首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volcán Las Navajas, a Pliocene-Pleistocene volcano located in the northwestern portion of the Mexican volcanic belt, erupted lavas ranging in composition from alkali basalt through peralkaline rhyolite, and is the only volcano in mainland Mexico known to have erupted pantellerites. Las Navajas is located near the northwestern end of the Tepic-Zacoalco rift and covers a 200-m-thick pile of alkaline basaltic lavas, one of which has been dated at 4.3 Ma. The eruptive history of the volcano can be divided into three stages separated by episodes of caldera formation. During the first stage a broad shield volcano made up of alkali basalts, mugearites, benmoreites, trachytes, and peralkaline rhyolites was constructed. Eruption of a chemically zoned ash flow then caused collapse of the structure to form the first caldera. The second stage consisted of eruptions of glassy pantellerite lavas that partially filled the caldera and overflowed its walls. This stage ended about 200 000 years ago with the eruption of pumice falls and ash flows, which led to the collapse of the southern portion of the volcano to form the second caldera. During the third stage, two benmoreite cinder cones and a benmoreite lava flow were emplaced on the northwestern flank of the volcano. Finally, the calc-alkaline volcano Sanganguey was built on the southern flank of Las Lavajas. Alkaline volcanism continued in the area with eruptions of alkali basalt from cinder cones located along NW-trending fractures through the area. Although other mildly peralkaline rhyolites are found in the rift zones of western Mexico, only Las Navajas produced pantellerites. Greater volumes of basic alkaline magma have erupted in the Las Navajas region than in the other areas of peralkaline volcanism in Mexico, a factor which may be necessary to provide the initial volume of material and heat to drive the differentiation process to such extreme peralkaline compositions.  相似文献   

2.
The Latera caldera is a well-exposed volcano where more than 8 km3 of mafic silica-undersaturated potassic lavas, scoria and felsic ignimbrites were emplaced between 380 and 150 ka. Isotopic ages obtained by 40Ar/39Ar analysis of single sanidine crystals indicate at least four periods of explosive eruptions from the caldera. The initial period of caldera eruptions began at 232 ka with emplacement of trachytic pumice fallout and ignimbrite. They were closely followed by eruption of evolved phonolitic magma. After roughly 25 ky, several phonolitic ignimbrites were deposited, and they were followed by phreatomagmatic eruptions that produced trachytic ignimbrites and several smaller ash-flow units at 191 ka. Compositionally zoned magma then erupted from the northern caldera rim to produce widespread phonolitic tuffs, tephriphonolitic spatter, and scoria-bearing ignimbrites. After 40 ky of mafic surge deposit and scoria cone development around the caldera rim, a compositionally zoned pumice sequence was emplaced around a vent immediately northwest of the Latera caldera. This activity marks the end of large-scale explosive eruptions from the Latera volcano at 156 ka.  相似文献   

3.
Apoyo caldera, near Granada, Nicaragua, was formed by two phases of collapse following explosive eruptions of dacite pumice about 23,000 yr B.P. The caldera sits atop an older volcanic center consisting of lava flows, domes, and ignimbrite (ash-flow tuff). The earliest lavas erupted were compositionally homogeneous basalt flows, which were later intruded by small andesite and dacite flows along a well defined set of N—S-trending regional faults. Collapse of the roof of the magma chamber occurred along near-vertical ring faults during two widely separated eruptions. Field evidence suggests that the climactic eruption sequence opened with a powerful plinian blast, followed by eruption column collapse, which generated a complex sequence of pyroclastic surge and ignimbrite deposits and initiated caldera collapse. A period of quiescence was marked by the eruption of scoria-bearing tuff from the nearby Masaya caldera and the development of a soil horizon. Violent plinian eruptions then resumed from a vent located within the caldera. A second phase of caldera collapse followed, accompanied by the effusion of late-stage andesitic lavas, indicating the presence of an underlying zoned magma chamber. Detailed isopach and isopleth maps of the plinian deposits indicate moderate to great column heights and muzzle velocities compared to other eruptions of similar volume. Mapping of the Apoyo airfall and ignimbrite deposits gives a volume of 17.2 km3 within the 1-mm isopach. Crystal concentration studies show that the true erupted volume was 30.5 km3 (10.7 km3 Dense Rock Equivalent), approximately the volume necessary to fill the caldera. A vent area located in the northeast quadrant of the present caldera lake is deduced for all the silicic pyroclastic eruptions. This vent area is controlled by N—S-trending precaldera faults related to left-lateral motion along the adjacent volcanic segment break. Fractional crystallization of calc-alkaline basaltic magma was the primary differentiation process which led to the intermediate to silicic products erupted at Apoyo. Prior to caldera collapse, highly atypical tholeiitic magmas resembling low-K, high-Ca oceanic ridge basalts were erupted along tension faults peripheral to the magma chamber. The injection of tholeiitic magmas may have contributed to the paroxysmal caldera-forming eruptions.  相似文献   

4.
A summit eruption of Kartala commenced on September 8th, 1972 and finished on October 5th, 1972. In the course of this eruption, approximately 5×106 m3 of alkali olivine basalt was erupted from a N-S fissure system within and adjacent to the caldera. Aa flows were partly ponded within the caldera, almost filling the 1918 Choungou Chagnoumeni crater pit, and partly spilled NW down the flanks of the volcano. The lavas are of uniform composition, almost identical to those erupted in 1965 and closely resembling the majority of flows erupted during the last 115 years. One-atmosphere melting experiments support petrographic and chemical evidence that the lavas are coctetic, with coprecipitation of olivine, augite and plagioclase. The lavas were crupted at, or close to, their liquidus temperature, determined at approximately 1170°C. Whereas eruptions of Kartala in the nineteenth century were distributed widely along a fissure system approximately 45 km long by 7 km wide, the eruptions since 1918 have been confined to the vicinity of the summit caldera.  相似文献   

5.
The Quaternary central volcano Longonot is situated on the floor of the Gregory Rift Valley, Kenya, at 0° 55 S, 36° 25 E. Although the majority of its products are lavas and pyroclastics of pantelleritic trachyte composition, small volumes of alkali basalt magma have been coerupted with pantelleritic trachyte magma to produce mixed lavas. These lavas were the first products following each of three caldera collapses and mark the start of three successive cycles of whole-rock chemical variation with time. For the first two mixed-lava eruptions identified, field, petrographic and mineralogical evidence suggests that the contrasting magmas comingled, and in places hybridized, during eruption. Whole-rock geochemistry requires the alkali basalt component to have been contaminated prior to coeruption with trachyte. Syenite is suggested as a possible contaminant of the basalt component in the last two mixed-lava eruptions. Field and whole-rock chemical evidence points to the trachyte magma chamber being underlain by a basalt magma root zone. Inputs of fresh basalt magma into the root zone may have initiated each pre-caldera pyroclastic event and subsequent caldera formation and may have also caused the trachyte magma to overturn and commence a fresh cycle of chemical evolution. Some of the hot, buoyant basalt magma was able to leak towards the surface up peripheral fractures where it was coerupted with the initial trachyte magma of each cycle.  相似文献   

6.
Ceboruco is a major composite volcano at the western end of the Mexican Volcanic Belt, near the junction between the North American and Pacific plates. The volcano is built from successive eruptions of andesite lavas and pyroclastic rocks, and major eruptions during its history have resulted in the formation of two concentric calderas. The youngest volcanic activity has included the extrusion of dacites within the inner caldera and a voluminous flank eruption of andesite during 1870–72. Fumarolic activity persists to the present day. Chemical analyses show that the lavas are of cale-alkaline type and rangs from andesite (SiO2=58–61%) to acid dacite (SiO2=68%) in composition. The rate of increase of K2O relative to SiO is greater than that in volcanic rocks from the Mexican Volcanic Belt as a whole. This indicates that simple models based on the application of such relationships may not be adequate to explain the petrogenesis of calc-alkaline lavas.  相似文献   

7.
Synoptic images of the Martian volcano Olympus Mons are of a quality and quantity that are unique for mars and, somewhat surprisingly, are appreciably better than image data that exist for many volcanoes on Earth. Useful information about the evolution of shield volcanoes on Earth can thus be derived from the investigation of this extraterrestrial example. We have used shadow-length measurements and photoclinometrically derived profiles to supplement and refine the topographic map of the Olympus Mons caldera. As much as 2.5 km of collapse took place within the 80×65 km diameter caldera and the elevation of the caldera rim varies by almost 2.0 km (low around the oldest collapse events, high around the youngest). An eight-stage evolutionary sequence for the caldera of Olympus Mons is identified which shows that caldera subsidence was a longterm process rather than the near-instantaneous event that has been interpreted from comparable terrestrial examples. Tectonic features on the caldera floor indicate a transition from an extensional environment (graben formation) around the perimeter of the caldera to compression (ridge formation) towards the caldera center. This transition from a compressional to extensional environment is surprisingly sudden, occurs at a radial distance of 17 km from the caldera center, and is import because it can be used to infer that the magma chamber was relatively shallow (thought to be at a depth of <16 km beneath the caldera floor; Zuber and Mouginis-Mark 1990). Ample evidence is also found within the Olympus Mons caldera for solidified lava lakes more than 30 km in width, and for the localzed overturning and/or withdrawal of lava within these lakes.  相似文献   

8.
The caldera of Santorini is a composite structure with a subsidence history extending over 100 ka or more. Geomorphological mapping shows that the present-day caldera wall is a complex assemblage of cliff surfaces of different ages, and that collapse at Santorini has repeatedly exhumed earlier caldera cliffs and unconformities. Cliffs bounding the southern, southeastern and northwestern rims of the caldera are morphologically fresh and probably formed during or soon after the Minoan eruption in the late Bronze Age. The well-scalloped shape of these cliffs is attributed to large-scale rotational landslip around the margins of the Minoan caldera. The deposit from one landslip is preserved subaerially. Minoan landslips in southeast santorini detached along the basement unconformity, exposing a cliff of the prevolcanic island. The caldera wall in the north, northeast and east preserves evidence for three generations of cliff: those of Minoan age and two earlier generations of caldera wall. The two early calderas can be dated relative to a well-established statigraphy of lavas and tuffs. The presence of in situ Minoan tephra plastered onto the present-day caldera wall provides evidence that these ancient caldera cliffs had already been exhumed prior to the Minoan eruption. Field relationships permit reconstruction of the physiography of Bronze-Age Santorini immediately before the Minoan eruption. The reconstruction differs from some previously published versions and is believed to be the most accurate to date. Bronze-Age Sa ntorini had a large flooded caldera formed 21 ka ago. This caldera must have acted as an excellent harbour for the Bronze-Age inhabitants of the island. The 3.6 ka Minoan eruption deepened and widened the extant caldera. The volume of Minoan collapse (25 km3) is in good agreement with published estimates for the volume of discharged magma if between 5 and 8 km3 of Minoan ignimbrite ponded as intracaldera tuff.  相似文献   

9.
Agrigan is the tallest (965 m a.s.l.) and largest (44 km2) of the volcanoes of the northern Mariana Islands. Its slopes are asymmetric to the east; a small caldera (4 km2) dominates the interior. The volcanic edifice has been disrupted along three sets of faults: 1) exterior slump faults, 2) radial faults, and 3) interior faults related to caldera-collapse. The rocks of the volcano are characterized by porphyritic clinopyroxene-olivine-plagioclase basalts and subordinate andesites. Cumulate xenoliths composed of Fo81, An95 and diopside are common in the basalts. Development of the volcano began with 3–4 km of submarine growth. The earliest recognizable flows are the result of fissural Hawaiian- and Strombolian-type eruptions. These were followed by the eruption of more viscous lavas from above the present summit. Flank eruptions of basalt and andesite preceded voluminous outpourings of andesitic pyroclastics contemporaneous with caldera-collapse. Subsequent magmatic resurgence is localized along a N10E rift zone. Violent ejection of lapilli and ash occurred in 1917.  相似文献   

10.
Roccamonfina, part of the Roman Potassic Volcanic Province, is an example of a composite volcano with a complex history of caldera development. The main caldera truncates a cone constructed predominantly of this caldera may have been associated with one of the ignimbritic eruptions of the Brown Leucitic Tuff (BLT) around 385 000 yr BP. The Campagnola Tuff, the youngest ignimbrite of the BLT, however, drapes the caldera margin and must postdate at least the initial stages of collapse. During the subsequent history of the caldera there were several major explosive eruptions. The largest of these was that of the Galluccio Tuff at about 300 000 yr BP. It is likely that there was further collapse within the main caldera associated with these eruptions. It is of note that despite these subsequent major explosive eruptions later collapse occurred within the confines of the main caldera. Between eruptions caldera lakes developed producing numerous lacustrine beds within the caldera fill. Extensive phases of phreatomagmatic activity generated thick sequences of pyroclastic surge and fall deposits. Activity within the main caldera ended with the growth of a large complex of basaltic trachyandestite lava domes around 150 000 yr BP. Early in the history of Roccamonfina sector collapse on the northern flank of the volcano formed the northern caldera. One of the youngest major events on Roccamonfina occurred at the head of this northern caldera with explosive activity producing the Conca Ignimbrite and associated caldera. There is no evidence that there was any linkage in the plumbing systems that fed eruptions in the main and northern calderas.  相似文献   

11.
Recent K-Ar dating of eruptions at Pantelleria, a peralkaline volcanic island in the Strait of Sicily, shows a correlation between eruption of pantellerite lavas from caldera ring fractures and low stands of sea level as determined from 18O stratigraphy. Post-caldera pantellerite lavas associated with an 114-ky-old caldera erupted along the ring-fracture zone during a major low stand of sea level at about 67 Ka. The most recent episode of lava-flow emplacement began about 20 ky ago during the last glacial maximum. Magma vented along the ring fault of a 45-ky-old caldera, from fractures radial to the caldera, and along faults formed by intracaldera trapdoor uplift. Two mechanical models based on elasticity theory are presented to explain the correlation of post-caldera ring-fracture eruptions at Pantelleria with lowering of sea level. A simple analysis of a bending circular plate of thickness,T r, and radius,R, representing the magma-chamber roof block, shows that tensile stress is concentrated by a factor of 0.75R 2/T r 2 at the lower perimeter of the plate when sea level drops. Stress changes may be even greater ifT r is effectively less than the stratigraphic thickness due to layering of rocks in the roof block. Calculated stress changes due to a 100-m drawdown of sea level are similar in magnitude to stresses associated with dike propagation. More realistic model geometries, including different chamber shapes, a conical volcanic edifice, and sea-level drawdown beyond the surface projection of the magma chamber, were tested using the boundary-element method. Lowering sea level generates a horizontal tensile stress above the chamber, even when sea water is removed outboard of the magma chamber. For some chamber geometries the magnitude of the tensile stress maximum is greater than the 1 MPa pressure of the 100 m of removed water and is of the right order of magnitude for dike propagation. Dikes initiated by the change of the stress field may originate and propagate along fractures inboard of the chamber margin. The magnitudes of tensile maxima along the top of the chamber decrease as original sea level is moved outboard of the chamber margin and as the chamber thickness decreases. When the depth to the top of the magma chamber reaches a critical value, dependent on chamber geometry, the propagation of dikes to the surface is inhibited.  相似文献   

12.
Volcán Alcedo is one of the seven western Galápagos shields and is the only active Galápagos volcano known to have erupted rhyolite as well as basalt. The volcano stands 4 km above the sea floor and has a subaerial volume of 200 km3, nearly all of which is basalt. As Volcán Alcedo grew, it built an elongate domal shield, which was partly truncated during repeated caldera-collapse and partial-filling episodes. An outward-dipping sequence of basalt flows at least 250 m thick forms the steepest (to 33°) flanks of the volcano and is not tilted; thus a constructional origin for the steep upper flanks is favored. About 1 km3 of rhyolite erupted late in the volcano's history from at least three vents and in 2–5 episodes. The most explosive of these produced a tephra blanket that covers the eastern half of the volcano. Homogeneous rhyolitic pumice is overlain by dacite-rhyolite commingled pumice, with no stratigraphic break. The tephra is notable for its low density and coarse grain size. The calculated height of the eruption plume is 23–30 km, and the intensity is estimated to have been 1.2x108 kg/s. Rhyolitic lavas vented from the floor of the caldera and from fissures along the rim overlie the tephra of the plinian phase. The age of the rhyolitic eruptions is 120 ka, on the basis of K-Ar ages. Between ten and 20 basaltic lava flows are younger than the rhyolites. Recent faulting resulted in a moat around part of the caldera floor. Alcedo most resently erupted sometime between 1946 and 1960 from its southern flank. Alcedo maintains an active, transient hydrothermal system. Acoustic and seismic activity in 1991 is attributed to the disruption of the hydrothermal system by a regional-scale earthquake.  相似文献   

13.
Barren Island (Andaman Sea) is the northernmost active volcano of the Indonesian Arc. To construct the eruptive history of this little studied volcano, we measured 14C dates of inorganic carbon in sediment beds, and Sr and Nd isotopic ratios of seven discrete ash layers, in a marine sediment core collected from 32 km southeast of the volcano. The study reveals that the volcano had seven major ash eruptions at ~70, 69, 61, 24, 19, 15, and 10 ka. The ash layers erupted from 70 ka through 19 ka have highly uniform Nd isotopic composition, and since the ~15 ka eruption to the present the isotopic composition has been highly variable. Between ~24 ka and ~10 ka, the volcano had large ash eruptions spaced at 4,500 year intervals. Isotopically correlating the precaldera lavas and ash exposed on the volcano to the uppermost ash layer in the core, we infer that the caldera of Barren Island volcano is younger than 10 ka.  相似文献   

14.
Caldera morphology on the six historically active shield volcanoes that comprise Isabela and Fernandina islands, the two westernmost islands in the Galapagos archipelago, is linked to the dynamics of magma supply to, and withdrawal from, the magma chamber beneath each volcano. Caldera size (e.g., volumes 2–9 times that of the caldera of Kilauea, Hawai'i), the absence of well-developed rift zones and the inability to sustain prolonged low-volumetric-flow-rate flank eruptions suggest that magma storage occurs predominantly within centrally located chambers (at the expense of storage within the flanks). The calderas play an important role in the formation of distinctive arcuate fissures in the central part of the volcano: repeated inward collapse of the caldera walls along with floor subsidence provide mechanisms for sustaining radially oriented least-compressive stresses that favor the formation of arcuate fissures within 1–2 km outboard of the caldera rim. Variations in caldera shape, depth-to-diameter ratio, intra-caldera bench location and the extent of talus slope development provide insight into the most recent events of caldera modification, which may be modulated by the episodic supply of magma to each volcano. A lack of correlation between the volume of the single historical collapse event and its associated volume of erupted lava precludes a model of caldera formation linked directly to magma withdrawal. Rather, caldera collapse is probably the result of accumulated loss from the central storage system without sufficient recharge and (as has been suggested for Kilauea) may be aided by the downward drag of dense cumulates and intrusives.  相似文献   

15.
The transition between the terminal cones and the ancestral edifices of Nevado de Colima and Fuego de Colima volcanoes is marked by the deposits of gigantic volcanic debris avalanches of the Mount St. Helens (MSH) or Bezymianny type. Unusual mafic juvenile fragments and cauliflower bombs as well as juvenile fragments of mixed and more evolved composition are abundant in dune-bedded pyroclastic-surge deposits directly associated with these catastrophic events at both volcanoes. At Nevado, these mafic juvenile fragments represent the most primitive magma ever erupted by the volcano (SiO252.50%). The lavas directly preceding and following the debris-avalanche event are silicic andesites (SiO259%). At Fuego these juvenile fregments have 56% SiO2. The lavas from the upper parts of the caldera wall are dacites (65% SiO2), whereas the terminal cone is composed of andesites (57% to 62% SiO2). At Nevado, petrologic evidence for interaction of mafic magma with andesitic or dacitic magma in a high-level magma chamber, just before the eruption of pyroclastic surge deposits, consists of: (1) banded juvenile bombs of intermediate composition; (2) the range of composition of these bombs from SiO252% to 58%; (3) the presence of highly magnesian olivine with reaction rims; (4) inverse zoning in clinopyroxene with strong Mg enrichment towards the rim; (5) resorption of plagioclase; and (6) significant compositional heterogeneity in the vitric phase. Volcanic debris-avalanche events at Nevado and Fuego de Colima may thus correspond with major breaks in the petrological evolution of the volcanoes and the start of a new magmatic cycle. Injection of mafic magma into the presently perched viscous surface dome of the active Fuego cone, as occurred in 1818 and 1913, could enhance the likelihood of southward collapse of the flank of an already unstable edifice, and it must be considered in future hazard assessment of this active volcano. Risk to life and property for the entire Colima region associated with such catastrophic phenomena would be immeasurably greater in comparison with hazards related to the last explosive outburst in 1913, which resulted in emplacement of pyroclastic flows over uninhabited areas of the upper flanks of the volcano.  相似文献   

16.
The greater part of Etna can be regarded as a complex strato-shield volcano constructed from the overlapping products of several centres of trachy-basaltic activity. The Valle del Bove is a horse-shoe-shaped caldera, 8 km long and 5 km wide, cut into the eastern flanks of Etna. The caldera is one of the few areas on the volcano where historic eruptions have not obscured the products of pre-historic centres of activity and these are well exposed in the cliff walls surrounding the caldera. Examination of these older volcanics provides important information on the eruptive style and internal plumbing of the Etna volcano during pre-historic times, and suggests that both were significantly different from the present day.Much of the southern wall of the Valle del Bove represents a surviving portion of the Trifoglietto II volcano, the largest pre-historic centre of activity. A stratigraphy is constructed for the southern wall, the Trifoglietto II lavas and pyroclastics rest unconformably upon the eroded remnants of an older centre, and are themselves overlain by the products of younger centres. All the lavas exposed in the southern wall are of alkalic affinity and comprise a trachybasaltic suite ranging from hawaiite to benmoreite. Variation in the chemistry of the lavas can be explained by their differentiation at high levels in the crust from a more basic magma of alkali olivine-basalt/hawaiite composition. An anomalous trend in the TiO2 content of the Trifoglietto II lavas may be explained by the fractionation of kaersutite (Ti-rich amphibole).A study has been made of the numerous dykes exposed in the walls of the Valle del Bove, the alignments of which parallel trends which are important on Etna at the present time.It is proposed that the initial opening of the Valle del Bove occurred sometime between 20,000 and 10,000 y. B.P., as a result of a phreatic or phreato-magmatic explosion near the base of the eastern flank of Trifoglietto II. This is visualised as triggering a slope failure and resulting in the destruction of much of the centre by a catastrophic landslide. This mechanism has much in common with the explosive eruptions which produced both the Bandai-san (Japan) caldera in 1888, and the Mount St Helens caldera in May, 1980.  相似文献   

17.
 A radar and gravity survey of the ice-filled caldera at Volcán Sollipulli, Chile, indicates that the intra-caldera ice has a thickness of up to 650 m in its central part and that the caldera harbours a minimum of 6 km3 of ice. Reconnaissance geological observations show that the volcano has erupted compositions ranging from olivine basalt to dacite and have identified five distinct volcanic units in the caldera walls. Pre- or syn-caldera collapse deposits (the Sharkfin pyroclastic unit) comprise a sequence which evolved from subglacial to subaerial facies. Post-caldera collapse products, which crop out along 17 of the 20 km length of the caldera wall, were erupted almost exclusively along the caldera margins in the presence of a large body of intra-caldera ice. The Alpehué crater, formed by an explosive eruption between 2960 and 2780 a. BP, in the southwest part of the caldera is shown to post date formation of the caldera. Sollipulli lacks voluminous silicic pyroclastic rocks associated with caldera formation and the collapse structure does not appear to be a consequence of a large-magnitude explosive eruption. Instead, lateral magma movement at depth resulting in emptying of the magma chamber may have generated the caldera. The radar and gravity data show that the central part of the caldera floor is flat but, within a few hundred metres of the caldera walls, the floor has a stepped topography with relatively low-density rock bodies beneath the ice in this region. This, coupled with the fact that most of the post-caldera eruptions have taken place along the caldera walls, implies that the caldera has been substantially modified by subglacial marginal eruptions. Sollipulli caldera has evolved from a collapse to a constructional feature with intra-caldera ice playing a major role. The post-caldera eruptions have resulted in an increase in height of the walls and concomitant deepening of the caldera with time. Received: 12 June 1995 / Accepted: 7 December 1995  相似文献   

18.
Emuruangogolak is a Quaternary basalitrachyte volcano situated in the Suguta graben of the northern Kenva rift, and probably erupted last early in this century. Following the construction of an early trachytic shield volcano, two episodes of caldera collapse occurred. each preceded by explosive pvroclastic activity. Post-calelera volcanism consisted of alternating phases of basalt and trachyte eruption. The basic lavas are high-Ti ferrobasalts of a mildly alkaline ‘transitional’ composition and the trachytes are peralkaline and oversaturated. A distinct compositional bimodality exists and no rocks in the range 49–59°. SiO, have been found. Major and trace element analyses suggest that the trachytes are genetically related to the basalts. Associations of almost identical lavas occur in Ethiopia. Pantelleria and the Azores but with the presence of intermediate terms Fractional crystallization is the mechanism currently preferred to account for the origin of the trachytes. The ‘Daly gap’ may be a consequence of a crystallization process which limits the volume of intermediate magma available at any time. In addition, the physical properties and spatial distribution of the different magmas probably discriminate against the cruption of lavas of intermediate composition.  相似文献   

19.
Three major rhyolite systems in the northeastern Davis and adjacent Barrilla Mountains include lava units that bracketed a large pantelleritic ignimbrite (Gomez Tuff) in rapid eruptions spanning 300,000 years. Extensive silicic lavas formed the shields of the Star Mountain Formation (37.2 Ma-K/Ar; 36.84 Ma 39Ar/40Ar), and the Adobe Canyon Formation (37.1 Ma-K/Ar; 36.51-39Ar/40Ar). The Gomez Tuff (36.6 Ma-K/Ar; 36.74-39Ar/40Ar) blanketed a large region around the 18×24 km diameter Buckhorn caldera, within which it ponded, forming sections up to 500 m thick. Gomez eruption was preceded by pantelleritic rhyolite domes (36.87, 36.91 Ma-39Ar/40Ar), some of which blocked movement of Star Mountain lava flows. Following collapse, the Buckhorn caldera was filled by trachyte lava. Adobe Canyon rhyolite lavas then covered much of the region. Star Mountain Formation (~220 km3) is composed of multiple flows ranging from quartz trachyte to mildly peralkalic rhyolite; three major types form a total of at least six major flows in the northeastern Davis Mountains. Adobe Canyon Formation (~125 km3) contains fewer flows, some up to 180 m thick, of chemically homogenous, mildly peralkalic comendite, extending up to 40 km. Gomez Tuff (~220 km3) may represent the largest known pantellerite. It is typically less than 100 m thick in extra-caldera sections, where it shows a pyroclastic base and top, although interiors are commonly rheomorphic, containing flow banding and ramp structures. Most sections contain one cooling unit; two sections contain a smaller, upper cooling unit. Chemically, the tuff is fairly homogeneous, but is more evolved than early pantelleritic domes. Overall, although Davis Mountains silicic units were generated through open system processes, the pantellerites appear to have evolved by processes dominated by extensive fractional crystallization from parental trachytes similar to that erupted in pre- and post-caldera lavas. Comparison with the Pantelleria volcano suggests that the most likely parental magma for the Buckhorn series is transitional basalt, similar to that erupted in minor, younger Basin and Range volcanism after about 24 Ma. Roughly contemporaneous mafic lavas associated with the Buckhorn caldera appear to have assimilated or mixed with crustal melts, and, generally, may not be regarded as mafic precursors of the Buckhorn silicic rocks, They thus form a false Daly Gap as opposed to the true basalt/trachyte Daly gap of Pantelleria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   

20.
Socorro Island is the summit of a large volcanic mountain located on the Clarion Fracture Zone in the east Pacific. Two major periods of volcanic activity can be recognized on the island. The first (pre-caldera) period was characterized by eruptions of olivine-poor alkali basalt, followed by quiet effusion of soda rhyolite including varieties transitional to pantellerite. This period of activity terminated with the formation of a caldera by collapse. A relatively prolonged period of quiescence ended with rifting and down-faulting of the western side of the island along a north-south fracture system, accompanied by violently explosive eruptions of soda rhyolite which built a large tephra cone over the position of the old caldera. The locus of eruptive activity moved outward and downward along tension fractures and old tectonic rifts as the central vents became blocked by domes of dense obsidian. Low level eruptions of viscous soda rhyolite including pantellerite commenced without preliminary explosive eruptions and built numerous endogenous and exogenous domes. Basaltic eruptions were rare and confined to low-level vents. During the growth of the volcano the direction of active rifting appears to have changed from east-west to northwest-southeast to north-south. Little is known of the submarine portion of the volcano, but the topography seems to reflect the three directions of rifting. The oldest submarine lavas are assumed to be basaltic and are probably of late Tertiary age. The eruptive history of Socorro suggests that the underlying magma column became stratified toward the end of the active period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号