首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geological and geophysical research in upstate New York, with few exceptions, has not definitively associated seismicity with specific Proterozoic basement or Paleozoic bedrock structures. The central part of the Clarendon–Linden fault system (CLFS) between Batavia and Dale, NY is one of those exceptions where seismicity has been studied and has been spatially associated with structure. The CLFS is either a complex system of long faults with associated shorter branches and parallel segments, or a region of many short faults aligned north–south from the Lake Ontario shore southward to Allegany County, NY. Interpretation of 38 km of Vibroseis and approximately 56 km of conventional seismic-reflection data along 13 lines suggests that the CLFS is a broad zone of small faults with small displacements in the lower Paleozoic bedrock section that is at least 77 km long and 7–17 km wide and spatially coincident with a north-trending geophysical (combined aeromagnetic and gravity) lineament within the basement. The relative offset across the faults of the system is more than 91 m near Attica, NY. The CLFS is the expression of tectonic crustal adjustments within the Paleozoic rock above the boundary of two basement megablocks of differing petrologic provinces and differing earthquake characteristics that forms the eastern side of the Elzevir–Frontenac boundary zone. Deep seismic-reflection profiles display concave-eastward listric faults that probably merge at depth near the mid-crustal boundary layer. An interpretive vertical section provides the setting for refined definitions of the CLFS, its extensions at depth and its relation to seismicity. Most modern seismicity in western New York and the Niagara Peninsula of Ontario occurs in apparent patterns of randomly dispersed activity. The sole exception is a line of seven epicenters of small earthquakes that trend east from Attica, NY into the Rochester basement megablock. Earthquakes may be triggered at the intersections of north- and east-trending brittle faults within the Niagara basement megablock. Current interpretations of the mechanisms for earthquake generation in western New York and the Niagara Peninsula of Ontario require conservative estimates of seismic hazards that assume that an earthquake the size of the 1929 Attica, NY, event (Mb=5.2) or larger could occur anywhere in the Eastern Great Lakes Basin (EGLB). The broad zone of small-displacement faults that marks the CLFS in the lower Paleozoic sedimentary section and the uppermost basement may not provide the structural environment for generation of earthquakes in western New York. If this interpretation is correct, most seismicity is generated within the Niagara basement megablock beneath or west of the CLFS. Consequently, we may have to look to the deeper tectonic regime of basement megablocks to understand the distribution of modern seismicity in the EGLB.  相似文献   

2.
Study of the sections of Neopleistocene–Holocene deposits filling the basins in central Gorny Altai has revealed earthquake-induced soft-sediment deformation (seismites). They formed as a result of the brittle deformation of deposits and liquefaction of loose water-saturated sediments under vibration seismic impact. The paleoearthquakes resulting in such seismites had the minimum intensity I = 6 and magnitude M = 5–6. Hence, the study region underwent strong earthquakes in the Neopleistocene–Holocene.  相似文献   

3.
2018年5月28日,吉林松原市宁江区毛都站镇牙木吐村发生M5.7级地震(45°16'12″N,124°42'35″E),震源深度13 km,震中位于郯庐断裂带西北侧的扶余/松原—肇东断裂带、第二松花江断裂带和扶余北断裂带交汇处。地震诱发震中距3 km范围内普遍的液化和地表裂缝,给当地居民带来严重灾害。可见液化构造以砂火山为主,其次为液化砂堆、液化砂脉和液化砂席等。液化砂火山又可分为有火山口型砂火山、无火山口型砂火山和无砂型(水)火山。地震液化伴生软沉积物变形构造有变形层理、负载构造和火焰构造、滑塌褶皱、碟状构造和包卷层理等。地震诱发液化砂火山形成过程包括液化层内超孔隙流体压力形成、上覆低渗透层破裂和水、砂喷出地表后砂涌3个阶段。液化和流化砂体在上涌过程中会注入低渗透黏土层形成各种形态的砂脉、砂席和多种类型的变形构造。垂向上地震液化结构可划分为底部松散可液化层、下部液化变形层、上部液化变形层和地表砂火山4层结构。液化层埋深2~5 m,液化层厚度2 m。松原M5.7级地震发震机制为NE-SW(35°~215°)方向挤压应力使断层活跃,推测扶余/松原—肇东断裂是主要的发震断层。松原地震液化构造研究为现代地震活动区和灾害易发区预测提供依据,为地震引发的现代软沉积物变形构造研究提供丰富的素材,兼具将今论古意义,为揭示本世纪以来郯庐断裂带北段进入了一个强断裂和地震活跃阶段提供了最新的实际资料。  相似文献   

4.
Lithoprobe and industry seismic profiles have furnished evidence of major zones of easterly dipping Grenville deformed crust extending southwest from exposed Grenville rocks north of Lake Ontario. Additional constraints on subsurface structure limited to the postulated Clarendon–Linden fault system south of Lake Ontario are provided by five east–west reflection lines recorded in 1976. Spatial correlations between seismic structure and magnetic anomalies are described from both Lake Ontario and the newly reprocessed New York lines.In the Paleozoic to Precambrian upper crust, the New York seismic sections show: (1) An easterly thickening wedge of subhorizontal Paleozoic strata unconformably overlying a Precambrian basement whose surface has an apparent regional easterly dip of 1–2°. Minor apparent normal offsets, possibly on the order of tens of meters, occur within the Paleozoic section. The generally poorly reflective unconformity may be locally characterized by topographic relief on the order of 100 m; (2) Apparent local displacement on the order of 90 m at the level of the Black River Group diminishes upward to little or no apparent offset of Queenston Shale; (3) Within the limited seismic sections, there appears to be no evidence that the complete upper crustal section is vertically or subvertically offset; (4) Dipping structure in the Paleozoic strata (15° to 35°) resembles some underlying Precambrian basement elements; (5) The surface continuity of inferred faults constituting the Clarendon–Linden system is not strongly supported by the seismic data.Beneath the Paleozoic strata, the seismic sections show both linear and arcuate reflector geometry with easterly apparent dips of 15° to 35° similar to the deep structures imaged on seismic lines from nearby Lake Ontario and on Lithoprobe lines to the north. The similarity supports an extension of easterly dipping Central Metasedimentary Belt structures of the Grenville orogen from southern Ontario to beneath western New York State.From a comparison of the magnetic and gravity fields with the New York seismic sections, we suggest: (1) The largely nonmagnetic Paleozoic strata appear to contribute negligibly to magnetic anomalies. Seismically imaged fractures in the New York Paleozoic strata appear to lie mainly west of a positive gravity anomaly. The relationship between magnetic and gravity anomalies and the changes in the geometry of interpreted Precambrian structures remains enigmatic; (2) North to northeast trending curvilinear magnetic and gravity anomalies parallel, but are not restricted to the principal trend of the postulated Clarendon–Linden fault system. Paleozoic fractures of the Clarendon–Linden system may partly overlie a southward extension of the Composite Arc Belt boundary zone.  相似文献   

5.
New data on seismically triggered soft-sediment deformation structures in Pleniglacial to Late Glacial alluvial fan and aeolian sand-sheet deposits of the upper Senne area link this soft-sediment deformation directly to earthquakes generated along the Osning Thrust, which is one of the major fault systems in Central Europe. Soft-sediment deformation structures include a complex fault and fold pattern, clastic dikes, sand volcanoes, sills, irregular intrusive sedimentary bodies, flame structures, and ball-and-pillow structures. The style of soft-sediment deformation will be discussed with respect to brittle failure, liquefaction and fluidization processes, and was controlled by (1) the magnitude of the earthquake and (2) the permeability, tensile strength and flexural resistance of the alluvial and aeolian sediments. It is the first time in northern Germany that fluidization and liquefaction features can be directly related to a fault. The occurrence of seismicity in the Late Pleistocene and in the seventeenth century indicates ongoing crustal movements along the Osning Thrust and sheds new light on the seismic activity of northern Germany. The Late Pleistocene earthquake probably occurred between 15.9 ± 1.6 and 13.1 ± 1.5 ka; the association of soft-sediment deformation structures implies that it had a magnitude of at least 5.5.  相似文献   

6.
In the 2008 Wenchuan earthquake in Sichuan Province, a large number of buildings, water conservancy facilities, and transportation facilities were severely damaged. The damage caused by liquefaction and earthquake-induced soil subsidence was widely distributed, diverse, and extensive. Typical liquefaction and earthquake-induced subsidence damage for this region has been described by investigations of soils and foundations in the earthquake-stricken area. Factors that influenced the liquefaction of soils in Dujiangyan County were analyzed, accounting for regional geological conditions. The results identify several factors that may affect the process of liquefaction and general damage to buildings, roads, levees, and dams. Such factors could serve as the basis for further research into mitigating the damage caused by earthquake-induced liquefaction and subsidence. The importance of detailed ground reconnaissance and the implementation of reasonable and effective measures to improve soft soil are proposed for earthquake hazard reduction in similar areas.  相似文献   

7.
秦雅东  张士贞  刘函  李勇 《地球科学》2020,45(8):2945-2956
湖相沉积古地震研究是对地表破裂古地震研究的重要补充.通过详细的野外地质调查,在西藏许如错地区全新统湖相地层内新发现大量地震触发软沉积物变形构造(震积岩),层内发育液化脉、液化曲卷变形、液化角砾岩、液化水压构造、滴状体与锥状体、砾石丘、负载构造和火焰构造等软沉积变形标志,还发育同震断层、震裂缝和同震褶皱等同震构造标志.根据软沉积变形标志与震级之间的关系,结合历史地震统计液化颗粒范围,通过C14和光释光年龄测定,推测古地震事件发生在±7.5 ka,MS>7.5级;填补了该区历史地震的空缺,为恢复青藏高原南北向地堑地震活动历史及迁移规律提供了素材.震积岩中见大量砾石液化现象,这对现阶段以砂土-粉砂土研究为主的砂土液化调查工作提出了新挑战.   相似文献   

8.
Strong earthquake occurrence (M ≥ 6.0) onshore and offshore the Cyprus Island constitutes significant seismic hazard because they occur close to populated areas. Seismicity is weak south of the Island along the Cyprean Arc and strong events are aligned along the Paphos transform fault and Larnaka thrust fault zone that were already known and the Lemessos thrust fault zone that defined in the present study. By combining the past history of strong (M ≥ 6.0) events and the long-term tectonic loading on these major fault zones, the evolution of the stress field from 1896 until the present is derived. Although uncertainties exist in the location, magnitude and fault geometries of the early earthquakes included in our stress evolutionary model, the resulting stress field provides an explanation of later earthquake triggering. It was evidenced that the locations of all the strong events were preceded by a static stress change that encouraged failure. The current state of the evolved stress field may provide evidence for the future seismic hazard. Areas of positive static stress changes were identified in the southwestern offshore area that can be considered as possible sites of future seismic activity.  相似文献   

9.
We carried out paleoseismological analyses in Norcia, one of the oldest town of central Italy. Four trenches were dug in late Pleistocene–Holocene deposits, across an unmapped, antithetic splay of the Norcia Fault System. The investigated fault runs through the recent settlement of the town, brushing against the middle-age city walls. We found evidence of repeated surface ruptures in the past 20 ky, the last one dated to a period fitting with the 1703 AD, catastrophic earthquake (M = 6.8). Our data (i) show definitively the late Pleistocene–Holocene activity of the Norcia Fault System, (ii) strengthen the historical accounts describing surface ruptures during the 1703 event in Norcia, (iii) cast light on the seismogenic behavior of the 70-km-long fault system between L'Aquila and Norcia (central Italy) and (iv) predict the occurrence of normal surface faulting inside the municipality of Norcia during future M ≥ 6 earthquakes.  相似文献   

10.
We study earthquake-induced soft-sediment deformation (seismites) in reference Quaternary sections of southeastern Altai. Sediments in the sections bear signature of liquefaction and fluidization and deformation is localized in thin (few centimeters to 0.5–1.0 m) continuously striking and frequently repeated layers sandwiched between undeformed sediments. The soft-sediment deformation records coseismic motion of different slip geometries. Seismic origin is also inferred for layers and lenses of coarse colluvium slid into the lake bottom from the slopes, which intrude plane-bedded silt and sand and vary in thickness from a few centimeters to one meter. The occurrence of seismic soft-sediment deformation at different stratigraphic levels of the Quaternary and in the Upper Pliocene Beken Formation confirms the high seismicity of southeastern Altai in Quaternary time.  相似文献   

11.
We found a characteristic space–time pattern of the tidal triggering effect on earthquake occurrence in the subducting Philippine Sea plate beneath the locked zone of the plate interface in the Tokai region, central Japan, where a large interplate earthquake may be impending. We measured the correlation between the Earth tide and earthquake occurrence using microearthquakes that took place in the Philippine Sea plate for about two decades. For each event, we assigned the tidal phase angle at the origin time by theoretically calculating the tidal shear stress on the fault plane. Based on the distribution of the tidal phase angles, we statistically tested whether they concentrate near some particular angle or not by using Schuster's test. In this test, the result is evaluated by p-value, which represents the significance level to reject the null hypothesis that earthquakes occur randomly irrespective of the tidal phase angle. As a result of analysis, no correlation was found for the data set including all the earthquakes. However, we found a systematic pattern in the temporal variation of the tidal effect; the p-value significantly decreased preceding the occurrence of M ≥ 4.5 earthquakes, and it recovered a high level afterwards. We note that those M ≥ 4.5 earthquakes were considerably larger than the normal background seismicity in the study area. The frequency distribution of tidal phase angles in the pre-event period exhibited a peak at the phase angle where the tidal shear stress is at its maximum to accelerate the fault slip. This indicates that the observed small p-value is a physical consequence of the tidal effect. We also found a distinctive feature in the spatial distribution of p-values. The small p-values appeared just beneath the strongly coupled portion of the plate interface, as inferred from the seismicity rate change in the past few years.  相似文献   

12.
Abstract

Complex fault assemblages associated to liquefaction structures have been analyzed in a Pliocene basin located along the Gulf of California. The studied outcrop shows a fossil fault plane formed ill soft flat lying sediments. The liquefaction and fluidification structures have been recognized in voleaniclastic layers deposited ill a lagoonal environment and are potentially related to seismic wave shaking and to successive dewatering along fractures. This strati-graphic record is explained by the progressive development of a seismic fault zone, related to the transtensional regime still active in the Gulf. The present analysis can he considered as an useful case study for the reconnaissance of the different types of structures formed during synsedimentary deformation in hydroplastic conditions.  相似文献   

13.
Recent reliable data are used to study the behavior of seismic activity before 46 strong shallow earthquakes (M ≥ 6.0), which correspond to five complete samples of mainshocks. These samples include 6 mainshocks (M = 6.0–7.1) that occurred in western Mediterranean since 1980, 17 mainshocks (M = 6.0–7.2) which occurred in the Aegean (Greece and surrounding area) since 1980, 5 mainshocks (M = 6.4–7.5) that occurred in Anatolia since 1980, 12 mainshocks (M = 6.0–7.3) that occurred in California since 1980 and 6 mainshocks (M = 7.0–8.3) that occurred in Japan since 1990. In all 46 cases, a similar precursory seismicity pattern is observed. Specifically, it is observed that accelerating Benioff strain (square root of seismic energy) release caused by preshocks occurs in a broad circular region (critical region), with a radius about eight times larger than the fault length of the mainshock, in agreement with results obtained by various research groups during the last two decades. However, in a much smaller circular region (seismogenic region), with a radius about four times the fault length, the corresponding preshock strain decelerates with the time to the mainshock. The time variation of the strain follows in both cases a power law but the exponent power is smaller than unit (m ¯ = 0.3) in the case of the accelerating preshock strain and larger than unit (m ¯ = 3.0) in the case of the decelerating preshock strain. Predictive properties of this “Decelerating In–Accelerating Out Strain” model are expressed by empirical relations. The possibility of using this model for intermediate-term earthquake prediction is discussed and the relative model uncertainties are estimated.  相似文献   

14.
Coseismic soft-sediment deformation has been studied by structural and tectononophysical methods in the Selenga Delta area shaken by the devastating M ~ 7.5 Tsagan earthquake in 1862. Among the documented deformation structures (seismites), clastic dikes are the most reliable paleoseismic indicators. The dikes have their sizes and extent showing proximity to the primary coseismic rupture zone and are closely associated with faults of different hierarchic levels. The Tsagan event occurred under SW–NE extension as motion on a stepped system of normal faults dipping at 300°–350°, ∠45°–75°.The amount of vertical motion measured against a reference layer in a trench reached 2.83 m, and the maximum dip displacement measured in a single fracture was 0.5 m. The earthquake was generated by the Delta Fault that dips at 60° on average to the northwest.The distribution of quantitative parameters of brittle and brittle-plastic deformation has been analyzed along two profiles, and two new parameters were introduced: indices of mean intensity (I) of clastic dikes and microdikes; the new parameters were calculated by specially developed equations. Summation of significant peaks in all parameters (SUMspp) allowed contouring the zone of most intense soft-sediment deformation near Dubinino Village.Deformation mostly propagated in the NE–SW and N–S directions. The location of the 1862 Tsagan earthquake at 52.35° N and 106.67° E was inferred from the SUMspp value taking into account the dip of the causative fault plane and the average origin depth of earthquakes in the Baikal rift. The approach we used is applicable to locating preinstrumental events.The recurrence of large earthquakes in the area of Proval Bay (Lake Baikal) has been estimated to be 1120–1230 years proceeding from alternating deformed and undeformed sediments in the sections, their thicknesses and deposition rates according to radiocarbon dating. The seismic activity has been associated with the same fault which can generate M ≥ 7 events.  相似文献   

15.
This study presents the results of both field and laboratory tests that have been undertaken to assess liquefaction susceptibilities of the soils in Kütahya city, located in the well-known seismically active fault zone. Liquefaction potentials of the sub-surface materials at Kütahya city were estimated by using the geological aspect and geotechnical methods such as SPT method of field testing. And, the data obtained have been mapped according to susceptibility and hazard. The susceptibility map indicated “liquefable” and “marginally liquefable” areas in alluvium, and “non-liquefable” areas in Neogene unit for the magnitude of earthquake of M=6.5; whereas, liquefaction hazard map produced by using of liquefaction potential index showed the severity categories from “very low” to “high.” However, a large area in the study area is prone to liquefy according to liquefaction susceptibility map; the large parts of the liquefable horizon are mapped as “low” class of severity by the use of the liquefaction potential index. It can be said that hazard mapping of liquefaction for a given site is crucial than producing liquefaction susceptibility map for estimating the severity. Both the susceptibility and hazard maps should be produced and correlated with each other for planning in an engineering point of view.  相似文献   

16.
The 1511 Western Slovenia earthquake (M = 6.9) is the largest event occurred so far in the region of the Alps–Dinarides junction. Though it strongly influences the regional seismic hazard assessment, the epicenter and mechanism are still under debate. The complexity of the active tectonics of the Alps–Dinarides junction is reflected by the presence of both compressional and transpressional deformations. This complexity is witnessed by the recent occurrence of three main earthquake sequences, the 1976 Friuli thrust faulting events, the 1998 Bovec–Krn Mountain and the 2004 Kobarid strike-slip events. The epicenters of the 1998 and 2004 strike-slip earthquakes (Ms = 5.7 and Ms = 4.9, respectively) lie only 50 km far from the 1976 thrust earthquake (Ms = 6.5).We use the available macroseismic data and recent active tectonics studies, to assess a possible epicenter and mechanism for the 1511 earthquake and causative fault. According with previous works reported in the literature, we analyze both a two-and a single-event case, defining several input fault models. We compute synthetic seismograms up to 1 Hz in an extended-source approximation, testing different rupture propagations and applying a uniform seismic moment distribution on the fault segments. We extract the maximum horizontal velocities from the synthetics and we convert them into intensities by means of an empirical relation. A rounded-to-integer misfit between observed and computed intensities is performed, considering both a minimized and a maximized databases, built to avoid the use of half-degree macroseismic intensity data points. Our results are consistent with a 6.9 magnitude single event rupturing 50 km of the Idrija right-lateral strike-slip fault with bilateral rupture propagation.  相似文献   

17.
Seismic potential of Southern Italy   总被引:1,自引:2,他引:1  
To improve estimates of the long-term average seismic potential of the slowly straining South Central Mediterranean plate boundary zone, we integrate constraints on tectonic style and deformation rates from geodetic and geologic data with the traditional constraints from seismicity catalogs. We express seismic potential (long-term average earthquake recurrence rates as a function of magnitude) in the form of truncated Gutenberg–Richter distributions for seven seismotectonic source zones. Seismic coupling seems to be large or even complete in most zones. An exception is the southern Tyrrhenian thrust zone, where most of the African–European convergence is accommodated. Here aseismic deformation is estimated to range from at least 25% along the western part to almost 100% aseismic slip around the Aeolian Islands. Even so, seismic potential of this zone has previously been significantly underestimated, due to the low levels of recorded past seismicity. By contrast, the series of 19 M6–7 earthquakes that hit Calabria in the 18th and 19th century released tectonic strain rates accumulated over time spans up to several times the catalog duration, and seismic potential is revised downward. The southern Tyrrhenian thrust zone and the extensional Calabrian faults, as well as the northeastern Sicilian transtensional zone between them (which includes the Messina Straits, where a destructive M7 event occurred in 1908), all have a similar seismic potential with minimum recurrence times of M ≥ 6.5 of 150–220 years. This potential is lower than that of the Southern Apennines (M ≥ 6.5 recurring every 60 to 140 years), but higher than that of southeastern Sicily (minimum M ≥ 6.5 recurrence times of 400 years). The high seismicity levels recorded in southeastern Sicily indicate some clustering and are most compatible with a tectonic scenario where the Ionian deforms internally, and motions at the Calabrian Trench are small. The estimated seismic potential for the Calabrian Trench and Central and Western Sicily are the lowest (minimum M ≥ 6.5 recurrence times of 550–800 years). Most zones are probably capable of generating earthquakes up to magnitudes 7–7.5, with the exception of Central and Western Sicily where maximum events sizes most likely do not exceed 7.  相似文献   

18.
Analysis of three first-order leveling lines that traverse the White Wolf fault (site of the 1952 M = 7.7 earthquake), each resurveyed nine times between 1926 and 1974, reveals probable preseismic tilting, major coseismic movements, and a spatial association between these movements and the subsequently recognized southern California uplift. In examining the vertical control record, we have both searched for evidence of systematic errors and excluded from consideration portions of the lines contaminated by subsurface fluid and gas extraction. Movements have been referred to an invariant datum based on the 1926 position of tidal BM 8 in San Pedro, corrected for subsequent eustatic sea-level change.An 8 μrad up-to-the-north preseismic tilt (6 cm/7.5 km) was apparently recorded on two adjacent line segments within 10 km of the 1952 epicenter between 1942 and 1947. It is possible, however, that this tilt was in part caused by extraction-induced subsidence at one of the six releveled benchmarks. Data also show evidence of episodic tilts that are not earthquake related. At the junction of the Garlock and San Andreas faults, for example, an ≥5 μrad up-to-the-north tilt (7.2 cm/≤16 km) took place between Lebec and Grapevine within three months during 1964.Comparison of the 1947 and 1953 surveys, which includes the coseismic interval, shows that the SW-fault end (nearest the epicenter) and the central fault reach sustained four times the uplift recorded at the NE end of the fault (+72 cm SW, +53 cm Central, +16 cm NE). A regional postseismic uplift of 4 cm extended ≥25 km to either side of the fault after the main event, from 1953 to 1956. An interval of relative quiescence followed at least through 1959, in which the elevation change did not exceed ±3 cm.The detailed pattern of aseismic uplift demonstrates that movement proceeded in space—time pulses: one half of the uplift at the SW-fault end and extending southward occurred between 1959 and 1961, one half of the uplift at the NE-fault end and extending eastward occurred between 1961 and 1965, while the central fault reach sustained successive pulses of subsidence, uplift, and collapse (−4 cm, 1953–1960; +7 cm, 1960–1965; −2 cm, 1965–1970). In addition, the number of aftershocks concentrated near the fault ends increased in the NE relative to the SW from 1952 to 1974. These observations suggest that the aseismic uplift may have migrated northeastward from 1959 to 1965 at an approximate rate of 7–16 km/yr.Evidence for a mechanical coupling between the earthquake and the subsequent aseismic uplift is equivocal. At both fault ends, the major NWbounding flexure or tilted front of the southern California uplift is spatially coincident with the coseismic flexure that preceded it. In addition, the postulated migration of vertical deformation is similar to the 1952 seismic event in which the rupture initiated at the SW end of the fault and then propagated to the NE-fault end. However, the spatial distribution of aseismic uplift, nearly identical at both fault ends and to the south and east, and near zero in the central fault reach, is distinctly different from the nonuniform and localized coseismic deformation.  相似文献   

19.
The record of historic earthquakes in lake sediments of Central Switzerland   总被引:1,自引:0,他引:1  
Deformation structures in lake sediments in Central Switzerland can be attributed to strong historic earthquakes. The type and spatial distribution of the deformation structures reflect the historically documented macroseismic intensities thus providing a useful calibration tool for paleoseismic investigations in prehistoric lake sediments.The Swiss historical earthquake catalogue shows four moderate to strong earthquakes with moment magnitudes of Mw=5.7 to Mw=6.9 and epicentral intensities of I0=VII to I0=IX that affected the area of Central Switzerland during the last 1000 years. These are the 1964 Alpnach, 1774 Altdorf, 1601 Unterwalden, and 1356 Basel earthquakes. In order to understand the effect of these earthquakes on lacustrine sediments, four lakes in Central Switzerland (Sarner See, Lungerer See, Baldegger See, and Seelisberg Seeli) were investigated using high-resolution seismic data and sediment cores. The sediments consist of organic- and carbonate-rich clayey to sandy silts that display fine bedding on the centimeter to millimeter scale. The sediments are dated by historic climate and environmental records, 137Cs activity, and radiocarbon ages. Deformation structures occur within distinct zones and include large-scale slumps and rockfalls, as well as small-scale features like disturbed and contorted lamination and liquefaction structures. These deformations are attributed to three of the abovementioned earthquakes. The spatial distribution of deformation structures in the different lakes clearly reflects the historical macroseismic dataset: Lake sediments are only affected if they are situated within an area that underwent groundshaking not smaller than intensity VI to VII. We estimate earthquake size by relating the epicentral distance of the farthest liquefaction structure to earthquake magnitude. This relationship is in agreement with earthquake size estimations based on the historical dataset.  相似文献   

20.
Integration of 11 types of data sets enabled us to determine the location, character and fault history of the southern extension of the Clarendon–Linden Fault System (CLF) in southwestern New York State. The data sets utilized include detailed stratigraphic and fracture measurements at more than 1000 sites, soil gas anomalies, seismic reflection profiles, well logs and lineaments on air photos, topographic maps, Landsat and SLAR images. The seismically active CLF consists of as many as 10 parallel, segmented faults across the fault system. The fault segments are truncated by NW-striking cross-strike discontinuities (CSDs). The faults of the CLF and intersecting CSDs form fault blocks that have semi-independent subsidence and uplift histories. East-dipping reflectors in the Precambrian basement indicate the southward continuation of thrusts of the intra-Grenvillian Elzevir–Frontenac Boundary Zone. These thrusts were reactivated during Iapetan rifting as normal (listric) growth faults. In Ordovician Black River to Trenton time, the southern CLF segments experienced a second phase of growth fault activity, with faults displaying a cumulative stratigraphic throw of as much as 170 m. Thrusting on the same east-dipping Precambrian reflectors typified the CLF in Taconic (post-Trenton) times. Detailed comparisons among the fault segments show that the fault activity in Silurian and Devonian times generally alternated between the western and central main faults. In Late Devonian time, the fault motion reversed from down-on-the-east to down-on-the-west about the time the Appalachian Basin axis passed across the CLF in its westward migration. The deep Precambrian faults of the CLF were thus reactivated as the Appalachian Basin developed in Acadian times. Finally, the CLF thrust fault imaged on seismic line CLF-1 offsets all bedrock (Devonian) units; thus, significant motion occurred along this fault during Late Acadian, or more likely, Alleghanian time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号