundated with nonupwelled water (at 25°C and nitrate concentrations of 4.5 μmoll?1), nitrate fluxes in both regions were small, and the tidal creek exhibited net uptake (negative value) of nitrate from the water column (?85 μmol m?2 tide?1), and the marsh, net release (positive values; 113 μmol m?2 tide?1). When the mesocosms were inundated with upwelled water, at 16°C and with nitrate concentrations of 24.2 μmol l?1, both regions exhibited large net uptakes of nitrate (?514 μmol m?2 tide?1 and ?226 μmol m?2 tide?1 for the tidal creek and salt marsh, respectively). In contrast to nitrate, the fluxes of nitrite, ammonium, and SRP were not significantly different under upwelling and nonupwelling conditions, probably because initial concentrations in the two water types were similar. To determine the extent to which the nitrate uptakes were caused by decreased water temperatures or increased concentrations of nitrate, experiments were conducted in which mesocosms were inundated with water with a range of nitrate concentrations (1.8–25 μmol l?1), at two temperatures representative of summer upwelling (16°C) and nonupwelling conditions (25°C). In both regions, the net fluxes of nitrate were positively correlated with initial concentrations of nitrate in the water column. For any given concentration, the fluxes at 16°C fell within the range of values at 25°C, indicating that the shifts in fluxes caused by upwelling occurred in response to increased concentrations in the water column and not reduced temperatures.  相似文献   

13.
The present study examines the temporal variability of air–water CO2 fluxes (FCO2) and seawater carbonate chemistry in a Baja California coastal lagoon during an exceptionally warm anomaly that was developed in Northeast Pacific coasts during 2014. This oceanographic condition led to a summer-like season (weak upwelling condition) during the study period, which reached a maximum surface temperature anomaly of 2 °C in September 2014. San Quintín Bay acts as a source of CO2 to the atmosphere in 2014 (3.3 ± 4.8 mmol C m?2 day?1) with the higher positive fluxes mainly observed in summer months (9.0 ± 5.3 mmol C m?2 day?1). Net ecosystem production (NEP) switched seasonally between net heterotrophy and net autotrophy during the study period, with an annual average of 2.2 ± 7.1 mmol C m?2 day?1, which indicates that San Quintín Bay was a net autotrophic system during the atypical warm oceanographic condition in 2014. This pattern of seasonal variations in the carbon balance at San Quintín Bay appears to be linked to the life cycle of benthic communities, which play an important role in the whole-ecosystem metabolism. Under the limited input from external sources coupled with an increase in seawater temperatures, the recycled benthic carbon and nutrient fluxes play a major role to sustain water-column processes within the bay. Since the upwelling condition may influence the magnitude of the air–water CO2 fluxes, our results clearly indicated that San Quintín Bay is a net source of carbon to the atmosphere regardless of the adjacent oceanic conditions. Our study sheds light on the carbon dynamics and its metabolic implications in a shallow coastal ecosystem under a regional warm anomaly and contributes potentially relevant information in view of the likely future scenario of global climate change.  相似文献   

14.
Three sediment stations in Himmerfjärden estuary (Baltic Sea, Sweden) were sampled in May 2009 and June 2010 to test how low salinity (5–7 ‰), high primary productivity partially induced by nutrient input from an upstream waste water treatment plant, and high overall sedimentation rates impact the sedimentary cycling of methane and sulfur. Rates of sediment accumulation determined using 210Pbexcess and 137Cs were very high (0.65–0.95 cm?year?1), as were the corresponding rates of organic matter accumulation (8.9–9.5 mol C?m?2?year?1) at all three sites. Dissolved sulfate penetrated <20 cm below the sediment surface. Although measured rates of bicarbonate methanogenesis integrated over 1 m depth were low (0.96–1.09 mol?m?2?year?1), methane concentrations increased to >2 mmol?L?1 below the sulfate–methane transition. A steep gradient of methane through the entire sulfate zone led to upward (diffusive and bio-irrigative) fluxes of 0.32 to 0.78 mol?m?2?year?1 methane to the sediment–water interface. Areal rates of sulfate reduction (1.46–1.92 mol?m?2?year?1) integrated over the upper 0–14 cm of sediment appeared to be limited by the restricted diffusive supply of sulfate, low bio-irrigation (α?=?2.8–3.1 year?1), and limited residence time of the sedimentary organic carbon in the sulfate zone. A large fraction of reduced sulfur as pyrite and organic-bound sulfur was buried and thus escaped reoxidation in the surface sediment. The presence of ferrous iron in the pore water (with concentrations up to 110 μM) suggests that iron reduction plays an important role in surface sediments, as well as in sediment layers deep below the sulfate–methane transition. We conclude that high rates of sediment accumulation and shallow sulfate penetration are the master variables for biogeochemistry of methane and sulfur cycling; in particular, they may significantly allow for release of methane into the water column in the Himmerfjärden estuary.  相似文献   

15.
Tidal marshes act as a buffer system for nutrients in the pore water and play important roles in controlling the budget of nutrients and pollutants that reach the sea. Spatial and seasonal dynamics of pore water nutrients were surveyed in three tidal marshes (Chongming Island, Hengsha Island, and Fengxian tidal flat) near the Yangtze Estuary and Hangzhou Bay from August 2007 to May 2008. Nutrient variations in pore water closely followed seawater quality in the estuaries, while the average concentration of NH4 +–N, the main form of inorganic nitrogen in pore water, was over two orders of magnitude higher than that in seawater which was dominated by nitrate. NH4 +–N export (13.81 μmol m?2 h?1) was lower than the import of (NO3 ?+NO2 ?)–N (?24.17 μmol m?2 h?1) into sediment over the 1-year period, hence reducing N-eutrophication in coastal waters. The export of SiO3 2?–Si and PO4 3?–P from tidal marshes regulated nutrient level and composition and lifted the ratio beyond potentidal element limitation in the coastal system. Moreover, macrophyte plants (Spartina alterniflora and Phragmites australis) played significant roles in controlling nutrient concentration in pore water and its exchange between marshes and estuaries. Fengxian marsh was characterized by higher nutrient concentrations and fluxes than other marshes in response to the more serious eutrophication in Hangzhou Bay than in the Yangtze Estuary.  相似文献   

16.
The delivery of dissolved carbon from rivers to coastal oceans is an important component of the global carbon budget. From November 2013 to December 2014, we investigated freshwater-saltwater mixing effects on dissolved carbon concentrations and CO2 outgassing at six locations along an 88-km-long estuarine river entering the Northern Gulf of Mexico with salinity increasing from 0.02 at site 1 to 29.50 at site 6 near the river’s mouth. We found that throughout the sampling period, all six sites exhibited CO2 supersaturation with respect to the atmospheric CO2 pressure during most of the sampling trips. The average CO2 outgassing fluxes at site 1 through site 6 were 162, 177, 165, 218, 126, and 15 mol m?2 year?1, respectively, with a mean of 140 mol m?2 year?1 for the entire river reach. In the short freshwater river reach before a saltwater barrier, 0.079 × 108 kg carbon was emitted to the atmosphere during the study year. In the freshwater-saltwater mixing zone with wide channels and river lakes, however, a much larger amount of carbon (3.04 × 108 kg) was emitted to the atmosphere during the same period. For the entire study period, the river’s freshwater discharged 0.25 × 109 mol dissolved inorganic carbon (DIC) and 1.77 × 109 mol dissolved organic carbon (DOC) into the mixing zone. DIC concentration increased six times from freshwater (0.24 mM) to saltwater (1.64 mM), while DOC showed an opposing trend, but to a lesser degree (from 1.13 to 0.56 mM). These findings suggest strong effects of freshwater-saltwater mixing on dissolved carbon dynamics, which should be taken into account in carbon processing and budgeting in the world’s estuarine systems.  相似文献   

17.
Surface coal mining inevitably deforests the land, reduces carbon (C) pool and generates different land covers. To re-establish the ecosystem C pool, post-mining lands are often afforested with fast-growing trees. A field study was conducted in the 5-year-old unreclaimed dump and reclaimed coal mine dump to assess the changes in soil CO2 flux and compared with the reference forest site. Changes in soil organic carbon (SOC) and total nitrogen stocks were estimated in post-mining land. Soil CO2 flux was measured using close dynamic chamber method, and the influence of environmental variables on soil CO2 flux was determined. Woody biomass C and SOC stocks of the reference forest site were threefold higher than that of 5-year-old reclaimed site. The mean soil CO2 flux was highest in 5-year-old reclaimed dump (2.37 μmol CO2 m?2 s?1) and lowest in unreclaimed dump (0.21 μmol CO2 m?2 s?1). Soil CO2 flux was highly influenced by environmental variables, where soil temperature positively influenced the soil CO2 flux, while soil moisture, relative humidity and surface CO2 concentration negatively influenced the soil CO2 flux. Change in soil CO2 flux under different land cover depends on plant and soil characteristics and environmental variables. The study concluded that assessment of soil CO2 flux in post-mining land is important to estimate the potential of afforestation to combat increased emission of soil CO2 at regional and global scale.  相似文献   

18.
The spatial and temporal variations of the flux of CO2 were determined during 2007 in the Recife estuarine system (RES), a tropical estuary that receives anthropogenic loads from one of the most populated and industrialized areas of the Brazilian coast. The RES acts as a source of nutrients (N and P) for coastal waters. The calculated CO2 fluxes indicate that the upstream inputs of CO2 from the rivers are largely responsible for the net annual CO2 emission to the atmosphere of +30 to +48 mmol m?2 day?1, depending on the CO2 exchange calculation used, which mainly occurs during the late austral winter and early summer. The observed inverse relationship between the CO2 flux and the net ecosystem production (NEP) indicates the high heterotrophy of the system (except for the months of November and December). The NEP varies between ?33 mmol m?2 day?1 in summer and ?246 mmol m?2 day?1 in winter. The pCO2 values were permanently high during the study period (average ~4,700 μatm) showing a gradient between the inner (12,900 μatm) and lower (389 μatm) sections on a path of approximately 30 km. This reflects a state of permanent pollution in the basin due to the upstream loading of untreated domestic effluents (N/P?=?1,367:6 μmol kg?1 and pH?=?6.9 in the inner section), resulting in the continuous mineralization of organic material by heterotrophic organisms and thereby increasing the dissolved CO2 in estuarine waters.  相似文献   

19.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

20.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号