首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
As more aquifer storage and recovery (ASR) systems are employed for management of water resources, the skillful operation of multiwell ASR systems has become very important to improve their performance. In this study, we developed MODFLOW and MT3DMS models to simulate a multiwell ASR system in a synthetic aquifer to assess effects of hydrogeological and operational factors on the performance of the multiwell ASR system. We evaluated a simplified (dual well) ASR system in comparison with complex system (three-, four-, five-, and seven-well systems). Recovery and energy efficiencies were calculated using the model simulations. Factors such as higher hydraulic conductivity and longitudinal dispersivity significantly reduced the recovery and energy efficiencies of the system. In contrast, increasing the volume of recharged water increased the recovery efficiency; however, the energy efficiency was reduced. Recovery and energy efficiencies also plummet when there is an increase in the underlying regional gradient and the designed storage duration. Operating the system multiple times can yield higher volume of potable water, but the energy efficiency may not vary significantly after the second operating cycle. Single-well systems and multiwell systems exhibit similar responses to changes in physical factors, although operational factors have a more pronounced effect on the multiwell systems. One of the major findings was that fewer wells in a multiwell ASR system can yield higher volume of potable water and better output with respect to the electrical power being consumed. The results provide design engineers with guidelines for optimizing performance of the multiwell ASR systems.  相似文献   

2.
Regular aquifer storage recovery, ASR, is often not feasible for small‐scale storage in brackish or saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. Flow barriers that partially penetrate a brackish or saline aquifer prevent a stored volume of fresh water from expanding sideways, thus increasing the recovery efficiency. In this paper, the groundwater flow and mixing is studied during injection, storage, and recovery of fresh water in a brackish or saline aquifer in a flow‐tank experiment and by numerical modeling to investigate the effect of density difference, hydraulic conductivity, pumping rate, cyclic operation, and flow barrier settings. Two injection and recovery methods are investigated: constant flux and constant head. Fresh water recovery rates on the order of 65% in the first cycle climbing to as much as 90% in the following cycles were achievable for the studied configurations with constant flux whereas the recovery efficiency was somewhat lower for constant head. The spatial variation in flow velocity over the width of the storage zone influences the recovery efficiency, because it induces leakage of fresh water underneath the barriers during injection and upconing of salt water during recovery.  相似文献   

3.
Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR.  相似文献   

4.
Herein we propose a multiple injection and recovery well system strategically operated for freshwater storage in a brackish aquifer. With the system we call aquifer storage transfer and recovery (ASTR) by using four injection and two production wells, we are capable of achieving both high recovery efficiency of injected freshwater and attenuation of contaminants through adequately long residence times and travel distances within the aquifer. The usual aquifer storage and recovery (ASR) scheme, in which a single well is used for injection and recovery, does not warrant consistent treatment of injected water due to the shorter minimum residence times and travel distances. We tested the design and operation of the system over 3 years in a layered heterogeneous limestone aquifer in Salisbury, South Australia. We demonstrate how a combination of detailed aquifer characterization and solute transport modeling can be used to maintain acceptable salinity of recovered water for its intended use along with natural treatment of recharge water. ASTR can be used to reduce treatment costs and take advantage of aquifers with impaired water quality that might locally not be otherwise beneficially used.  相似文献   

5.
This paper explores the relationship between thermal energy and fresh water recoveries from an aquifer storage recovery (ASR) well in a brackish confined aquifer. It reveals the spatial and temporal distributions of temperature and conservative solutes between injected and recovered water. The evaluation is based on a review of processes affecting heat and solute transport in a homogeneous aquifer. In this simplified analysis, it is assumed that the aquifer is sufficiently anisotropic to inhibit density‐affected flow, flow is axisymmetric, and the analysis is limited to a single ASR cycle. Results show that the radial extent of fresh water at the end of injection is greater than that of the temperature change due to the heating or cooling of the geological matrix as well as the interstitial water. While solutes progress only marginally into low permeability aquitards by diffusion, conduction of heat into aquitards above and below is more substantial. Consequently, the heat recovery is less than the solute recovery when the volume of the recovered water is lower than the injection volume. When the full volume of injected water is recovered the temperature mixing ratio divided by the solute mixing ratio for recovered water ranges from 0.95 to 0.6 for ratios of maximum plume radius to aquifer thickness of 0.6 to 4.6. This work is intended to assist conceptual design for dual use of ASR for conjunctive storage of water and thermal energy to maximize the potential benefits.  相似文献   

6.
Geochemical processes during five years of aquifer storage recovery   总被引:4,自引:0,他引:4  
A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment.  相似文献   

7.
Aquifer storage and recovery (ASR) involves the injection of freshwater into an aquifer for later recovery and use. This paper investigates three major factors leading to reduction in performance of ASR systems in brackish or saline aquifers: lateral flow, density-driven flow and dispersive mixing. Previous analyses of aquifer storage and recovery (ASR) have considered at most two of the above processes, but never all three together, and none have considered lateral flow and density effects together. In this analysis, four dimensionless parameters are defined to give an approximate characterisation of lateral flow, dispersive mixing, mixed convection (density effects during pumping) and free convection (density effects during storage). An extensive set of numerical models spanning a wide parameter range is then used to develop a predictive framework using the dimensionless numbers. If the sum of the four dimensionless numbers (denoted RASR) exceeds 10, the ASR operation is likely to fail with no recoverable freshwater, while if RASR < 0.1, the ASR operation is likely to provide at least some recovery of freshwater. The predictive framework is tested using limited data available from ASR field sites, broadly lending support to the framework. This study has several important implications. Firstly, the lack of completeness of field data sets in the literature must be rectified if we are to properly characterise mixed-convective flow processes in ASR operations. Once data are available, the dimensionless numbers can be used to identify suitable ASR sites and the desirable operational conditions that maximise recovery efficiencies.  相似文献   

8.
《水文科学杂志》2013,58(4):844-856
Abstract

The feasibility of aquifer storage and recovery (ASR) was tested in a deep aquifer near Koksijde, Belgium. To achieve this, oxic drinking water was injected into a deep aquifer (the Tienen Formation) that contains anoxic brackish water. The hydraulic properties of the aquifer were determined using a step-drawdown test. Chemical processes caused by the injection of the water were studied by two push—pull tests. The step-drawdown test was interpreted by means of an inverse numerical model, resulting in a transmissivity of 3.38 m2/d and a well loss coefficient of 0.00038 d2/m5. The push—pull tests identified mixing between the injection and pristine waters, and cation exchange, as the major processes determining the quality of the recovered water. Mobilization of DOC, aerobic respiration, denitrification and mobilization of phosphate were also observed.  相似文献   

9.
A new operational paradigm is presented for small‐scale aquifer storage and recovery systems (ASR) in saline aquifers. Regular ASR is often not feasible for small‐scale storage in saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. In the new paradigm, fresh water storage is combined with salt water extraction from below the fresh water cone. The salt water extraction counteracts the buoyancy due to the density difference between fresh water and salt water, thus preventing the fresh water from floating up. The proposed approach is applied to assess the feasibility of ASR for the seasonal storage of fresh water produced by desalination plants in tourist resorts along the Egyptian Red Sea coast. In these situations, the continuous extraction of salt water can be used for desalination purposes. An analytical Dupuit solution is presented for the steady flow of salt water toward a well with a volume of fresh water floating on top of the cone of depression. The required salt water discharge for the storage of a given volume of fresh water can be computed with the analytical solution. Numerical modeling is applied to determine how the stored fresh water can be recovered. Three recovery approaches are examined. Fresh water recovery rates on the order of 70% are achievable when salt water is extracted in high volumes, subsurface impermeable barriers are constructed at a distance from the well, or several fresh water recovery drains are used. The effect of ambient flow and interruptions of salt water pumping on the recovery efficiency are reported.  相似文献   

10.
A combination of stable isotopes (18O and 2H) and hydrochemistry has been applied to investigate storage processes in relation to aquifer storage and recovery (ASR) of the shallow alluvial Quaternary aquifer in Damascus basin. The stored water, entirely taken from the Figeh springs during flood periods, was injected in a single well having a brackish groundwater. Water samples were collected from four observation wells drilled in the Damascus University Campus (DUC) site during a 3‐year period (2006–2008). The injectant water, which deviates in its chemical and isotopic signatures from that of the ambient groundwater, shows that the stored water plume remains within close proximity to the injection well (IW) (<≈ 100 m). Thus, only two wells (W13 and W14) located at a distance less than 80 m from the injection point were affected by this injection. The observation wells located at longer distances from the IW (≈145 m and ≈ 600 m for wells W15 and WHz, respectively) were completely unaffected by the injection. Although most of the chemical and isotopic parameters usefully reflected the mixing process that occurs between the injectant water and ambient groundwater, the stable isotope (18O) and chloride (Cl) were the most sensitive parameters that quickly reflect this signature. Using a simple mass balance, the calculated proportion of injectant water reaching the well W13 was in the range of 50–90%. This proportion was even lower (30–55%) in the case of well W14. Although the drought event prevailing during this study did not much help to inject further amounts of water, higher than the injected volume (0·2416 M m3) and also not favourable to better evaluate the fate and subsurface hydrological processes, these findings offer encouragement to continue the ASR activities, as an alternative way for better management of water resources in this basin facing intensive problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Coastal fresh water aquifers are an increasingly desirable resource. In a karstic aquifer, sea water intrusion occurs as a salt water wedge, like in porous media. However, preferential flow conduits may alter the spatial and temporal distribution of the salt water. This is typically the case when the outlet of the aquifer is a brackish spring. This paper shows that salinity and flow rate variations at a spring, where salinity is inversely proportional to discharge, can help to understand the hydrodynamic functioning of the aquifer and to locate the fresh water-sea water mixing zone deep inside the aquifer. The volume of water-filled conduit between the sea water intrusion zone and the spring outlet is calculated by the integral over time of the flow rate during the time lag between the flow rate increase and the salinity decrease as measured at the spring. In the example of the spring at Almyros of Heraklio (Crete, Greece), this time lag is variable, depending on the discharge, but the volume of water-filled conduit appears to be constant, which shows that the processes of salt water intrusion and mixing in the conduit are constant throughout the year. The distance between the spring and the zone where sea water enters the conduit is estimated and provides an indication of the position where only fresh water is present in the conduit.  相似文献   

12.
Aquifer storage and recovery (ASR) is a valuable tool for managing variations in the supply and demand of freshwater, but system performance is highly dependent upon system-specific hydrogeological conditions including the salinity of the storage-zone native groundwater. ASR systems using storage zones containing saline (>10,000 mg/L of total dissolved solids) groundwater tend to have relatively low recovery efficiencies (REs). However, the drawbacks of low REs may be offset by lesser treatment requirements and may be of secondary importance where the stored water (e.g., excess reclaimed, surface, and storm waters) would otherwise go to waste and pose disposal costs. Density-dependent, solute-transport modeling results demonstrate that the RE of ASR systems using a saline storage zone is most strongly controlled by parameters controlling free convection (e.g., horizontal hydraulic conductivity) and mixing of recharged and native groundwater (e.g., dispersivity and aquifer heterogeneity). Preferred storage zone conditions are moderate hydraulic conductivities (5 to 20 m/d), low degrees of aquifer heterogeneity, and primary porosity-dominated siliclastic and limestones lithologies with effective porosities greater than 5%. Where hydrogeological conditions are less favorable, operational options are available to improve RE, such as preferential recovery from the top of the storage zone. Injection of large volumes of excess water currently not needed into saline aquifers could create valuable water resources that could be tapped in the future during times of greater need.  相似文献   

13.
Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site‐specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ~500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time‐domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.  相似文献   

14.
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water‐quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub‐oxic to sulfate‐reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe2+/H2S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co‐precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub‐oxic conditions of the recharge phase, but iron sulfide (which co‐precipitates arsenic) is stable during the sulfate‐reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate‐reducing aquifer.  相似文献   

15.
An assessment of aquifer storage recovery using ground water flow models   总被引:3,自引:0,他引:3  
Lowry CS  Anderson MP 《Ground water》2006,44(5):661-667
Owing to increased demands on ground water accompanied by increased drawdowns, technologies that use recharge options, such as aquifer storage recovery (ASR), are being used to optimize available water resources and reduce adverse effects of pumping. In this paper, three representative ground water flow models were created to assess the impact of hydrogeologic and operational parameters/factors on recovery efficiency of ASR systems. Flow/particle tracking and solute transport models were used to track the movement of water during injection, storage, and recovery. Results from particle tracking models consistently produced higher recovery efficiency than the solute transport models for the parameters/properties examined because the particle tracking models neglected mixing of the injected and ambient water. Mixing between injected and ambient water affected recovery efficiency. Results from this study demonstrate the interactions between hydrogeologic and operational parameters on predictions of recovery efficiency. These interactions are best simulated using coupled numerical ground water flow and transport models that include the effects of mixing of injected water and ambient ground water.  相似文献   

16.
In the frame of a geochemical surveillance survey of Vulcano, the phreatic waters, mainly from wells located at the Northern basis of the active volcanic centre, were studied over a time span of sixteen months. On the basis of fundamental chemical composition, contamination by a shallow aquifer of brackish water and hydrothermal alteration of rocks seem the main processes to which the observed chemical picture can be attributed. An R-mode factor analysis procedure allowed to distinguish a principal factor associated to sodium, magnesium, chloride, possibly representing the contribution of the brackish aquifer, and three minor but distinct factors. These are respectively associated to calcium and sulfate, hydrogencarbonate, boric acid, and are considered as reflecting the influence of gaseous compounds from volcanic emanations. The variation in time of this influence appears in correlation with the variation of the observed temperature at the hottest fumaroies of the crater.  相似文献   

17.
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid‐pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR‐derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.  相似文献   

18.
An ancient, brackish, anoxic, and relatively hot water body exists within the Yarqon‐Tanninim Aquifer in southern Israel. A hydrogeological‐geochemical conceptual model is presented, whereby the low water quality is the outcome of three conditions that are met simultaneously: (1) Presence of an organic‐rich unit with low permeability that overlies and confines the aquifer; the confining unit contains perched horizons with relatively saline water. (2) Local phreatic/roofed conditions within the aquifer that enable seepage of the organic‐rich brackish water from above. The oxidation of the dissolved organic matter in the seeping water consumes the dissolved oxygen and continues through bacterial sulfate reduction, with H2S as a product. These exothermic reactions result in some heating. (3) The seeping water comprises a relatively large portion of the water volume. In the presented case study, the latter condition first developed in the Late Pleistocene following climate change, which led to a dramatic decline in recharge. Consequently, water flow in the local basin has nearly ceased, as evident by old water ages, specific isotopic composition, and nearly equipotential water levels. The continuous seepage from above into the almost stagnant water body has resulted in degraded water quality. Seepages of organic‐rich brackish water exist at other sites throughout the aquifer but have limited impact on the salinity and redox conditions due to the dynamic water flow, which flushes the seeping water, that is, the third condition is not met. The coexistence of the above three conditions may explain the development of anoxic and saline groundwater in other aquifers worldwide.  相似文献   

19.
Hydrogeological parameter is an important index to characterize the hydrogeological properties of the aquifer, and has a clear physical basis and mechanism. Although the predecessors have made significant achievements in these areas, research is lacking on the changing law and relationship of the hydrogeological parameters of well-aquifer system. The digital water level and barometric pressure data of Dadianzi Well are used as the basis in this study. Based on the theories of elastic mechanics, rock mechanics and fluid mechanics, and using barometric pressure coefficient and tidal factor, the hydrogeological parameters in Dadianzi well-aquifer system in undrained conditions are studied. The corresponding water storage rate can also be obtained quantitatively. In addition, with the thickness of the aquifer, the pressure transmitting coefficient, the radius of the well and the frequency of the tidal wave, the permeability coefficient and transmissibility coefficient of well-aquifer system can be obtained, and the relationships between them are derived. The results show that: 1)There is an obvious power function relationship between porosity and solid skeleton volume compression coefficient, volume compression coefficient of water in aquifer, water storage rate, permeability coefficient and transmissibility coefficient. The volume compression coefficient of solid skeleton, water storage rate, permeability coefficient and transmissibility coefficient have a positive correlation with the porosity, the volume compression coefficient of water in aquifer decreases with increasing porosity. The volume compression coefficient of solid skeleton and water in aquifer can be well fitted to one of two quadratic polynomials. And the volume compression coefficient of water in aquifer is larger than the solid skeleton volume compression coefficient, water is more easily compressed. In addition, with the increase of water storage rate, the permeability coefficient and transmissibility coefficient also increase linearly; 2)Different from the traditional pumping test and indoor experiment, this paper uses the digital water level and other data, combined with the pressure coefficient and Venedikov tidal harmonic analysis results to access to the porosity, the volume compression coefficient of solid skeleton and water in aquifer medium, water storage rate, the permeability coefficient and the transmissibility coefficient. This method is simple and accurate.  相似文献   

20.
Aquifer storage and recovery (ASR) can provide a means of storing water for irrigation in agricultural areas where water availability is limited. A concern, however, is that the injected water may lead to a degradation of groundwater quality. In many agricultural areas, nitrate is a limiting factor. In the Umatilla Basin in north central Oregon, shallow alluvial groundwater with elevated nitrate‐nitrogen of <3 mg/L to >9 mg/L is injected into the Columbia River Basalt Group (CRBG), a transmissive confined aquifer(s) with low natural recharge rates. Once recovery of the injected water begins, however, NO3‐N in the recovered water decreases quickly to <3 mg/L (Eaton et al. 2009), suggesting that NO3‐N may not persist within the CRBG during ASR storage. In contrast to NO3‐N, other constituents in the recovered water show little variation, inconsistent with migration or simple mixing as an explanation of the NO3‐N decrease. Nitrogen isotopic ratios (δ15N) increase markedly, ranging from +3.5 to > +50, and correlate inversely with NO3‐N concentrations. This variation occurs in <3 weeks and recovery of <10% of the originally injected volume. TOC is low in the basalt aquifer, averaging <1.5 mg/L, but high in the injected source water, averaging >3.0 mg/L. Similar to nitrate concentrations, TOC drops in the recovered water, consistent with this component contributing to the denitrification of nitrate during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号