首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From radial velocities determined in high signal-to-noise digital spectra, we report the discovery that the brightest component of the binary system HD 150136 is of spectral type O3. We also present the first double-lined orbital solution for this binary. Our radial velocities confirm the previously published spectroscopic orbital period of 2.6 d. He  ii absorptions appear double at quadratures, but single lines of N  v and N  iv visible in our spectra define a radial velocity orbit of higher semi-amplitude for the primary component than do the He  ii lines. From our orbital analysis, we obtain minimum masses for the binary components of 27 and  18 M  . The neutral He absorptions apparently do not follow the orbital motion of any of the binary components, thus they most probably arise in a third star in the system.  相似文献   

2.
A spectroscopic study of the binary Wolf–Rayet (WR)+O system WR 145 is performed, in order to determine the radial velocity orbits of the individual stars, the angle of orbital inclination and the stellar masses. The emission and absorption components are separated from the original spectra, allowing us to confirm the spectral classification WN 7o/CE of the hybrid WR component and to derive a spectral classification O7V((f)) for the O star. A study of the wind-collision properties is performed. Fitting the radial velocity and full width at half-maximum of the excess emission with Lührs' model results in an inclination angle of   i = 63°  , leading to estimates of the stellar masses:   M WR= 18 M  and   M O= 31 M  . Both of these masses are compatible with those of other stars of similar types.  相似文献   

3.
We discuss the orbital elements of the multiple system Tr 16-104 which is usually believed to be a member of the open cluster Trumpler 16 in the Carina complex. We show that Tr 16-104 could be a hierarchical triple system consisting of a short-period (2.15 d) eclipsing O7 V+O9.5 V binary bound to a B0.2 IV star. Our preliminary orbital solution of the third body indicates that the B star most probably describes an eccentric orbit with a period of ∼285 or ∼1341 d around the close binary. Folding photometric data from the literature with our new ephemerides, we find that the light curve of the close binary exhibits rather narrow eclipses indicating that the two O stars must be well inside their Roche lobes. Our analysis of the photometric data yields a lower limit on the inclination of the orbit of the close binary of i ≥77° . The stellar radii and luminosities of the O7 V and O9.5 V stars are significantly smaller than expected for stars of this spectral type. Our results suggest that Tr 16-104 lies at a distance of the order of 2.5 kpc and support a fainter absolute magnitude for zero-age main-sequence O stars than usually adopted. We find that the dynamical configuration of Tr 16-104 corresponds to a hierarchical system that should remain stable provided that it suffers no strong perturbation. Finally, we also report long-term temporal variations of high-velocity interstellar Ca  ii absorptions in the line of sight towards Tr 16-104.  相似文献   

4.
We present a detailed, extensive investigation of the photometric and spectroscopic behaviour of WR 30a. This star is definitely a binary system with a period around 4.6 d. We propose the value         . The identification of the components as WO4+O5((f)) indicates a massive evolved binary system; the O5 component is a main-sequence or, more likely, a giant star. The radial velocities of the O star yield a circular orbit with an amplitude         and a mass function of 0.013     . The spectrum of WR 30a exhibits strong profile variations of the broad emission lines that are phase-locked with the orbital period. We report the detection of the orbital motion of the WO component with     , but this should be confirmed by further observations. If correct, it implies a mass ratio     . The star exhibits sinusoidal light variations of amplitude 0.024 mag peak-to-peak with the minimum of light occurring slightly after the conjunction with the O star in front. On the basis of the phase-locked profile variations of the C  iv λ 4658 blend in the spectrum of the WO, we conclude that a wind–wind collision phenomenon is present in the system. We discuss some possibilities for the geometry of the interaction region.  相似文献   

5.
Optical spectroscopy of CPD −59° 2635, one of the O-type stars in the open cluster Trumpler 16 in the Carina Nebula, reveals this star to be a double-lined binary system. We have obtained the first radial velocity orbit for this system, consisting of a circular solution with a period of 2.2999 d and semi-amplitudes of 208 and 273 km s−1. This results in minimum masses of 15 and 11 M for the binary components of CPD −59° 2635, which we classified as O8V and O9.5V, although spectral type variations of the order of 1 subclass, which we identify as the Struve–Sahade effect , seem to be present in both components. From ROSAT HRI observations of CPD −59° 2635 we determine a luminosity ratio log( L x/ L bol)≈−7 , which is similar to that observed for other O-type stars in the Carina Nebula region. No evidence of light variations is present in the available optical or X-ray data sets.  相似文献   

6.
The binary star δ Sco (HD143275) underwent remarkable brightening in the visible in 2000, and continues to be irregularly variable. The system was observed with the Sydney University Stellar Interferometer (SUSI) in 1999, 2000, 2001, 2006 and 2007. The 1999 observations were consistent with predictions based on the previously published orbital elements. The subsequent observations can only be explained by assuming that an optically bright emission region with an angular size of  ≳2 ± 1 mas  formed around the primary in 2000. By 2006/2007 the size of this region grew to an estimated ≳4 mas.
We have determined a consistent set of orbital elements by simultaneously fitting all the published interferometric and spectroscopic data as well as the SUSI data reported here. The resulting elements and the brightness ratio for the system measured prior to the outburst in 2000 have been used to estimate the masses of the components. We find   MA = 15 ± 7 M  and   MB = 8.0 ± 3.6 M  . The dynamical parallax is estimated to be  7.03 ± 0.15 mas  , which is in good agreement with the revised Hipparcos parallax.  相似文献   

7.
The 'All Sky Automated Survey' (ASAS) photometric observations of LS 1135, an O-type single-lined binary (SB1) system with an orbital period of 2.7 d, show that the system is also eclipsing performing a numerical model of this binary based on the Wilson–Devinney method. We obtained an orbital inclination     . With this value of the inclination, we deduced masses   M 1∼ 30 ± 1 M  and   M 2∼ 9 ± 1 M  , and radii   R 1∼ 12 ± 1 R  and   R 2∼ 5 ± 1 R  for primary and secondary components, respectively. Both the components are well inside their respective Roche lobes. Fixing the T eff of the primary to the value corresponding to its spectral type (O6.5V), the T eff obtained for the secondary component corresponds approximately to a spectral type of B1V. The mass ratio   M 2/ M 1∼ 0.3  is among the lowest known values for spectroscopic binaries with O-type components.  相似文献   

8.
We present a study of optical spectra of the Wolf–Rayet star AzV 336a (=SMC WR7) in the Small Magellanic Cloud. Our study is based on data obtained at several Observatories between 1988 and 2001. We find SMC WR7 to be a double-lined WN+O6 spectroscopic binary with an orbital period of 19.56 d. The radial velocities of the He absorption lines of the O6 component and the strong He  ii emission at λ 4686 Å of the WN component describe anti-phased orbital motions. However, they show a small phase shift of ∼1 d. We discuss possible explanations for this phase shift. The amplitude of the radial velocity variations of He  ii emission is twice that of the absorption lines. The binary components have fairly high minimum masses, ∼18 and 34 M for the WN and O6 components, respectively.  相似文献   

9.
It is believed that η Carinae is actually a massive binary system, with the wind–wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of η Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face η Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of η Carinae forms an angle of  29°± 4°  with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about  5°  and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.  相似文献   

10.
A new high-quality set of orbital parameters for the O-type spectroscopic binary HD 93205 has been obtained combining échelle and coudé CCD observations. The radial velocity orbits derived from the He  ii λ 4686 Å (primary component) and He  i λ 4471 Å (secondary component) absorption lines yield semi-amplitudes of 133±2 and 314±2 km s−1 for each binary component, resulting in minimum masses of 31 and 13 M ( q =0.42) . We also confirm for the binary components the spectral classification of O3 V+ O8 V previously assigned. Assuming for the O8 V component a 'normal' mass of 22–25 M we would derive for the primary O3 V a mass of 'only' 52–60 M and an inclination of about 55° for the orbital plane. We have also determined for the first time a period of apsidal motion for this system, namely 185±16 yr using all available radial velocity data sets of HD 93205 (from 1975 to 1999). Phase-locked variations of the X-ray emission of HD 93205 consisting of a rise of the observed X-ray flux near periastron passage are also discussed.  相似文献   

11.
We report the results of a spectroscopic and polarimetric study of the massive, hydrogen-rich WN6h stars R144 (HD 38282 = BAT99-118 = Brey 89) and R145 (HDE 269928 = BAT99-119 = Brey 90) in the Large Magellanic Cloud. Both stars have been suspected to be binaries by previous studies (R144: Schnurr et al.; R145: Moffat). We have combined radial-velocity (RV) data from these two studies with previously unpublished polarimetric data. For R145, we were able to establish, for the first time, an orbital period of 158.8 d, along with the full set of orbital parameters, including the inclination angle i , which was found to be   i = 38°± 9°  . By applying a modified version of the shift-and-add method developed by Demers et al., we were able to isolate the spectral signature of the very faint line companion star. With the RV amplitudes of both components in R145, we were thus able to estimate their absolute masses. We find minimum masses   M WRsin3 i = 116 ± 33 M  and   M Osin3 i = 48 ± 20 M  for the WR and the O component, respectively. Thus, if the low-inclination angle were correct, resulting absolute masses of the components would be at least 300 and  125 M  , respectively. However, such high masses are not supported by brightness considerations when R145 is compared to systems with known very high masses such as NGC 3603-A1 or WR20a. An inclination angle close to  90°  would remedy the situation, but is excluded by the currently available data. More and better data are thus required to firmly establish the nature of this puzzling, yet potentially very massive and important system. As to R144, however, the combined data sets are not sufficient to find any periodicity.  相似文献   

12.
Radial velocity data for both components of W Crv are presented. In spite of providing full radial-velocity information, the new data are not sufficient to establish the configuration of this important system because of large seasonal light curve perturbations, which prevent a combined light curve/radial-velocity solution. It is noted that the primary minimum is free of photometric perturbations, and this property may help to explain the elusive source of these perturbations. Photometrically, the system appears to be a contact binary with poor or absent energy exchange, but such an explanation – in view of the presence of light curve perturbations – is no more plausible than any one of the semi-detached configurations, with either the more-massive or less-massive components filling the associated Roche lobes. Lengthening of the orbital period and the size of the less-massive component above its main-sequence value, both suggest that the system is the shortest-period (0.388 d) known Algol with non-degenerate components.  相似文献   

13.
The bright southern binary star β Centauri (HR 5267) has been observed with the Sydney University Stellar Interferometer (SUSI) and spectroscopically with the European Southern Observatory Coude Auxiliary Telescope and Swiss Euler telescope at La Silla. The interferometric observations have confirmed the binary nature of the primary component and have enabled the determination of the orbital parameters of the system. At the observing wavelength of 442 nm the two components of the primary system have a magnitude difference of  0.15 ± 0.02  . The combination of interferometric and spectroscopic data gives the following results: orbital period  357.00 ± 0.07 d  , semimajor axis  25.30 ± 0.19 mas  , inclination  674 ± 03  , eccentricity  0.821 ± 0.003  , distance  102.3 ± 1.7 pc  , primary and secondary masses   M 1= M 2= 9.1 ± 0.3 M  and absolute visual magnitudes of the primary and secondary   M 1 V =−3.85 ± 0.05  and   M 2 V =−3.70 ± 0.05  , respectively. The high degree of accuracy of the results offers a fruitful starting point for future asteroseismic modelling of the pulsating binary components.  相似文献   

14.
We present our findings based on a detailed analysis of the binaries of the Hyades, in which the masses of the components are well known. We fit the models of the components of a binary system to observations so as to give the observed total V and B − V of that system and the observed slope of the main sequence in the corresponding parts. According to our findings, there is a very definite relationship between the mixing-length parameter and the stellar mass. The fitting formula for this relationship can be given as  α= 9.19( M /M− 0.74)0.053− 6.65  , which is valid for stellar masses greater than  0.77 M  . While no strict information is gathered for the chemical composition of the cluster, as a result of degeneracy in the colour–magnitude diagram, by adopting   Z = 0.033  and using models for the components of 70 Tau and θ2 Tau we find the hydrogen abundance to be   X = 0.676  and the age to be 670 Myr. If we assume that   Z = 0.024  , then   X = 0.718  and the age is 720 Myr. Our findings concerning the mixing-length parameter are valid for both sets of the solution. For both components of the active binary system V818 Tau, the differences between radii of the models with   Z = 0.024  and the observed radii are only about 4 per cent. More generally, the effective temperatures of the models of low-mass stars in the binary systems studied are in good agreement with those determined by spectroscopic methods.  相似文献   

15.
We have monitored the R I magnitudes of the black hole candidate system A0620 − 00 (V616 Mon) in the years 1991–1995 at the Wise Observatory. Combining our data with some additional measurements, we analyse a sparsely covered 7-yr light curve of the star. We find that the average R -band magnitude varies on a time-scale of a few hundred days, with a peak-to-peak amplitude of 0.3 mag. The two maxima in the well-known double hump binary cycle, as well as one of the minima between them, vary by a few per cent relative to one another, in a seemingly random way. One maximum is, on average, higher by 0.05 mag than the other. The depth of the second minimum varies with significantly higher amplitude, in clear correlation with the long-term variability of the mean magnitude of the system. It is shallower than the other minimum at times of maximum light. It deepens when the system brightness declines, and it becomes the deeper of the two minima at times of minimum system light. According to the commonly acceptable phasing of the binary cycle, the systematically varying minimum corresponds to the inferior conjunction of the red dwarf. We cannot suggest any simple geometrical model for explaining the regularities that we find in the long-term photometric behaviour of the V616 Mon binary system.  相似文献   

16.
We have obtained complete phase coverage of the WC7+O binaries WR 42 = HD 97152 and WR 79 = HD 152270 with high signal-to-noise ratio (S/N), moderate-resolution spectra. Remarkable orbital phase-locked profile variations of the C  iii λ 5696 line are observed and interpreted as arising from colliding wind effects. Within this scenario, we have modelled the spectra using a purely geometrical model that assumes a cone-shaped wind–wind interaction region which partially wraps around the O star. Such modelling holds the exciting promise of revealing a number of interesting parameters for WR+O binaries, such as the orbital inclination, the streaming velocity of material in the interaction region and the ratio of wind momentum flux. Knowledge of these parameters in turn leads to the possibility of a better understanding of WR star masses, mass-loss rates and wind region characteristics.  相似文献   

17.
We present archival Rossi X-ray Timing Explorer ( RXTE ) and simultaneous Advanced Satellite for Cosmology and Astrophysics ( ASCA ) data of the eclipsing low mass X-ray binary (LMXB) X 1822−371. Our spectral analysis shows that a variety of simple models can fit the spectra relatively well. Of these models, we explore two in detail through phase-resolved fits. These two models represent the case of a very optically thick and a very optically thin corona. While systematic residuals remain at high energies, the overall spectral shape is well approximated. The same two basic models are fitted to the X-ray light curve, which shows sinusoidal modulations interpreted as absorption by an opaque disc rim of varying height. The geometry we infer from these fits is consistent with previous studies: the disc rim reaches out to the tidal truncation radius, while the radius of the corona (approximated as spherical) is very close to the circularization radius. Timing analysis of the RXTE data shows a time-lag from hard to soft consistent with the coronal size inferred from the fits. Neither the spectra nor the light curve fits allow us to rule out either model, leaving a key ingredient of the X 1822−371 puzzle unsolved. Furthermore, while previous studies were consistent with the central object being a 1.4 M neutron star, which has been adopted as the best guess scenario for this system, our light curve fits show that a white dwarf or black hole primary can work just as well. Based on previously published estimates of the orbital evolution of X 1822−371, however, we suggest that this system contains either a neutron star or a low mass (≲2.5 M) black hole and is in a transitional state of duration shortward of 107 yr.  相似文献   

18.
We report additional photometric CCD observations of KPD 0422+5421, a binary with an orbital period of 2.16 h which contains a subdwarf B star (sdB) and a white dwarf. There are two main results of this work. First, the light curve of KPD 0422+5421 contains two distinct periodic signals, the 2.16-h ellipsoidal modulation discovered by Koen, Orosz & Wade and an additional modulation at 7.8 h. This 7.8-h modulation is clearly not sinusoidal: the rise time is about 0.25 in phase, whereas the decay time is 0.75 in phase. Its amplitude is roughly half of the amplitude of the ellipsoidal modulation. Secondly, after the 7.8-h modulation is removed, the light curve folded on the orbital period clearly shows the signature of the transit of the white dwarf across the face of the sdB star and the signature of the occultation of the white dwarf by the sdB star. We have used the Wilson–Devinney code to model the light curve to obtain the inclination, the mass ratio and the Ω potentials, and a Monte Carlo code to compute confidence limits on interesting system parameters. We find component masses of     and     ( M total     , 68 per cent confidence limits). If we impose an additional constraint and require the computed mass and radius of the white dwarf to be consistent with a theoretical mass–radius relation, we find     and     (68 per cent confidence limits). In this case the total mass of the system is less than 1.4 M at the 99.99 per cent confidence level. We briefly discuss possible interpretations of the 7.8-h modulation and the importance of KPD 0422+5421 as a member of a rare class of evolved binaries.  相似文献   

19.
We report on Two-Micron All-Sky Survey (2MASS) J01542930+0053266, a faint eclipsing system composed of two M dwarfs. The variability of this system was originally discovered during a pilot study of the 2MASS Calibration Point Source Working Data base. Additional photometry from the Sloan Digital Sky Survey yields an eight-passband light curve from which we derive an orbital period of  2.639 0157 ± 0.000 0016  d. Spectroscopic followup confirms our photometric classification of the system, which is likely composed of M0 and M1 dwarfs. Radial velocity measurements allow us to derive the masses  (M1= 0.66 ± 0.03 M; M2= 0.62 ± 0.03 M)  and radii  (R1= 0.64 ± 0.08 R; R2= 0.61 ± 0.09 R)  of the components, which are consistent with empirical mass–radius relationships for low-mass stars in binary systems. We perform Monte Carlo simulations of the light curves which allow us to uncover complicated degeneracies between the system parameters. Both stars show evidence of Hα emission, something not common in early-type M dwarfs. This suggests that binarity may influence the magnetic activity properties of low-mass stars; activity in the binary may persist long after the dynamos in their isolated counterparts have decayed, yielding a new potential foreground of flaring activity for next generation variability surveys.  相似文献   

20.
We report the results of observations of V4633 Sgr (Nova Sagittarii 1998) during     . Two photometric periodicities were present in the light curve during the three years of observations: a stable one at     , which is probably the orbital period of the underlying binary system; and a second one of lower coherence, approximately 2.5 per cent longer than the former. The latter periodicity may be a permanent superhump, or, alternatively, the spin period of the white dwarf in a nearly synchronous magnetic system. A third period, at     , corresponding to the beat between the two periods was probably present in 1999. Our results suggest that a process of mass transfer has taken place in the binary system since no later than two-and-a-half months after the nova eruption. We derive an interstellar reddening of     from our spectroscopic measurements and published photometric data, and estimate a distance of     to this nova.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号