首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
The vertical dynamic impedance of the large-diameter pile is theoretically investigated considering the construction disturbance effect. First, the Rayleigh–Love rode model is introduced to simulate the large-diameter pile with the consideration of its transverse inertia effect. The shear complex stiffness transfer model is proposed to simulate the radial inhomogeneity of the pile surrounding soil caused by the construction disturbance effect. Then, the pile–soil system is divided into finite segments, and the governing equation of the pile–soil system subjected to vertical dynamic loading is established. Following this, the analytical solution of vertical dynamic impedance at the pile head is obtained by means of the shear complex stiffness transfer method and the impedance function transfer method. Based on the present solution, a parametric analysis is conducted to investigate the influence of the transverse inertia effect on the vertical dynamic impedance at the pile head and its relationship with the pile–soil parameters. Finally, comparisons with published solutions are carried out to verify the reliability of the present solution.  相似文献   

2.
The static drill rooted nodular (SDRN) pile is a new type of precast pipe pile with equally spaced nodes distributed along the shaft and wrapped by the surrounding cemented soil. In this paper, the longitudinal dynamic response of the SDRN pile embedded in layered soil is investigated with respect to the complexity of the pile body structure and the pile–soil contact condition. First, the shear complex stiffness transfer model is used to simulate the radial inhomogeneity of the surrounding soil. Then, the governing Equations of the pile–soil system subjected to longitudinal dynamic loading are established. The analytical solution for the dynamic response at the pile head is obtained by the shear complex stiffness transfer method and the impedance function transfer method. The degenerate case of the present solution is compared with the published solution to verify its reliability, and the complex impedance of the SDRN pile is compared with that of the precast pipe pile and the bored pile. Finally, a parametric study is conducted to investigate the influence of pile–soil parameters on the complex impedance at the pile head within the low frequency range concerned in the design of the dynamic foundation.  相似文献   

3.
ABSTRACT

An analytical solution is developed in this paper to investigate the vertical time-harmonic response of a large-diameter variable-section pile, and it considers the radial inhomogeneity of the surrounding soil caused by construction disturbance. First, the saturated soil surrounding the pile is described by Biot’s poroelastic theory and a series of infinitesimally thin independent layers along the shaft of the pile, and the pile is represented by a variable-section Rayleigh–Love rod. Then, the dynamic equilibrium equations of the soil and pile are solved to obtain an analytical solution for the impedance function at the pile top using the complex stiffness transfer method and impedance function transfer method. Finally, the proposed solution is compared with previous solutions to verify its reliability, and a parameter study is conducted to provide insights into the sensitivity of the vertical dynamic impedance of the pile and velocity response in low-strain integrity testing on defective piles.  相似文献   

4.
In this article, an analytical solution is proposed to investigate the lateral dynamic response of a pile which is partially embedded in saturated soil layer and subjected to combined lateral and vertical loads. The saturated soil is described by Biot’s poroelastic theory and the resistance of soil is derived by potential function method. The governing equation of the pile is solved by coupling soil resistance and continuity conditions between the pile and the soil. The dynamic impedances of the pile are then obtained through transfer matrix method. To verify the validity of the proposed procedure, the present solution is compared with available solution for an idealized case. Finally, a parametric study is performed to investigate the effects of various parameters on the stiffness and damping properties of the pile-soil system. It is found that permeability of the soil and vertical load has significant effects on the dynamic response of the pile.  相似文献   

5.
The dynamic response of a tapered pile (considering its construction disturbance effect) is investigated when the tapered pile is subjected to a time-harmonic torsional loading. For most engineering conditions, the surrounding soil may be weakened or strengthened owing to the construction disturbance effect of the tapered pile, resulting in the soil becoming radially inhomogeneous. In order to consider this problem, the circumferential shear complex stiffness transfer model is proposed to simulate the radial inhomogeneity of soil. Then, the governing equations of a tapered pile-soil system subjected to torsional dynamic loading are established. By virtue of the circumferential shear complex stiffness transfer method and the impedance function transfer method, the analytical solution of torsional dynamic impedance at the head of the tapered pile is derived. Based on the presented solution, the influence of the construction disturbance effect of the surrounding soil on the torsional dynamic impedance at the pile head is investigated within the low-frequency range concerned in the design of a dynamic foundation. The results show that, even if the hardening range and softening range of the surrounding soil vary within a smaller scale, the hardening effect and softening effect also have a notable influence on the torsional dynamic impedance at the pile head.  相似文献   

6.
The pile–soil system is divided into layers of sufficient number such that the shear stiffness at the pile–soil interface can be determined based on the complex stiffness transfer method. The vertical reaction of surrounding soil on the annular projections at the interface of adjacent pile segments is simplified using Voigt model, whose spring and damping coefficients are derived afterward, allowing an amended impedance function transfer method to be proposed. Using the amended impedance function transfer method, the dynamic equilibrium equation of the pile is solved to give an analytical solution for the impedance function at the pile top. By comparing the solution proposed in this paper with other solutions, the superiority of the bearing capacity of a tapered pile is further confirmed. A parameter study is then conducted to give insight into the coupled interaction of the vertical reaction of the surrounding soil with construction disturbance in the low-frequency range concerned in the seismic design of the pile foundations.  相似文献   

7.
Slender piles embedded in soft ground or liquefied soil may buckle under vertical load. In this paper, both small- and large-scale model tests are conducted to investigate the buckling mechanisms of a slender pile and the lateral earth pressure acting on the pile. To observe the buckling of a slender pile, the strain-controlled loading method is adopted to apply a vertical load. When the two ends of a slender pile are hinged, the buckling mechanisms of small- and large-scale model tests are same. It should be noted that this applies only to a system with a small ratio of pile bending stiffness to soil bending stiffness. An applied vertical load increases with an increasing pile head settlement until it reaches the critical buckling load. By further increasing the pile head settlement, the measured load approaches the critical buckling load. In the large-scale model test, the measured lateral earth pressure (i.e., active and passive) acting on the slender pile varies linearly with the lateral pile displacement when the measured range is 3–5?m beneath the ground. A critical buckling calculation method has been adopted to compare with the conventional “m” method. The two-sided earth pressure calculation method can achieve more approximate results with the model test.  相似文献   

8.
刘剑涛  李飒 《海洋工程》2015,33(6):90-94
近年来海上工程的规模越来越大,为了满足工程需要,桩基设计常常采用大直径,大长度的钢管桩。打桩过程是个相当复杂的过程,不仅涉及到几何非线性、材料非线性、边界非线性,而且是个动力过程。有限元法在处理打桩分析方面具有很强的优势,采用PLAXIS对不同条件下的打桩问题进行了动力模拟分析。分析显示在打桩过程中,桩端土体会产生较大的水平位移和竖向位移,桩端土体和靠近桩端的部分土塞内会产生较大的超孔隙水压力。在砂土中,停锤较短时间也会使孔压迅速消散,这也是打桩中间的停锤会造成后续打桩困难的主要原因。  相似文献   

9.
The scour hole around a pile will reduce the capacity of a laterally loaded pile. The strain wedge model is capable to derive a py curve for the analysis of a lateral loaded pile on a nonlinear Winkler foundation. To improve and extend the ability of the strain wedge method, a modified strain wedge (MSW) method is developed, in which a nonlinear lateral deflection of the pile is assumed to describe the varied soil strain distribution in the passive wedge. And then by treating the soil weight involved in the strain wedge as a vertical load at the bottom of the scour hole, an equivalent wedge depth is obtained to consider the effect of scour hole dimensions on the response of laterally loaded piles in sand. The validity of the MSW model is proved by comparisons with a centrifuge test without scour. And its applicability in the problem of a pile with scour is performed by a comparison with a model test and a FE analysis. The analysis shows the pile displacement at the pile head with scour can be obtained by multiplying the corresponding deflection without scour with an amplification factor related to scour depth at large load level.  相似文献   

10.
The dynamic response of beam–pile–soil system under vertical transient excitation is investigated. Both piles and beam are assumed to be one-dimensional rods and subjected to vertical exciting forces. The uniformly distributed Voigt models are introduced to simulate the pile tip resistances, and the dynamic interactions between piles and beam are simplified as a set of concentrated point loads. Then, the plane strain model, the theory of longitudinal vibration of one-dimensional rod, and the Timoshenko beam theory are used to establish the mathematical models for the motion of soil, piles, and beam, respectively. On this basis, the matrix equation for solving the governing equations is constructed in the Laplace domain and the time-domain response is then obtained by the discrete inverse Fourier transform. Comparisons with numerical simulations and model tests are conducted to evaluate the rationality of the present solution. The results show that the dynamic responses calculated by the proposed solution are generally consistent with simulated curves and experimental data.  相似文献   

11.
Abstract

This paper presents the results of a series of model tests performed to study the shaft capacity of pre-bored grouted planted nodular (PGPN) pile in dense sand. The influence of the vertical overburden pressure on the shaft capacity of the PGPN pile is also investigated based on the test results. The test piles were equipped with strain gauges to measure the axial loads during the loading process, moreover, a foam plate was buried beneath pile tip to eliminate the influence of tip resistance on the shaft capacity. Some conclusions can be drawn based on the test results: the peak skin friction of PGPN pile increases with the increase of vertical overburden pressure applied on the foundation soil, while the rate of increase decreases with the increasing overburden pressure; the surface of the pile–soil interface of PGPN pile is relatively rough, and significant dilatant increase in lateral stress occurs during the loading process.  相似文献   

12.
用于海洋平台的吸力式桩桶基础作为一种新型平台基础正逐渐成为人们研究的重点。为研究吸力式桩桶单桩基础的受力特性,对V-H(竖向—水平)联合荷载作用下的吸力式单桩基础桩土的承载特性进行了数值模拟,并将数值模拟的有限元解通过与API规范中对p-y曲线的计算方法进行对比来验证有限元模型的可行性,最后采用分级作用力的加载方式对其破坏包络曲线进行绘制,并推导出相应的函数表达式。研究表明,采用ABAQUS有限元分析软件对吸力式桩桶进行数值模拟是可行的,随着对吸力式桩桶所施加V-H联合荷载的不断增大,吸力式桩桶所能体现的应力和弯矩极限值也在随之增大,其位移变化主要在施加荷载的区域附近,最后在联合荷载作用下所体现的极限承载状态,即包络曲线大致呈四分之一的椭圆形状。  相似文献   

13.
考虑桩土作用独桩海洋平台横向振动特性研究   总被引:5,自引:0,他引:5  
采用动Winkler弹性地基梁模型模拟桩土问动力相互作用,并考虑了流体与桩问相互作用,通过组合成层土中、水中桩单元的刚度阵,推得了独桩海洋平台连续系统横向振动的动刚度阵及在波浪力作用下平台甲板处的频率响应函数,进而求得了在确定性波浪力及随机波浪力作用下桩身任意点的位移响应。最后,通过算例研究和分析了在随机波浪力作用下成层土参数、甲板上重量及冲刷淘深等因素对平台振动响应的影响。  相似文献   

14.
结合在钱塘江盐官河段对涌潮作用下桩式丁坝动力特性进行的现场测试,首次将有限差分法应用于求解桩式丁坝框架结构受涌潮瞬态荷载作用时的动力响应。其桩周土模型采用Winkler假定,应用有限差分法将桩式丁坝框架结构的各梁柱单元离散后联立起来,从而求得整个结构的动力响应。通过参数研究揭示了结构的形式、结构的刚度、土的剪切波速(即反映桩土相对刚度)对桩式丁坝框架结构横向振动的影响。通过与现场测试结果比较可知,理论计算值与实测值基本吻合,验证了该方法的精度和稳定性。该方法计算过程简单,克服了传统的静力法不能考虑结构的惯性力以及土的粘滞阻尼和动刚度的缺点,对工程实际具有一定的指导意义。  相似文献   

15.
Abstract

In practice, how to quickly improve the bearing capacity of piles in a short time is of great significance. In view of this, a technique of setting grooves and installing PVDs (prefabricated vertical drains) at the surface of the pile is proposed in this investigation to accelerate the consolidation of the surrounding soil. A radial and circular consolidation model is established for permeable piles. The finite cosine transform, finite Weber transform, and discretization method are used to obtain a semi-analytical solution for the consolidation model with a mixed drainage boundary condition at the surface of the pile. The sensitivity of the consolidation process to the strip number and the width of PVDs is discussed. The results show that the technique of installing PVDs in piles could potentially improve the bearing capacity. When the area of drainage channels is fixed, the bearing capacity of permeable piles can be more effectively improved by using a higher strip number of PVDs and a smaller PVD width.  相似文献   

16.
为提高基础利用率增加海上风电设施的可行性,对楔形单桩基础竖向承载力特性进行研究分析。采用PLAXIS 3D 有限元软件建立楔形单桩基础模型,从桩侧摩阻力、桩侧法应力及土体位移对比分析楔形单桩基础与等截面单桩竖向承载特性差异,并探讨内摩擦角、楔角及楔高对承载力的影响。研究表明:楔形单桩基础竖向承载力高于等截面单桩基础,且承载力随着楔角、楔高的增大而增大,提高率最大达24.786%。倾斜侧壁的引入改变了桩侧摩阻力的传递规律;倾斜侧壁挤密桩周土体,桩侧摩阻力与法向应力增大,从而有效提高单桩基础的竖向承载力。研究成果可为今后海上风电单桩基础截面型式的设计提供参考。  相似文献   

17.
An investigation was made to present analytical solutions of cyclic response to suction caisson subjected to inclined cyclic loadings in clay using a three-dimensional displacement approach. A model representing the relationship between vertical load and vertical displacement and that between lateral load and lateral displacement along the skirt of suction caisson subjected to cyclic loadings is proposed for overconsolidated clay. For the effect of vertical load on cyclic load capacity of suction caisson, using the Mindlin solution in the case of a vertical point load, the vertical stress of soil under the base of suction caisson is presented. For the stress state of soil beneath the base of suction caisson subjected to cyclic loading, the Mohr–Coulomb failure line and critical state line are presented and the relationship between total stress, effective mean principal stress, stress difference, and pore-pressure is elucidated. The comparison of results predicted by the present method for a suction caisson subjected to cyclic loadings in clay has shown good agreement with those obtained from field tests. Cyclic behavior of clay up to failure is made clear from the relationship between cyclic tensile load, vertical and lateral displacements, and rotation and that between depth, vertical, and lateral pressures.  相似文献   

18.
海上复杂地质条件下大直径钢管桩时效性试验研究   总被引:1,自引:1,他引:0  
通过对3根海上复杂地质条件下的大直径钢管桩采取高应变初打与不同休止时间复打相结合的试验方法,得到不同休止时间钢管桩承载力、侧阻力及端阻力大小,以此对不同桩侧土及持力层对钢管桩时效性的影响进行了研究。研究结果表明:1)钢管桩承载力时效性现象明显,且随时间增长迅速; 2)钢管桩侧阻力的恢复系数远大于端阻力; 3)桩侧黏性土强度的恢复是钢管桩侧阻力增加的主要原因; 4)砂土层虽提供的侧阻力较大,但其对侧阻力增长的贡献不如黏性土; 5)持力层越硬,端阻力与承载力的恢复性越差。  相似文献   

19.
Drilled displacement (DD) piles with a screw-shaped shaft (referred to as DD piles) are installed using a continuous full thread hollow rod (without a displacement body) inserted and advanced in the soil by both a vertical force and a torque. As a type of newly developed pile, current understanding of the bearing mechanism of DD piles is unsatisfactory, which restricts their further applications in engineering. The primary aim of this paper is to study the bearing mechanism of this type of pile using a numerical method. First, a numerical model for calculating the bearing capacity of the DD piles was created and validated by a laboratory test. Then, the effects of the parameters of pile–soil interface, soil strength, and pile geometrical parameters on the bearing mechanism of the DD piles were investigated in parametric studies. The results of parametric studies show that the limit shear stress on the pile–soil interface, the friction angle of surrounding sand, screw pitch, and thread width significantly influence the bearing capacity of the DD piles, whereas the friction coefficient at the pile–soil interface and the thread thickness have little effect. Based on the results of the parametric studies, the failure mechanism of the DD piles under vertical load is analyzed. Finally, an equation for predicting the ultimate bearing capacities of helical piles based on cylindrical shear failure was used for estimating the bearing capacity of the DD piles, and the calculated results were verified with the numerical results.  相似文献   

20.
Abstract

An elastoplastic, dynamic, finite-difference method was applied to study the effects of nonlinear seismic soil–pile interaction on the liquefaction potential of marine sand with piles. The developed model was well validated using the centrifuge test. The results showed that acceleration, bending moment, and excess pore water pressure complied well with centrifuge test results. The effect of different affecting parameters on liquefaction potential was investigated using parametric study. Using a sensitivity analysis, the pile embedment parameter was shown to be the most influential parameter. Finally, applying the evolutionary polynomial regression technique, a new model for predicting the liquefaction potential was presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号