首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在中国科学技术大学的线性磁化等离子体装置上,通过对两个平行电流板施加同向电流,实现重联磁场位型的构造,进而开展实验室等离子体中磁力线重联过程的研究.利用发射探针测量了重联过程中的平行(轴向)电场,实验验证了重联电流与通行粒子的依赖关系.利用磁探针测量了磁场通量的演化,未发现通量堆积现象,与数值预言相符.  相似文献   

2.
等离子体团型日冕物质抛射的形成机制   总被引:1,自引:0,他引:1  
郑惠南  张兵 《天文学报》1995,36(4):341-349
本文在球坐标二维磁静力平衡基态下,数值研究了电阻撕裂模不稳定性引起日冕电流片中发生磁场重联的过程,结果表明发生了具有两个X线的磁场重联,形成了磁岛和高温高密度的等离子体团,等离子体团在向上运动过程中有着明显的膨胀,其上升速度和膨胀过程与等离子体β值有关,这些结果可用于解释等离子体团型日冕物质抛射的形成。  相似文献   

3.
采用二维三分量磁流体力学模型,对日冕三重无力场电流片的磁场重联进行了数值研究,揭示了重联过程的基本物理特征.这类重联过程将加热和加速日冕等离子体,并导致多个高温、高密度、高磁螺度的磁岛的形成和向上喷发.这表明,多重无力场电流片的重联可能在日冕磁能释放、上行等离子体团的形成和太阳磁场螺度向行星际空间的逃逸方面起重要的作用.  相似文献   

4.
采用二维三分量磁流体力学模型,对日冕三重无力场电流片的磁场重磁联进行了数值研究,揭示了重联过程的基本物理特征,这类重联过程将加热和加速日冕等离子体,并导致多个高温、高密度、高磁螺度的磁岛的形成和向上喷发,这表明,多重无力场电流片的重联可能在日冕磁能释放、上行等离子体的形成和太阳磁场螺度向行星际空间的逃逸方面起重要的作用。  相似文献   

5.
作为汪景琇院士主持的中国科学院数理学部"天体辐射磁流体力学"战略研究项目组成部分~([1]),从等离子体的动力学属性出发,介绍了用于研究等离子体与周围磁场结构相互作用的粒子云网格方法,及其在研究具有复杂等离子体和磁场结构的磁重联过程中的应用。这里提到的磁场与等离子体的复杂性包括变化的等离子体β值,磁重联电流片中包含有多种尺度的结构,以及这些结构之间的相互作用,而且这些结构的尺度变化范围很大(从105km变化到102km)。进一步探讨了该方法在太阳物理领域,特别是在太阳爆发磁重联过程方面的可能应用以及未来的发展;并为项目研究中其他部分在数值方法~([2–5])和太阳物理~([6,7])方面提供借鉴和补充。  相似文献   

6.
由于锶原子光钟两级冷却对磁光阱磁场有不同的要求,为减少磁场转换时原子的逃逸,需在短时间内以一定的时序控制变换磁场。对反赫姆霍兹线圈设计的一般理论进行了讨论,为锶原子光钟的两级冷却设计了相应的磁场,并制作了转换磁场的发生控制装置。该装置主要包括控制电路、保护电路2部分。测量得到通过线圈的电流受控于输入信号,符合实验要求。  相似文献   

7.
李醒  胡友秋 《天文学报》1995,36(4):350-358
本文采用二维三分量耗散MHD模型,对带高电流层的局地非对称的四极无力场的磁能释放过程进行数值模拟,结果表明,磁能释放过程大体可以分为两个阶段:高电流层引起的异常电阻耗散使该层等离子体加热至3×106K的高温,形成一高温环;在高电流层耗散的触发下,磁分隔面的电流急剧增长并爆发异常电阻耗散和磁场重联,导致耀斑发生,主要的能量释放发生在磁分隔线和高剪切无力场中的磁分隔面上,等离子体温度可以达到1.9×107K。上述无力场的触发释能过程可能是太阳耀斑的一种重要的释能机制。  相似文献   

8.
单洁  叶景  蔡强伟  林隽 《天文学报》2021,62(2):14-39
磁重联在宇宙的许多动力学现象中都是非常核心的过程.磁流体动力学(MHD)数值模拟是研究磁重联过程以及相应物理图像的一种很有效的手段.通过不同的参数组合,来研究MHD数值模拟中磁雷诺数和空间分辨率对磁重联率、数值耗散和能谱分布的影响.对得到的数据进行分析后,发现磁雷诺数对磁重联率和能谱分布有一定的影响.磁雷诺数越大,磁重联过程进入非线性阶段所需的特征时间越短,磁重联率就越早发生跃升.磁雷诺数Rm对耗散开始发挥作用的Kolmogorov微观尺度lko有明显影响:Rm越大,lko就越小.研究了磁重联过程中包括数值耗散在内的额外耗散对重联过程的影响.结果表明,撕裂模不稳定性开始之前的额外耗散以纯数值耗散为主,撕裂模不稳定性出现之后,额外耗散出现同步跃升,说明不稳定性导致的湍流明显增强了耗散的效果,相当于在局部湍流区引入了超电阻.能谱分析进一步表明,大尺度电流片的lko完全可能出现在宏观的MHD尺度上.  相似文献   

9.
磁场重联是空间等离子体和实验室等离子体中的常见现象,被认为是太阳耀斑和磁层亚暴的重要机制。实验室磁场重联的模拟研究已经有二十余年的历史,并且取得了一系列重要的结果。对几个主要的磁场重联实验装置进行了介绍,给出了各个装置的等离子体参数以及产生重联的方法,回顾了实验室研究中和太阳射电密切相关的几个问题。另外,以中国科技大学的线性磁化等离子体装置为基础,建立了国内首个磁场重联的实验装置,研制了实验中需要的诊断工具,并开展了初步的磁场重联实验。  相似文献   

10.
磁重联被认为是太阳耀斑的产生机制,本文数值模拟在日冕中发生在磁重联过程,结果表明耀斑环的表观运动是磁重联的自洽结果;由重联点发出的慢激波对耀斑环的加热有贡献;耀斑环的上升并不意味着重联点的上升。  相似文献   

11.
12.
Litvinenko  Yuri E. 《Solar physics》2003,216(1-2):189-203
Traditional models for particle acceleration by magnetic reconnection in solar flares assumed a constant electric field in a steady reconnecting magnetic field. Although this assumption may be justified during the gradual phase of flares, the situation is different during the impulsive phase. Observed rapid variations in flare emissions imply that reconnection is non-steady and a time-varying electric field is present in a reconnecting current sheet. This paper describes exploratory calculations of charged particle orbits in an oscillating electric field present either at a neutral plane or a neutral line of two-dimensional magnetic field. A simple analytical model makes it possible to explain the effects of particle trapping and resonant acceleration previously noted by Petkaki and MacKinnon in a numerical simulation. As an application, electron acceleration to X-ray generating energies in impulsive solar flares is discussed within the context of the model.  相似文献   

13.
We study motions of charged particles in reconnecting current sheets (CS) which have both transverse (perpendicular to the current sheet plane) and longitudinal (parallel to the electric current inside the sheet) components of the magnetic field. Such CS, called non-neutral, are formed in regions of magnetic field line reconnection in the solar atmosphere. We develop an analytical technique which allows us to reproduce previous results concerning the influence of transverse fields on particle motion and acceleration. This technique also allows us to evaluate the effect of the longitudinal field. The latter increases considerably the efficiency of particle acceleration in CS. The energizing of electrons during the main phase of solar flares can be interpreted as their acceleration in non-neutral CS.  相似文献   

14.
T. G. Forbes 《Solar physics》1988,117(1):97-121
Shock waves produced by impulsively driven reconnection may be important during flares or during the emergence of magnetic flux from the photosphere into the corona. Here we investigate such shock waves by carrying out numerical experiments using two-dimensional magneto-hydrodynamics. The results of the numerical experiments imply that there are three different categories of shocks associated with impulsively driven reconnection: (1) fast-mode, blast waves which rapidly propagate away from the reconnection site; (2) slow-mode, Petschek shocks which are attached to the reconnection site; and (3) fast-mode, termination shocks which terminate the plasma jets flowing out from the reconnection site. Fast-mode blast waves are a common feature of many flare models, but the Petschek shocks and jet termination shocks are specific to reconnection models. These two different types of reconnection shocks might contribute to chromospheric ablation and energetic particle acceleration in flares.  相似文献   

15.
In the Linear Magnetized Plasma (LMP) device of University of Science and Technology of China and by exerting parallel currents on two parallel copper plates, we have realized the magnetic reconnection in laboratory plasma. With the emissive probes, we have measured the parallel (along the axial direction) electric field in the process of reconnection, and verified the dependence of reconnection current on passing particles. Using the magnetic probe, we have measured the time evolution of magnetic flux, and the measured result shows no pileup of magnetic flux, in consistence with the result of numerical simulation.  相似文献   

16.
Litvinenko  Yuri E. 《Solar physics》2003,212(2):379-388
Yohkoh observations strongly suggest that electron acceleration in solar flares occurs in magnetic reconnection regions in the corona above the soft X-ray flare loops. Unfortunately, models for particle acceleration in reconnecting current sheets predict electron energy gains in terms of the reconnection electric field and the thickness of the sheet, both of which are extremely difficult to measure. It can be shown, however, that application of Ohm's law in a turbulent current sheet, combined with energy and Maxwell's equations, leads to a formula for the electron energy gain in terms of the flare power output, the magnetic field strength, the plasma density and temperature in the sheet, and its area. Typical flare parameters correspond to electron energies between a few tens of keV and a few MeV. The calculation supports the viewpoint that electrons that generate the continuum gamma-ray and hard X-ray emissions in impulsive solar flares are accelerated in a large-scale turbulent current sheet above the soft X-ray flare loops.  相似文献   

17.
A short summary of recent progress in measuring and understanding turbulence during magnetic reconnection in laboratory plasmas is given. Magnetic reconnection is considered as a primary process to dissipate magnetic energy in laboratory and astrophysical plasmas. A central question concerns why the observed reconnection rates are much faster than predictions made by classical theories, such as the Sweet–Parker model based on MHD with classical Spitzer resistivity. Often, the local resistivity is conjectured to be enhanced by turbulence to accelerate reconnection rates either in the context of the Sweet–Parker model or by facilitating setup of the Pestchek model. Measurements at a dedicated laboratory experiment, called MRX or Magnetic Reconnection Experiment, have indicated existence of strong electromagnetic turbulence in current sheets undergoing fast reconnection. The origin of the turbulence has been identified as right-hand polarized whistler waves, propagating obliquely to the reconnecting field, with a phase velocity comparable to the relative drift velocity. These waves are consistent with an obliquely propagating electromagnetic lower-hybrid drift instability driven by drift speeds large compared to the Alfven speed in high-beta plasmas. Interestingly, this instability may explain electromagnetic turbulence also observed in collisionless shocks, which are common in energetic astrophysical phenomena.  相似文献   

18.
We present the results of charged particle orbit calculations in prescribed electric and magnetic fields motivated by magnetic reconnection models. Due to the presence of a strong guide field, the particle orbits can be calculated in the guiding centre approximation. The electromagnetic fields are chosen to resemble a reconnecting magnetic current sheet with a localised reconnection region. An initially Maxwellian distribution function in the inflow region can develop a beam-like component in the outflow region. Possible implications of these findings for acceleration scenarios in solar flares will be discussed.  相似文献   

19.
Requirements for the number of nonthermal electrons which must be accelerated in the impulsive phase of a flare are reviewed. These are uncertain by two orders of magnitude depending on whether hard X-rays above 25 keV are produced primarily by hot thermal electrons which contain a small fraction of the flare energy or by nonthermal streaming electrons which contain > 50% of the flare energy. Possible acceleration mechanisms are considered to see to what extent either X-ray production scenario can be considered viable. Direct electric field acceleration is shown to involve significant heating. In addition, candidate primary energy release mechanisms to convert stored magnetic energy into flare energy, steady reconnection and the tearing mode instability, transfer at least half of the stored energy into heat and most of the remaining energy to ions. Acceleration by electron plasma waves requires that the waves be driven to large amplitude by electrons with large streaming velocities or by anisotropic ion-acoustic waves which also require streaming electrons for their production. These in turn can only come from direct electric field acceleration since it is shown that ion-acoustic waves excited by the primary current cannot amplify electron plasma waves. Thus, wave acceleration is subject to the same limitations as direct electric field acceleration. It is concluded that at most 0.1% of the flare energy can be deposited into nonthermal streaming electrons with the energy conversion mechanisms as they have been proposed and known acceleration mechanisms. Thus, hard X-ray production above 10 keV primarily by hot thermal electrons is the only choice compatible with models for the primary energy release as they presently exist.  相似文献   

20.
We study a model of particle acceleration coupled with an MHD model of magnetic reconnection in unstable twisted coronal loops. The kink instability leads to the formation of helical currents with strong parallel electric fields resulting in electron acceleration. The motion of electrons in the electric and magnetic fields of the reconnecting loop is investigated using a test-particle approach taking into account collisional scattering. We discuss the effects of Coulomb collisions and magnetic convergence near loop footpoints on the spatial distribution and energy spectra of high-energy electron populations and possible implications on the hard X-ray emission in solar flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号