首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
为了研究穿越纵向非均匀场地的沉管隧道地震反应规律,进行了沉管隧道穿越砂土-黏土场地和均匀砂土场地两种工况的振动台试验。沉管隧道模型材料主要为微粒混凝土和镀锌钢丝,接头材料为橡胶,模型缩尺比为1/30,采用层叠剪切箱装填黏土和砂土构成纵向非均匀场地,输入荷载为不同峰值的El Centro波和Kobe波。采集土层和隧道不同观测点处的加速度和应变等数据并进行分析,研究在不同性质土层中的沉管隧道地震反应的特点,分析纵向非均匀场地对于沉管隧道地震反应的影响。试验结果表明砂土和黏土不同的动力特性会导致沉管隧道地震反应各异:穿越非均匀场地沉管隧道加速度反应、应变反应和管节间相对位移反应明显异于均匀场地沉管隧道,且在输入不同峰值的地震波下呈现不同规律。试验结果可供沉管隧道抗震设计参考。  相似文献   

2.
This paper describes the design, fabrication and commissioning of a single axis laminar shear box for use in seismic soil–structure interaction studies. A laminar shear box is a flexible container that can be placed on a shaking table to simulate vertical shear-wave propagation during earthquakes through a soil layer of finite thickness. The laminar shear box described in this paper was designed to overcome the base shear limitations of a small shaking table at The University of Western Ontario. The design details of the box are provided in addition to results of dynamic tests performed to commission the box. A synthetic clay comprising sodium bentonite mixed with diluted glycerin was used as the model soil and 1-G similitude theory was employed to maintain model to prototype similarity. The model soil was compacted into the container in lifts to achieve soil stiffness that increased with depth. A series of shaking table tests and numerical analyses that were performed to study the performance of the laminar box and non-linear seismic behavior of the model clay are described. The results of this study show that the laminar box does not impose significant boundary effects and is able to maintain 1-D soil column behavior. In addition, the dynamic behavior of the model clay during scaled model tests was found to be consistent with the behavior measured during cyclic laboratory tests.  相似文献   

3.
<正>This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground.The soil profile,contained in a large-scale laminar shear box,consisted of a horizontally saturated sand layer overlaid with a silty clay layer,with the simulated low-cap pile groups embedded.The container was excited in three E1 Centra earthquake events of different levels.Test results indicate that excessive pore pressure(EPP) during slight shaking only slightly accumulated,and the accumulation mainly occurred during strong shaking.The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased.The acceleration response of the sand was remarkably influenced by soil liquefaction.As soil liquefaction occurred,the peak sand displacement gradually lagged behind the input acceleration;meanwhile,the sand displacement exhibited an increasing effect on the bending moment of the pile,and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top.A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events.It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.  相似文献   

4.
Shaking table tests were conducted on saturated clean Vietnam sand in the large biaxial laminar shear box (1880 mm×1880 mm×1520 mm) at the National Center for Research on Earthquake Engineering (NCREE), Taiwan. The settlement of sand specimens was measured and evaluated during and after each shaking test. Without liquefaction, the settlement of sand caused by shaking is very small. Significant volume changes occur only when there is liquefaction of sand. The volumetric strain of liquefied sand was calculated according to the measured settlement and the thickness of liquefied sand in the specimen. Relations between volumetric strain after liquefaction and the relative density of saturated clean sand were developed for various shaking durations and earthquake magnitudes. They are not affected by the shaking amplitude, frequency, and direction (one- or multidirectional shaking).  相似文献   

5.
为了分析软土地基-筏基础核电厂房结构地震反应规律和特征,利用地震模拟振动台开展了软土地基-筏基础-核电厂房动力相互作用问题的试验研究。分别进行了表面水平土体模型和表面凹陷土体模型的运动相互作用试验、地基土-筏基础-核电厂房振动台相互作用试验、核电厂房直接固定在振动台面上的刚性基底振动台试验。试验采用圆形叠层剪切模型箱,地基土模型为某工程场地的均匀粉质粘土,其剪切波速为213 m/s;核电厂房简化为3层框架剪力墙结构模型。试验输入波形为美国核电规范常用的RG1.60反应谱合成得到的人工地震动时程。振动台试验结果对比分析表明:土-结构体系中系统的振动周期和阻尼明显大于刚性基底下结构的振动周期和阻尼;相同地震作用下在土-结构动力相互作用体系中结构加速度明显小于刚性基底下的结构加速度反应;而位移明显大于刚性基底下结构的位移。本文的研究成果可为软土地基建立核岛厂房的适应研究提供参考。  相似文献   

6.
This paper focuses on using high-frequency GAP-SENSORs (GSs), accelerometers, and load cells in a laminar shear box (LSB) filled with loose Toyoura sand to understand the effects of impact loads and cyclic shaking at 1-G on soil properties. The shear wave velocity at small strain (Vs) was calculated directly from first arrival reference using displacement time-history of two GSs under impact loading. Moreover, from first peak using the reduced deformation amplitude technique, damping ratio was calculated. In addition, shaking table tests were performed under harmonic loading with amplitude of acceleration inside the model ground varying from 0.02 g to 1 g. The frequencies of excitation varied from 1 Hz to 10 Hz. GSs and inside accelerometers were used to directly measure the outside lateral deformation and shear stress at different elevations of LSB, respectively. Results show that the shear modulus (G) and the damping ratio (D) behavior of model sand are generally consistent with the behavior presented by similar tests using only accelerometers. In addition, damping ratio increases as frequency loading increases. Characteristic changes in two shear stress components in shaking loading conditions were also investigated using high precision inside load cells.  相似文献   

7.
Many laminar shear boxes have recently been developed into sliding-frame containers that can reproduce 1D ground-response boundary conditions. The measured responses of such large specimens can be utilized to back-calculate soil properties. This study investigates how the boundary effect in large specimens affects the identified soil properties through shaking table tests on a soil-filled large laminar box conducted at the National Center for Research on Earthquake Engineering in Taiwan. The tested soil-box system is unique because only 80% of the container is filled with soil. This system can be regarded as a two-layer system: an empty top and soil-filled bottom. The dynamic properties of this two-layer system are identified through various approaches, including theoretical solutions of wave propagation, free vibration, and nonparametric stress–strain analyzes. Therefore, the coupling effect of the box and soil can be evaluated. Results show that, compared with the two-layer system considering the influence of the box, the conventional approach with a single-layer system slightly underestimates shear wave velocity but obtains the same damping ratio of the soil layer. In addition, the identified modulus reduction and damping curves in the two-layer system are consistent with those obtained in a laboratory test on a small specimen. Furthermore, based on detailed acceleration measurements along different depths of soil, a piecewise profile of shear wave velocity is built. The identified shear wave velocity increases with depth, which is not uniform and differs from the constant velocity typically assumed for the specimen.  相似文献   

8.
振动台试验模型地基土的设计与试验研究   总被引:3,自引:0,他引:3  
本文在动力相似关系的分析基础之上,设计了一种以锯末为主要成分,用于地基-基础-上部结构动力相互作用振动台试验的模型土。用循环单剪仪对原型土和设计的模型土分别进行了试验,得出了2者的动剪切模量比Gd/Gdm ax和阻尼比λ随动剪应变γd变化的关系曲线,对两种土的动力特性进行了相似对比。试验结果表明,设计的模型土与原型土的动力特性具有较好的相似性。采用等效线性本构模型,给出了原型土和模型土的动力特性参数。对采用本文所设计的模型土进行振动台试验的动力相似问题进行了初步讨论。  相似文献   

9.
砂土自由场地震响应的离心机试验研究   总被引:3,自引:1,他引:2  
离心机模型试验是研究岩土地震工程问题的有效手段。本文使用层状剪切箱,通过干落法制备了均匀的砂土模型,进行了离心机振动试验;观测了振动过程中孔隙水压力的发展,土体的加速度响应、侧向变形以及竖向沉降。结果表明,土体的运动和变形与孔隙水压力的发展密切相关,但离心机中的试验现象和现场观测的现象存在显著区别。研究结果增强了对振动过程中土-水之间相互作用机理的理解,同时为自由场地震响应分析方法的验证提供了基础数据。  相似文献   

10.
地下综合管廊结构振动台模型试验与有限元分析研究   总被引:2,自引:0,他引:2  
在地下结构的振动台试验中,模型箱的设计是影响试验精度的一个很重要方面,本文的试验中采用了层状剪切砂箱,以最大限度地减小模型箱边界效应.而如何在数值计算中对层状剪切砂箱进行模拟成为数值分析要解决的关键问题.本文就是以此为背景展开了探讨,提出用变刚度的方法来近似模拟层状剪切砂箱,通过数值模拟结果与试验结果的对比发现,效果较好.在自由场计算的基础上,对综合管廊结构的振动台试验进行了数值模拟,计算结果与试验结果对比较好,说明本文建模计算方法是正确的,为后续的研究提供了基础.  相似文献   

11.
Multi-layered soil profiles, where one or more layers consist of loose liquefiable material, most commonly require pile foundations extending beyond the liquefiable layer to competent material. Under seismic loads, if the loose layer liquefies, then large localized plastic demands may be generated in the piles. To study this behavior and provide detailed data to validate numerical models, a 1-g shaking table experiment was conducted considering a single reinforced concrete pile embedded in a three-layer soil system. The model pile of 25 cm diameter was tested under increasing amplitude earthquake excitation in a sloped laminar soil box. The test specimen was designed at the lower bound of typical design to promote yielding, per ATC-32 (Applied Technology Council, 1996) [1]. The pile penetrated 7D (D=pile diameter) into a multi-layered soil configuration composed of a stiff uppermost crust overlying a saturated loose sand layer and a lower dense layer of sand. Plastic demands in the pile were characterized using curvature profiles coupled with back-calculation of the plastic hinge length and post-test physical observations. Results from this test quantify the post-yield behavior of the pile and serve as a complement to previously conducted centrifuge tests.  相似文献   

12.
土的最大动剪切模量、剪应变幅和阻尼比是对土层进行动力反应分析的重要力学参数。利用英国GDS公司生产的RCA共振柱仪,研究围压对都江堰地区粉质粘土的上述动力学参数的影响。研究表明:相同围压条件下,最大动剪切模量、剪应变幅和阻尼比随重复次数基本不变,表明该试验过程具有可重复性;最大动剪切模量、剪应变幅和阻尼比均受围压影响较大,随着围压的增大,最大动剪切模量和阻尼比均逐渐增大,而剪应变幅随着围压的增大逐渐减小。据此,建立了都江堰地区粉质粘土动力学参数随围压变化的经验公式。本研究可为土层地震动力反应分析提供参考并积累基础资料。  相似文献   

13.
饱和软土自由场地地震反应特性振动台试验   总被引:3,自引:0,他引:3       下载免费PDF全文
为了解软土自由场地地震反应特性,开展饱和软土自由场地地震反应特性大型振动台模型试验。分别从模型体系自振特性、震陷位移及不同土层深度测点的加速度、动孔压比等动力响应指标方面,较为深入和全面地分析饱和软土自由场地地震反应规律、破坏机理。同时还分析模型箱的"边界效应"以验证试验土箱的合理性、有效性和测试仪器性能,并由此进一步确定模型地基有效工作区域。研究表明:(1)地震动作用下,饱和软土自由场地特征频率降低,阻尼增大;(2)饱和软土自由场地对水平输入地震波具有短周期滤波、长周期放大效应,且强震作用下地基失效并表现为减隔震作用;(3)饱和软土自由场地动孔压比优势区域位于浅埋土层,并随着输入地震动强度的增大,该区域动孔压比优势逐渐减弱。该研究可为非自由软土场地试验研究提供必要的技术经验。  相似文献   

14.
Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic performance is still quite limited and seismic design procedures are not included in current design codes. This paper describes a series of shaking table tests the authors performed on a scaled utility tunnel model to explore its performance under earthquake excitation. Details of the experimental setup are first presented focusing on aspects such as the design of the soil container, scaled structural model, sensor array arrangement and test procedure. The main observations from the test program, including structural response, soil response, soil-structure interaction and earth pressure, are summarized and discussed. Further, a finite element model (FEM) of the test utility tunnel is established where the nonlinear soil properties are modeled by the Drucker-Prager constitutive model; the master-slave surface mechanism is employed to simulate the soil-structure dynamic interaction; and the confining effect of the laminar shear box to soil is considered by proper boundary modeling. The results from the numerical model are compared with experiment measurements in terms of displacement, acceleration and amplification factor of the structural model and the soil. The comparison shows that the numerical results match the experimental measurements quite well. The validated numerical model can be adopted for further analysis.  相似文献   

15.
目前有关碎石桩复合地基在动荷载作用下的研究主要是针对其排水作用,而对其密实作用的研究很少,碎石桩复合地基在动荷载作用下沉降计算理论落后于工程实践.为了在碎石桩复合地基的动力模拟试验中模拟碎石桩的密实作用,设计了大型堆叠式剪切模型箱,并采用振动沉管法在振动台模型箱中进行了碎石桩的震后沉降试验研究,结果表明其能较好地模拟碎石桩振动沉管施工工艺.  相似文献   

16.
Fiber reinforced soil behaves as a composite material in which fibers of relatively high tensile strength are embedded in a matrix of soil. Shear stresses in the soil mobilize tensile resistance in the fibers, which in turn imparts greater strength to the soil. In this paper a study on the influence of synthetic fibrous materials in improving the dynamic response characteristics of fine sandy soil is reported. The project aims at converting fibrous carpet waste into a value-added product for soil reinforcement. A series of five shaking table tests using rigid box were carried out on Toyoura sand specimens reinforced with randomly distributed geotextile strips. The dynamic deformation characteristics of the reinforced sand are defined in terms of wall lateral deformation and rotation. The results clearly indicate the effectiveness of fiber reinforcement in improving dynamic properties of fine sand and deformation characteristics of fiber reinforced sheet pile retaining wall during shaking.  相似文献   

17.
在核电站中:核电设备通过不同的固定条件与结构相连,地震作用时设备与结构动力相互作用复杂,为分析核电设备多维地震响应并鉴定其抗震性能,进行了考虑不同固定条件的核电设备多维地震响应振动台试验研究。振动台试验进行了5次运行基准地震和1次安全停堆地震的动力时程激振,以及试验首末2次动力特性测试。试验结果表明:不同固定条件会影响核电设备多维地震响应的加速度峰值、反应谱特性和动力放大系数,与设备直接固定于振动台相比,将核电设备悬挂固定于剪力墙再与振动台连接的固定条件,改变了设备反应谱特性,且放大了响应的加速度峰值,具有显著的动力放大效应,使核电设备多维地震响应更为强烈。因此,对此类固定条件的核电设备,在产品设计及安装固定时要充分考虑动力放大效应,以提高设备的抗震韧性。抗震试验前后,核电设备功能运行正常,结构完整性好,抗震性能满足要求。  相似文献   

18.
In this paper, modal parameters of a layered soil system comprising of a soft clay layer overlying a dense sand layer are identified from accelerometer recordings in a centrifuge test. For the first time, the subspace state space system identification (4SID) method was employed to identify the natural frequencies, damping ratios, and complex valued mode shapes while considering the non-proportional damping in a soil system. A brief review of system identification concepts needed for application of the 4SID techniques to structural modal identification is provided in the paper. The identified natural frequencies were validated against those estimated by transfer function spectra. The computed normal mode shapes were compared with closed-form solutions obtained from the one-dimensional shear wave propagation equation. The identified modal parameters were then employed to synthesize state space prediction models which were subsequently used to simulate the soil response to three successive base motions. The identified models captured acceleration time-histories and corresponding Fourier spectra reasonably well in the small and moderate shaking events. In the stronger third shaking event, the model performed well at greater soil depths, but was less accurate near the surface where nonlinearities dominated.  相似文献   

19.
在基于文献调研及综合考虑试验目的、试验条件、试验经费的基础上对于综合管廊横向振动台试验进行详细设计。首先,对于试验中所需的振动台、模型箱、测试元件等试验设备进行设计与选择。其次,对于试验中两大主要方面:模型相似比和模型配筋进行研究。在相似比设计中依据Bockinghamπ定理以加速度、密度、弹性模量、长度这4个参数为基本量,考虑采用忽略重力模型,从而推导出其余相似比。模型配筋设计中由于无论单层综合管廊还是双层综合管廊原型结构配筋均较为简单同时考虑受力的合理性,本次配筋采用等面积配筋率原则。再次,基于地下结构地震反应特点选用El-Centro波、Kobe波、Taft波,试验加载采用分段逐次加载,并给出详细的加载制度。最后,基于前期二维模型的数值模拟,给出单层及双层综合管廊的测试元件布置图。  相似文献   

20.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号