首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Terrestrialheatflowdensityistheamountofheatperunitareatransferringfromtheearthinteriortosurface,whichisanexteriorcharacteristicofthethermalandgeodynamicprocessesoccurringindeepmantle[1].Heatflow,asthemostdirectmannerofthermalprocessindeepearthandembodyingabundantinformationofgeology,geophysicsandgeodynamics,isasyntheticallythermalindexandplaysaveryimportantroleinstudyingnotonlytheactivityofcrust,thermalstructureofcrustanduppermantle,aswellasrheologicalstructureoflithosphere,butalsotheevaluation…  相似文献   

2.
Heat flow in the Sohm abyssal plain is measured to be 53 mW/m2 at an age of 163 Ma. This is 25% higher than predicted by conductive cooling models, even though the sediment-corrected basement depth of 6.5 km at this location is normal for its age. An analysis of existing heat flow, depth and geoid anomalies in the northwest Atlantic shows that there is little correlation between heat flow and depth throughout the entire region. Depth and geoid are clearly related to the Bermuda swell while the associated heat flow anomaly, once adjusted for variations with age, is limited to 5 mW/m2 and only decays to the south. This means that the Bermuda swell is probably not caused by extensive thermal reheating within the lithosphere, but instead by dynamic uplift at its lower boundary due to the convective upwelling of a mantle plume. The regionally high heat flow in the northwest Atlantic may be a thermal remanent of previous plumes which passed beneath this region early in its history. Therefore, depth and heat flow anomalies from this region cannot be used to provide constraints on steady-state parameters of the lithosphere, such as the presence or absence of a long-term boundary layer at its base.  相似文献   

3.
Heat flow values were calculated from direct measurements of temperature and thermal conductivity at thirteen sites in the Arkansas-Missouri Ozark Plateau region. These thirteen values are augmented by 101 estimates of heat flow, based on thermal conductivity measurements and temperature gradients extrapolated from bottom-hole temperatures. The regional heat flow profile ranges from 9 mW m−2 to over 80 mW m−2, but at least two distinct thermal regimes have been identified. Seven new heat flow determinations are combined with three previously published values for the St. Francois Mountains (SFM), a Precambrian exposure of granitic and rhyolitic basement rocks, average 47 mW m−2. Radioactive heat production of 76 samples of the exposed rocks in the SFM averages 2.4 μW m−2 and a typical continental basement contribution of 14 mW m−2 is implied. Conversely, the sedimentary rock sequence of the plateau is characterized by an anomalously low heat flow, averaging approximately 27 mW m−2. Groundwater transmissivity values that are based on data from 153 wells in deep regional aquifers demonstrate an inverse relationship to the observed heat flow patterns. The areas of high transmissivity that correspond to areas of low total heat flux suggest that the non-conservative vertical heat flow within the Ozark sedimentary sequence can be attributed to the effects of groundwater flow.  相似文献   

4.
Results of heat flow studies made in different parts of India including Kolar Gold Field, Cuddapah basin, Singhbhum thrust zone, Aravalli mountain system of Precambrian age, Godavary valley of Mesozoic age and Cambay basin of Cenozoic age are discussed. Heat flow has been found to be low in the southern part of the Preambrian shield. Relatively higher values have been obtained along the northeastern (Singhbhum) and the northwestern parts of the shield (Aravallies). High heat flow has been found along the southeastern part of the Godavary valley and the Cambay basin. The correlation of heat flow with geology and tectonic history in the respective areas is discussed.  相似文献   

5.
华北平原区地温梯度与基底构造形态的关系   总被引:8,自引:0,他引:8       下载免费PDF全文
本文根据部分实测温度资料和有限单元法的数值模拟计算结果,研究了华北平原区地温梯度和地表热流值与基底构造形态的关系,分析了盖层相对厚度、基岩侧界面倾角以及不同岩石热导率比值对地温梯度和地表热流分布图式的影响,并讨论了地壳浅部热流的折射和再分配问题。在此基础上,提出了华北平原区地温梯度和热流值基底构造形态的相关直线校正法,即根据不同构造部位上钻孔的实测地温梯度和盖层相对厚度的相关直线推算区域平均地温梯度和具代表性区域热流值的方法。  相似文献   

6.
准噶尔盆地热流及地温场特征   总被引:26,自引:5,他引:21  
利用准噶尔盆地 1 96口井的温度资料及 90块岩石样品热导率的测定 ,计算了 35个大地热流数据 ,编制了盆地不同深度现今地温等值线图 .研究结果表明 ,准噶尔盆地现今为低地温、低大地热流的冷盆 ,盆地的现今地温梯度平均为 2 1 2℃ /km ,大地热流密度平均为42 3mW/m2 .热流的分布表现为隆起高、坳陷低的特征 .影响地温场的主要因素包括盆地的深部结构、盆地演化、盆地基底构造形态、地下水活动和沉积层的放射性生热等 .  相似文献   

7.
We have obtained a suite of 42 closely spaced, acoustically navigated, heat flow measurements on well-sedimented crust of anomaly M0 age (109 Ma) in the northwest Atlantic Ocean (25°N, 68°W; 950 km south of Bermuda). The mean and standard deviation of the values obtained are 1.13 HFU (μcal/cm2 s) (47.3 mW/m2) and 0.05 HFU (2.1 mW/m2), respectively. Some of the variability is accounted for by refractive effects of the basement topography. Drill core data and our modelling suggest that the thermal conductivity contrast between sediments and basement rocks in this region is less than a factor of 1.6. The mean heat flow is close to the 1.1 HFU (46 mW/m2) predicted by both the plate and boundary layer cooling models of the oceanic lithosphere. This is the first detailed comparison with theoretical cooling models on old Atlantic Ocean crust. Since the difference in surface heat flow (0.15 HFU) predicted by the two cooling models for the oldest observed oceanic lithosphere (180 Ma) is also not much larger than the range of uncertainty in our observations, discrimination between the two models on the basis of surface heat flow data alone may prove difficult.  相似文献   

8.
Thermal gradients have been calculated and heat flow estimates made for 34 petroleum exploration wells along four regional profiles crossing the Mesozoic-Cenozoic Beaufort-Mackenzie Basin of northern Canada. The geothermal gradients vary from 22 mKm–1 to 44 mKm–1. Four sets of possible thermal conductivity values were used to calculate a range of heat flow values for each well. Generally low heat flow is observed in wells within the deeper portions of the basin and higher heat flow values occur in wells along the Aklavik Arch Complex which forms the southeastern margin of the basin.The contribution to heat flow by heat generation below the Mesozoic-Cenozoic basin fill sediments has been considered. The heat flow contribution from sub-Mesozoic sedimentary strata and underlying basement is highest along the basin-bounding Aklavik Arch Complex. The decrease in heat flow from below the basin fill sediments toward the basin depocenter may be related to basinward crustal thinning and corresponding reductions in intra-crustal radiogenic heat production.  相似文献   

9.
Heat flow values of 33–58 mW m–2 were found for the Transylvanian Depression, 45–57 mW m–2 for the crystalline nucleus of the Eastern Carpathians, and 70–120 mW m–2 for the Neogene volcanic area. Temperature-depth profile and some geophysical implications of the low values for the Transylvanian Depression are discussed, rendering evident clear-cut differences between this tectonic unit and other Noegene depressions. The heat flow values for the other two investigated tectonic units are usual ones for areas of their age.A preliminary map of the heat flow distribution over the Romanian territory is presented and its relation to other geophysical fields is discussed. A positive correlation was found between gravity and heat flow, and a negative one between crustal thickness and heat flow. A general conclusion could be drawn that the heat flow distribution over the Romanian territory seems to be governed by processes taking place in the upper mantle, rather than by the radioactive decay within the crust.  相似文献   

10.
青海柴达木盆地大地热流测量与统计热流计算   总被引:18,自引:4,他引:14       下载免费PDF全文
1991年6-8月对青海柴达木盆地21个石油勘探孔进行了钻孔温度测量,其中8个用于热流计算;从油田已有的测温资料中选取了14个孔用作热流研究.为解决线性温度段与采样段的不匹配,对176块岩样的实测热导率与岩样的埋藏深度及地层年代之间的相关性进行了系统分析,求出热流计算段的加权平均热导率,共获得22个热流值,其变化范围32-75mW/m,平均约53mW/m.为阐明全盆地热流分布趋势,采用网格化方法计算统计热流.实测和统计热流一致表明,柴达木盆地热流值呈西高东低的分布特征.  相似文献   

11.
We present the results of twenty heat flow stations in the Gulf of Oman which are used to infer the first reliable age estimates for the basin. A mean surface heat flux of 42.6±3.6 mW m?2 exhibits no significant regional variation. After correction for thick and rapidly deposited sediments this yields an age of 70 to 100 Ma according to oceanic thermal models. This age is also consistent with the sediment corrected basement depths of 5.5–6.0 km and with formation during the Cretaceous quiet zone. The latter can explain the absence of magnetic sea-floor spreading lineations. Heat flow measurements are also used to confirm the presence of gas hyrdate layers. The measured thermal gradient yields a depth for the solid to free gas phase transition which is the same as that deduced from “bright spots” seen on seismic reflection profiles.  相似文献   

12.
准噶尔盆地大地热流特征与岩石圈热结构   总被引:15,自引:6,他引:9       下载免费PDF全文
沉积盆地现今大地热流和岩石圈热结构特征是岩石圈构造-热演化过程的综合反映和盆地热史恢复的约束条件,对盆地动力学研究和油气资源评价具有重要意义.作者系统分析了准噶尔盆地2000年以来新增的102口钻孔的系统测井温度和400余口钻孔的试油温度资料,采用光学扫描法测试了15口钻孔共187块代表性岩石热导率,首次建立了准噶尔盆地岩石热导率柱,新增了11个高质量的(A类)大地热流数据,分析了准噶尔盆地大地热流分布特征,并揭示了其岩石圈热结构.研究表明,准噶尔盆地现今地温梯度介于 11.6~27.6℃/km,平均21.3±3.7℃/km,大地热流介于23.4~56.1 mW/m2,平均42.5±7.4 mW/m2,表现为低地温梯度、低大地热流的"冷"盆特征.准噶尔盆地大地热流与地温梯度分布规律基本一致,主要受控于基底的构造形态,东部隆起最高,陆梁隆起次之,乌伦古坳陷、中央坳陷和西部隆起较低,北天山山前坳陷最低.准噶尔盆地地壳热流介于18.8~26.0 mW/m2,地幔热流介于16.5~23.7 mW/m2,壳幔热流比值介于0.79~1.58,属于典型的"冷壳冷幔"型热结构.准噶尔盆地地幔热流值与莫霍面起伏一致,隆起区地幔热流高,坳陷区地幔热流低.  相似文献   

13.
A global heat flow map has been derived from existing observations supplemented in areas without data by an empirical predictor based on tectonic setting and age. In continental areas the predictor is based on the observed correlation of heat flow with age of last tectono-thermal event, and in oceanic regions on the observed relation of heat flow to age of ocean floor. The predictor was used to assign mean heat flow values to 5° × 5° grid areas on the globe, weighted according to the relative area of tectonic provinces represented. A spherical harmonic analysis to degree 12 of the heat flow field yields a mean value of 59 mW m?2, a rms residual of 13 mW m?2, and an amplitude spectrum which decreases gradually and almost monotonically fromn = 1. The spherical harmonic representation of the heat flow field is free of the unreal distortions which have characterized earlier analyses based on a geographically sparse data set. Areas with residuals greater than 15 mW m?2 comprise less than 19% of the area of the globe, thus indicating that most heat flow provinces have characteristic dimensions adequately represented in a 12-degree analysis.  相似文献   

14.
Calculations based on simple models of overthrust sheets in crystalline basement rocks show that significant thermal effects may result from their movements. If rates are sufficiently high (e.g. plate tectonic rates), the thrust sheets sufficiently thick (5, 10 and 15 km are modelled here), the distances moved sufficiently large, and for reasonable values of the coefficient of friction along the thrust plane overthrusting can cause metamorphic mineral zonations and heat flow anomalies observable in the field. Regions where large-scale overthrusting has occurred should be characterized by a decrease with depth of grade of metamorphic mineral assemblages and anomalously low heat flow. The theoretical effects are presented as a series of maximum temperature vs. depth and heat flow vs. time plots.  相似文献   

15.
Geotemperature and heat flow patterns in a large-scale Meso-Cenozoic basin such as the North China Basin are strongly affected by the relief of the basement, and controlled by the contrast of thermal conductivity between basement rock and sedimentary cover. Usually, heat flow observed at the surface of a basement uplift is greater than that of a basement depression. Calculation revealed, that the ratio of the former and the latter is determined by the uplifted height (H) of the bed-rock roof of the basement and the thickness (h) of the sedimentary cover. The relief of the basement also disturbs the geotemperature and, hence, the heat flow patterns at shallow depth. Consequently, the more or less “uniform” one dimensional heat flow from the deep interior of the Earth becomes two dimensional at shallow depth with great lateral and vertical variations. The extent of the disturbed zone is also controlled by the contrast of the thermal conductivity between basement rock and sedimentary cover as well as the uplifted heigh (H) of the bed-rock roof of the basement. Numerical computation demonstrated that the disturbed depth (Ze) is usually about 3–6 times of the uplifted height (H) of a basement uplift.  相似文献   

16.
A comprehensive reinterpretation of the available gravity, magnetic, geothermal, geological and borehole information has been made of the Laguna Salada Basin to establish a 3D model of the basement and sedimentary infill. According to statistical spectral analysis, the residual gravity anomaly is due to sources with a mean regional depth of 2.8 km. The topography of the basement was obtained from a three‐dimensional inversion carried out in the wavenumber domain using an iterative scheme. The maximum density contrast of ?300 kg/m3 estimated from previous studies and the mean depth of 2.5 km finally constrained this inversion. The resulting model indicated that the sedimentary infill is up to 4.2 km thick at its deepest point. According to the gravity‐derived basement topography, the basin presents an asymmetry (i.e. it is of the half‐graben type). It is deeper to the east, where it is delimited from the Sierra Cucapah by a step fault. By contrast, the limit with the Sierra de Juarez is a gently sloping fault (i.e. a listric fault). The basement is not even, but it comprises a series of structural highs and lows. N–S to NW–SE and E–W to NE–SW faults delimit these structural units. The magnetic modelling was constrained by (i) the gravity‐derived basement topography; (ii) a Curie isotherm assumed to be between 7 km and 10 km; (iii) assuming induced magnetization only; (iv) the available geological and borehole information. The magnetic anomalies were interpreted successfully using the gravity‐derived basement/sedimentary interface as the top of the magnetic bodies (i.e. the magnetic modelling supports the gravity basement topography). An elongated N–S to NW–SE trending highly magnetized body running from south to north along the basin is observed to the west of the basin. This magnetic anomaly has no gravity signature. Such a feature can be interpreted as an intrusive body emplaced along a fault running through the Laguna Salada Basin. Treatment of the gravity and magnetic information (and of their horizontal gradients) with satellite image processing techniques highlighted lineaments on the basement gravity topography correlating with mapped faults. Based on all this information, we derived detailed geological models along four selected profiles to simulate numerically the heat and fluid flow in the basin. We used a finite‐difference scheme to solve the coupled Darcy and Fourier differential equations. According to our results, we have fluid flow in the sedimentary layers and a redistribution of heat flow from the basin axis toward its rims (Sierra de Juárez and Sierra Cucapah). Our model temperatures agree within an error of 4% with the observed temperature profiles measured at boreholes. Our heat‐flow determinations agree within an error of ±15% with extrapolated observations. The numerical and chemical analyses support the hypothesis of fluid circulation between the clay–lutite layer and the fractured granitic basement. Thermal modelling shows low heat‐flow values along the Laguna Salada Basin. Deep fluid circulation patterns were observed that redistribute such flow at depth. Two patterns were distinguished. One displays the heat flow increasing from the basin axis towards its borders (temperature increase of 20°C). The second pattern shows an increasing heat flow from south to north of the basin. Such behaviour is confirmed by the temperature measurements in the thermometric boreholes.  相似文献   

17.
四川盆地钻孔温度测量及现今地热特征   总被引:19,自引:11,他引:8       下载免费PDF全文
基于四川盆地9口钻孔的稳态测温资料和297块岩石样品的热导率数据,报道了9个高质量的大地热流数据,提出了沉积地层岩石热导率系列柱.结合前人的数据资料,绘制了地温梯度和大地热流等值线图.四川盆地沉积地层的岩石热导率变化主要由岩性控制,与现今埋藏深度没有明显的相关性.盆地的地温梯度为17.7~33.3℃/km,平均值为22...  相似文献   

18.
渤海湾盆地新生代以来构造-热演化模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
渤海湾盆地是华北最大的新生代裂谷盆地,具有最完整的新生代地层记录,是研究盆地演化的理想区域.本文基于二维多期拉张模型,对渤海湾盆地内9条地震解释剖面进行新生代构造-热演化模拟,以揭示盆地拉张强度及热演化的时空差异性,为探讨盆地演化的地球动力学机制提供依据.研究结果表明:渤海湾盆地各坳陷新生代期间的总拉张系数为1.28~2.39,渤中坳陷和辽东湾坳陷的总拉张系数最大,而辽河坳陷和临清坳陷的拉张系数最小.盆地基底热流在古近纪中、晚期达到峰值71~100mW·m-2,之后逐渐降低至现今.盆地西部热流峰期出现的时间早于东部.由盆地拉张系数和基底热流的研究结果得出,渤海湾盆地新生代的拉张有着自西向东,自南向北的迁移,与沉积、沉降中心的迁移方向一致.太平洋板片新生代期间的幕式向东后撤可能是造成渤海湾盆地幕式拉张及拉张中心向东迁移的主要动力学机制.  相似文献   

19.
辽河裂谷盆地地幔热流   总被引:12,自引:5,他引:12  
辽河盆地是一个在前中生代基底上发展起来的裂谷盆地,实测大地热流平均值为65mW/m2,变动于44-83mW/m2之间。在给出地壳结构模型并确定各岩层放射性生热率的基础上,采用“剥层”法从地表开始,自上而下,由浅及深地扣除各岩层所提供的热量,从而得出地幔热流值。结果表明,辽河裂谷盆地地幔热流为41mW/m2,占整个地表总热流量的63%。可见,本区热量大部分来自地幔。与世界上其它地质构造单元相比,辽河裂谷盆地无论地幔热流绝对值或其与地表热流之比值,都具有介于稳定地区和构造活动区之间的特点。作者认为,辽河裂谷盆地地幔热流的上述特点,乃是中、新生代以来本区长期地质历史发展的产物。  相似文献   

20.
The approximate equality of heat flows on the land and the ocean; high heat flow values on the middle oceanic ridges; a relationship of heat flow with age of tectogenesis; the extremely low heat flow values are considered as main evidence for any theoretical explanation. The deviation of surface heat flow from its equilibrium value is considered. Computing analysis of high temperature heat transfer coefficients is given. Some aspects of numerical techniques of the thermal history of the Earth are discussed. The influence of sudden and gradual formation of the Earth Crust on the surface heat flow is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号