首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active volcanoes occur in at least two fundamentally different tectonic settings. Taphrogenic volcanoes are aligned along the mid-ocean fracture system which is characterized by a broad ridge of rugged relief, «tensional» horizontal stress components perpendicular to the ridge, shallow earthquakes in a zone vertically beneath the ridge crest, thin to normal occanic crust and low to normal seismic velocities in the uppermost mantle, positive free-air gravity anomalies, and high heat flow. Orogenic volcanoes are aligned along the mobile Pacific rim and Indonesian archipelago which are characterized by double or single arcuate ridges with a deep oceanic trench on the convex side, compressional horizontal stress components perpendicular to the arcs, shallow to deep earthquakes in a zone dipping from the trench to beneath the volcanoes and beyond, transitional crustal thicknesses and seismic velocities, parallel belts of negative and positive free-air gravity anomalies from the trench to the volcanic arc, and low heat flow from the trench. The diverse nature of most geophysical lineaments associated with volcanism suggests that magma generation is independent of these phenomena. The remaining correlation of shallow earthquakes with taphrogenic volcanocs and intermediate depth earthquakes with orogenic volcanoes suggests that active fracture systems reaching these depths can tap latent magma sources. Seismic evidence for a low velocity layer beginning 100 km beneath continents and 60 km beneath oceans gives independent support to this hypothesis.  相似文献   

2.
Ridge subduction and porphyry copper-gold mineralization:An overview   总被引:35,自引:0,他引:35  
Many large porphyry Cu-Au deposits are connected to adakitic rocks known to be closely associated with ridge subduction. For example, there are several subducting ridges along the east Pacific margin, e.g., in Chile, Peru, and South America, most of which are associated with large porphyry Cu-Au deposits. In contrast, there are much fewer ridge subductions on the west Pacific margin and porphyry Cu-Au deposits are much less there, both in terms of tonnage and the number of deposits. Given that Cu and Au are...  相似文献   

3.
The belt boundary thrust within the Cretaceous–Neogene accretionary complex of the Shimanto Belt, southwestern Japan, extends for more than ~ 1 000 km along the Japanese islands. A common understanding of the origin of the thrust is that it is an out of sequence thrust as a result of continuous accretion since the late Cretaceous and there is a kinematic reason for its maintaining a critically tapered wedge. The timing of the accretion gap and thrusting, however, coincides with the collision of the Paleocene–early Eocene Izanagi–Pacific spreading ridges with the trench along the western Pacific margin, which has been recently re‐hypothesized as younger than the previous assumption with respect to the Kula‐Pacific ridge subduction during the late Cretaceous. The ridge subduction hypothesis provides a consistent explanation for the cessation of magmatic activity along the continental margin and the presence of an unconformity in the forearc basin. This is not only the case in southwestern Japan, but also along the more northern Asian margin in Hokkaido, Sakhalin, and Sikhote‐Alin. This Paleocene–early Eocene ridge subduction hypothesis is also consistent with recently acquired tomographic images beneath the Asian continent. The timing of the Izanagi–Pacific ridge subduction along the western Pacific margin allows for a revision of the classic hypothesis of a great reorganization of the Pacific Plate motion between ~ 47 Ma and 42 Ma, illustrated by the bend in the Hawaii–Emperor chain, because of the change in subduction torque balance and the Oligocene–Miocene back arc spreading after the ridge subduction in the western Pacific margin.  相似文献   

4.
Between 67 and ~40 Ma ago a northwest-southeast-trending fracture system over 8000 km long split the Pacific plate and accumulated at least 1700 km of dextral offset between the east and west portions. This system, here named the Emperor fracture zone (EFZ) system, consisted of several segments, one along the present trace of the Emperor trough and another along the Line Islands, joined by short spreading ridges. The EFZ terminated at its northern end against the Kula-Pacific ridge, and at its southern end in a ridge-transform system, called the Emperor spreading system, which extended to the west, north of Australia.The finite angular velocity vector describing the relative motion between the East and West Pacific plates is ~0.6°/Ma about a pole at 36°N, 70°W. This vector, added to the known Early Tertiary motion of the Pacific plate with respect to the global hotspot reference frame, accounts in large part for the NNW trend of the Emperor seamount chain relative to the WNW Hawaiian trend, without violation of the integrity of the Antarctic plate. The Meiji-Emperor and Emperor-Hawaiian bends date, respectively, the initiation (~67 Ma ago) and cessation (~40 Ma ago) of seafloor spreading on the Emperor spreading system.The postulated Early Tertiary relative motion along the EFZ between the East and West Pacific plates explains (1) the present misalignment of the two sets of magnetic bights of the Pacific, (2) the abrupt truncation of eastern Pacific bathymetric lineaments against the Emperor trough and Line Islands, (3) the contrast in paleolatitude between the eastern and western Pacific as indicated by paleomagnetic and sedimentologic studies, and (4) the anomalous gravity signature of the central Hawaiian ridge that indicates that the ridge loaded thin hot lithosphere.  相似文献   

5.
A migration model of magmatism based on the granite ages in Southwest Japan is proposed to explain the ridge subduction beneath the Eurasia continent as the cause of the along-arc and across-arc youngings of the granite ages and the very high activity of the magmatism in the Cretaceous. For the construction of the magmatic model, the localities of the granite age samples are denoted by the cartesian coordinates X and Y, which are measured along and normal to the Median Tectonic Line (MTL), respectively, and their ages are set corresponding to the coordinate Z vertical to the X–Y plane. The age trend is then formulated by a regression plane of Z on X and Y, which inclines in both directions along and normal to the MTL, and approximates the ages with the very high multiple correlation coefficient 0.91. Evaluating the magmatic trend by such a method, various characteristics of the activities can be taken easily; for example, the isochronous line of the magmatism, which is an intersection of the regression plane and an arbitrary horizontal plane, is found to extend landward obliquely across the continental margin. The migrating rate of the isochronous line along the MTL is also taken to be 2.8 cm/year as a reciprocal of the inclination of the along-arc younging. The isochronous line is speculated to be the out-cropped manifestation of the subcrustal linear heat source. Such a migrating linear heat source is probably due to the subduction of an active ridge, the Kula (or Izanagi)–Pacific ridge in the Cretaceous. The migration model of magmatism harmonizes very well with the plates and the ridge motions in the East Asia area during the late Mesozoic. The ridge subduction is one of the important phenomena that explain the unusually active arc magmatism and the migrating slab window; it is important to grasp dynamically the geological messages issued from the system.  相似文献   

6.
Models of spreading ocean ridges are derived by Bayesian gravity inversion with geophysical and geodynamic a priori information. The aim is to investigate the influence of spreading rate, plate dynamics and tectonic framework on crust and upper mantle structure by comparing the Mid Atlantic Ridge (MAR), the Indian Ocean Ridge (IND) and the East Pacific Rise (PAC). They differ in mean spreading rate, dynamic settings, as attached slabs, and plume interaction. Topography or bathymetry, gravity, isostasy, seismology and geology, etc. are averaged along the ridges and guide the construction of initial 2D models, including features as mean plumes, i.e. averaged along the ridge. This is a gross simplification, and the results are considered preliminary.Three model types are tested: (a) the temperature anomaly; (b) asthenospheric rise into thickening lithosphere; (c) a crustal root as had been anticipated before seafloor spreading was discovered. Additional model components are a mean plume, a non-compensated ridge uplift, an under-compensated asthenospheric rise, e.g. of partially molten material, and seismic velocity models for P and S waves. Model type (c), tends to permute to model type (b) from thick crust to thin axial lithosphere. Model type (a) renders ‘realistic’ values of the thermal expansivity, but is insufficient to fit the gravity data; partial melt may disturb the simple temperature effect. A combination of (a) and (b) is most adequate. Exclusive seismic velocity models of S or P waves do not lead to acceptable densities nor to adequate gravity fitting. The different ridges exhibit significant differences in the best models: ATL and IND show an axial mass excess fostering enhanced ridge push, and ATL, in addition, suggests a mean plume input, while PAC shows an axial mass deficit reducing ridge push, most probably due to dominance of slab pull in the force balance.Goodness of the gravity fit alone is no justifiable criterion for goodness of model, indeed minor modifications to each model within the uncertainties of the assumptions can make the fit arbitrarily good. Goodness of model is quantified exclusively by a priori information.  相似文献   

7.
Lower mantle heterogeneity could cause deviations from axial symmetry in geodynamo properties. Global tomography models are commonly used to infer the pattern of core–mantle boundary heat flux via a linear relation that corresponds to a purely thermal interpretation of lower mantle seismic anomalies, ignoring both non-thermal origins and non-resolved small scales. Here we study the possible impact on the geodynamo of narrow thermal anomalies in the base of the mantle, originating from either compositional heterogeneity or sharp margins of large-scale features. A heat flux boundary condition composed of a large-scale pattern and narrow ridges separating the large-scale positive and negative features is imposed on numerical dynamos. We find that hot ridges located to the west of a positive large-scale core–mantle boundary heat flux anomaly produce a time-average narrow elongated upwelling, a flow barrier at the top of the core and intensified low-latitudes magnetic flux patches. When the ridge is located to the east of a positive core–mantle boundary heat flux anomaly, the associated upwelling is weaker and the homogeneous dynamo westward drift leaks, precluding persistent intense low-latitudes magnetic flux patches. These signatures of the core–mantle boundary heat flux ridge are evident in the north–south component of the thermal wind balance. Based on the pattern of lower mantle seismic tomography (Masters et al., 2000), we hypothesize that hot narrow thermal ridges below central Asia and the Indian Ocean and below the American Pacific coast produce time-average fluid upwelling and a barrier for azimuthal flow at the top of the core. East of these ridges, below east Asia and Oceania and below the Americas, time-average intense geomagnetic flux patches are expected.  相似文献   

8.
Active oceanic ridges are part of the global system of diverging plate boundaries encircling the Earth. They represent weak zones of the lithosphere. They are isostatically equilibrated. The system as a whole is considered to be well adapted to the present field of plate driving forces. The search for regularities in the pattern of active oceanic ridges may, therefore, provide valuable information as to the large-scale characteristics of structures and processes in the Earth’s mantle. Two large belts of active oceanic ridges are envisaged: (1) The semi-circular belt bordering the Pacific plate which extends from South of Tasmania to Northwest of Vancouver Island over a length of 20,000 km. It appears to encircle a center P1 in the central Pacific region. (2) The circum-African belt bordering the African plate which extends from the Azores to the Gulf of Aden over a length of 24,000 km. It appears to encircle a center A1 in central Africa. The attempt is made to determine the position of these centers. Extent and position of the ridge systems are described by 34 fixed points. Points R01–R20 mark the circum-African ridge system, points R21-R34 the Pacific ridge system. A least-squares adjustment is used to determine the optimum position of the centers P1 and A1. Center P1 of the Pacific ridge system is located at 169.8°W/2.6°S. Center A1 of the circum-African ridge system is located at 11.6°E/2.4°N. The location error of the centers is less than 2.8°. In view of the great extent of the ridge systems, and considering the fact that the location of P1 and A1 is based on independent data sets, the nearly antipodal and equatorial position of the centers is remarkable. The newly defined centers P1 and A1 are located close to the Pacific pole P, at 170°W/0°N, and the African pole A, at 10°E/0°N. Within the limits of error the center P1 coincides with pole P, the center A1 with pole A. Originally, these poles were introduced in order to describe a fundamental hemispherical symmetry which is apparent in the evolution of the Earth’s lithosphere during the last 180 Ma. The new results confirm the unique position of poles P and A in the global tectonic framework.  相似文献   

9.
On patterned peatlands, open water pools develop within a matrix of terrestrial vegetation (‘ridges’). Regional patterns in the distribution of ridge–pool complexes suggest that the relative cover of these two surface types is controlled in part by climate wetness, but landscape topography must also be an important controlling factor. In this paper, a functional model that relates relative cover of ridges and pools to climate and surface gradient was developed and tested. The model was formulated in terms of a water budget, based on the differential effects of ridges and pools on losses by evapotranspiration and subsurface flow. It predicts a positive relationship between surface gradient and ridge proportion, with a linear effect related to water supply and ridge hydraulic conductivity, modified at high ridge proportion by differences in evapotranspiration between ridges and pools. The limit to patterned peatland distribution occurs where the surface is completely covered by ridges. The model may be sensitive or insensitive to climate differences between localities, depending on whether hydraulic characteristics of ridge peat co‐vary with water supply. To distinguish between these alternative hypotheses, surface gradient and ridge proportion were surveyed along 20 transects in each of three localities in Scotland that differ threefold in net precipitation to pools. The results of the field survey served to reject the climate‐sensitive hypothesis, but were consistent with the climate‐insensitive hypothesis. Analysis of the residuals suggested that variation within localities was related more to topographic control of water supply than to ridge hydraulic conductivity or developmental stage. Hence, within this maritime climate region, the distribution of ridge–pool complexes and the relative abundance of pools are controlled mainly by topographic variables. Field surveys across both maritime and continental regions are required to confirm a subtle climatic effect that allows pools to occur on higher gradients in drier climates than in wetter climates. Further development and testing of the functional model will provide a stronger basis for assessing potential feedback between climate change, peatland surface structure and methane emission from pools. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Twenty-four heat flow measurements are clustered in 5–20 m.y. and 60–80 m.y. old seafloor on the crest and northern flank of the Pacific-Antarctic Ridge. The crestal heat flow stations are characterized by (1) low mean heat flow relative to that predicted by theoretical models, (2) thin sediment cover, and (3) high ratio of standard deviation to mean heat flow, all of which indicate a system dominated by convective heat transfer. The measurements made on older seafloor of the northern flank have (1) mean heat flow equal to the theoretical predictions of conductively-cooling lithospheric plate models, (2) thick sediment cover, and (3) low ratio of standard deviation to mean heat flow. Thus convective loss associated with hydrothermal circulation is not considered to be important in 60–80 m.y. old seafloor on the Pacific-Antarctic Ridge. The pattern of heat flow on this ridge is thus similar to that in the Atlantic, Indian and Pacific Oceans: hydrothermal circulation is dominant on the ridge crest but is suppressed on the flanks, possibly due to a difference in the hydraulic admittance of the sediment between the two regions.  相似文献   

11.
Up to now, tests of thermal models of the oceanic lithosphere as it cools and moves away from the ridge crest have been based mainly on topography and heat flow data. However, large areas of the ocean floor deviate from the normal subsidence due to thermal contraction and heat flow data are not very sensitive to the form of the model.

Cooling of the lithosphere causes a short-wavelength step in the geoid across fracture zones that can also be used to constrain thermal models. We have analyzed geoid data at fracture zones from the SEASAT altimeter measurements in the entire Pacific Ocean and redetermined parameters of the cooling models. We find that the data reveal two distinct regimes of cooling; one for seafloor ages in the range 0–30 Ma, the other beyond 30 Ma; this does not appear to be correlated with particular fracture zones but rather it is representative of the whole area studied, i.e., the entire south Pacific and northeast Pacific Ocean. These two trends may be interpreted in terms of two different (asymptotic) thermal thicknesses of the plate model. The smaller thermal thickness ( 65 km) found for ages <30 Ma—compared to 90 km in the age range 30–50 Ma—calls for some kind of thermal perturbation in the vicinity of the ridge crest.

From the results obtained in this study, we conclude that the half-space cooling model is unable to explain the data, that beyond 30 Ma, a simple plate model gives a satisfactory fit to the data but in the younger plate portion (ages < 30 Ma) the cooling history of the oceanic lithosphere is much more complex than predicted by the usual cooling models. Furthermore, the depth-age relationship obtained from the geoid-derived thermal parameters departs significantly beyond 30 Ma from the widely used Parsons and Sclater's depth-age curve, predicting a lesser subsidence.  相似文献   


12.
A numerical model has been developed to simulate the spatiotemporal patterning of the ridge and slough landscape in wetlands, characterized by crests (ridges) and valleys (sloughs) that are elongated parallel to the direction of water flow. The model formulation consists of governing equations for integrated surface water and groundwater flow, sediment transport, and soil accretion, as well as litter production by vegetation growth. The model simulations show how the spatial pattern self-organizes over time with the generation of ridges and sloughs through sediment deposition and erosion driven by the water flow field. The spatial and temporal distributions of the water depth, flow rates and sediment transport processes are caused by differential flow due to vegetation and topography heterogeneities. The model was parameterized with values that are representative of the Everglades wetland in the southern portion of the Florida peninsula in the USA. Model simulation sensitivity was tested with respect to numerical grid size, lateral vegetation growth and the rate of litter production. The characteristic wavelengths of the pattern in the directions along and perpendicular to flow that are simulated with this model develop over time into ridge and slough shapes that resemble field observations. Also, the simulated elevation differences between the ridges and sloughs are of the same order of those typically found in the field. The width of ridges and sloughs was found to be controlled by a lateral vegetation growth distance parameter in a simplified formulation of vegetation growth, which complements earlier modeling results in which a differential peat accretion mechanism alone did not reproduce observations of ridge and slough lateral wavelengths. The results of this work suggest that ridge and slough patterning occurs as a result of vegetation's ability to grow laterally, enhancing sediment deposition in ridge areas, balanced by increased sediment erosion in slough areas to satisfy flow continuity. The interplay between sediment transport, water flow and vegetation and soil dynamic processes needs to be explored further through detailed field experiments, using a model formulation such as the one developed in this work to guide data collection and interpretation. This should be one of the focus areas of future investigations of pattern formation and stability in ridge and slough areas.  相似文献   

13.
Seismograms recorded for five earthquakes on the east Pacific rise have been analyzed to obtain the attenuation coefficients of the fundamental Rayleigh mode for the eastern Pacific in the 15–110 second period range. The attenuation coefficients have been obtained using two new methods, a reference-station method, and an iterative method by which the seismic moment and regionalized attenuation coefficient values are obtained simultaneously after considering the effect of the source directivity and time-function. The reference-station method was applied to the entire eastern Pacific, excluding paths along the east Pacific rise. When using the iterative method we divided the eastern Pacific into three sub-regions, designated as the north-eastern Pacific, the Nazca plate and the east Pacific rise. Although much scatter is present, the data suggest that attenuation coefficients for the Nazca plate are higher than those for the northeastern Pacific, and both are substantially higher than average values obtained for the entire Pacific Ocean. Two paths that lie along or near the east Pacific rise are characterized by especially high attenuation coefficients. These values suggest that a low-Q zone exists beneath that narrow feature.  相似文献   

14.
一类西太平洋副热带高压双脊线过程维持机制初探   总被引:2,自引:1,他引:1       下载免费PDF全文
本文通过对1979~2005年5~10月发生在西太平洋地区的156个副热带高压双脊线过程进行统计分析,发现87.82%的双脊线过程的出现是因为南侧新生一脊线,而且有明显的“季节锁相”,即其发生频数在7月中旬至9月中旬有两个峰值.历年过程中最典型的“南生南存型”双脊线过程的合成分析表明该类双脊线过程形成、维持和消失与副高南侧外围东风波系统自东南向西北传播发展密切相关.500 hPa距平环流演变显示北侧脊线的减弱消失符合气候规律,东风波槽前的异常气旋仅影响副高北侧脊线位置;而东风波槽后的异常反气旋性环流有利于南侧脊线异常发展与维持,造成该类双脊线过程结束后副高异常偏南.进一步分析发现,东风波和西太平洋副热带高压的相互作用改变了副高区域垂直运动分布.这一方面改变了经向风的分布,使500 hPa副高南侧脊线区域地转涡度平流项发展;另一方面引起非绝热加热垂直分布不均匀,在两脊线之间诱生一异常气旋性环流,在南侧脊线区生成异常反气旋环流.因此,东风波与西太平洋副热带高压的相互作用可能会造成副高的不连续南退,这对副高预报有一定预示作用.  相似文献   

15.
Measurements of the terrestrial heat flux at 76 localities along 2 profiles across the Mid-Atlantic Ridge at 19.5°N and 8.5°S latitude are presented. Two high heat-flow values were measured 800 to 1000 km east of the ridge crest at 8.5°S, but no high values were found at the ridge crest at this latitude. Detailed surveys and heat-flow measurements near the ridge crests on both profiles indicate that bottom topography influences the heat-flow variability. The average heat flow on both profiles, about 1.4 to 1.5 × 10−6 cal/cm2 sec, is close to the average for other ocean basins, in contrast to previous studies indicating lower heat flow for the Atlantic.  相似文献   

16.
Abstract Mélange units containing greenstones are common throughout the Cretaceous-Miocene Shimanto Supergroup in the Ryukyu Is and southwest Japan. Most greenstones in the accretionary complex originated in oceanic spreading ridges and seamounts, and they formed far from the convergent margin. Some mélange-like units in the supergroup, however, contain greenstones that were extruded upon and intruded into unconsolidated fine-grained terrigenous clastic sediments. It is inferred that eruption of the in situ greenstones resulted from igneous activity in the trench area. Geochemical signatures indicate that the greenstone protoliths were similar to mafic lavas generated at spreading ridges. Fossil ages of the strata containing in situ greenstones become younger over a distance of 1300 km eastward from Amami-Oshima (Cenomanian-Turonian) in the Ryukyu Is to central Japan (Late Maestrichtian-earliest Paleocene), implying that a site of igneous activity in the trench area migrated eastward along the Ryukyu Is and southwest Japan margin. Plate reconstructions of the northwest Pacific Ocean suggest the presence of the Kula-Pacific ridge near Late Cretaceous to early Paleogene Japan. In this context, it is suggested that the greenstones formed in response to Kula-Pacific ridge-forearc collision.
Ancient ridge-forearc collisions are best recognized by the presence of mid-ocean ridge basalt (MORB) extruded on sediments inferred to have accumulated in the trench area. Diachronous occurrences of the strata associated with these MORB in an orogenic belt are useful for documenting the ridge collision through time.  相似文献   

17.
A correlary of sea floor spreading is that the production rate of ocean ridge basalts exceeds that of all other volcanic rocks on the earth combined. Basalts of the ocean ridges bring with them a continuous record in space and time of the chemical characteristics of the underlying mantle. The chemical record is once removed, due to chemical fractionation during partial melting. Chemical fractionations can be evaluated by assuming that peridotite melting has proceeded to an olivine-orthopyroxene stage, in which case the ratios of a number of magmaphile elements in the extracted melt closely match the ratios in the mantle. Comparison of ocean ridge basalts and chondritic meteorites reveals systematic patterns of element fractionation, and what is probably a double depletion in some elements. The first depletion is in volatile elements and is due to high accretion temperatures of a large percentage of the earth from the solar nebula. The second depletion is in the largest, most highly charged lithophile elements (“incompatible elements”), probably because the mantle source of the basalts was melted previously, and the melt, enriched in these elements, was removed. Migration of melt relative to solid under ocean ridges and oceanic plates, element fractionation at subduction zones, and fractional melting of amphibolite in the Precambrian are possible mechanisms for depleting the mantle in incompatible elements. Ratios of transition metals in the mantle source of ocean ridge basalts are close to chondritic, and contrast to the extreme depletion of refractory siderophile elements, the reason for which remains uncertain. Variation of ocean ridge basalt chemistry along the length of the ridge has been correlated with ridge elevation. Thus chemically anomalous ridge segments up to 1000 km long appear to broadly coincide with regions of high magma production (plumes, hot spots). Basalt heterogeneity at a single location indicates mantle heterogeneity on a smaller scale. Variation of ocean ridge basalt chemistry with time has not been established, in fact, criteria for recognizing old oceanic crust in ophiolite terrains are currently under debate. The similarity of rare earth element patterns in basalt from ocean ridges, back-arc basins, some young island arcs, and some continental flood basalts illustrates the dangers of tectonic labeling by rare earth element pattern.  相似文献   

18.
Previously unreported depth anomalies in the central and eastern Pacific are described. Some of these depth anomalies exist over hot spots and propagating spreading ridges; they are not limited to the area of active volcanism but extend beyond it, into the areas toward which the volcanism is propagating. These areas may be “precursor” topographic features, showing up areas of impending or potential mid-plate volcanism or spreading. A distinction can be made between active depth anomalies and fossil ones. Gravity anomalies and high heat flow values can be correlated with active depth anomalies in one area, supporting the arguments favoring a thinning of the lithosphere as their underlying cause.  相似文献   

19.
A linear relationship between the sea floor depth and the square root of age has been found for ocean lithosphere spreading from mid-ocean ridges. The asymptotic solution of depth as a function of age for the thermally contracting lithosphere predicts a linear dependence of depth ontwith a proportionality involving the initial lithosphere temperature, the thermal diffusivity, and the isostatic expansion coefficient averaged to include any temperature dependent phase changes. Empirical depth observations, when plotted as a function of the square root of age, bear out this prediction well, but there is a variation in the gradient,ht, along the ridge on a fine scale (up to 20% over 200 km). This implies a fundamental variation of the contraction parameter over the same scale, most probably of compositional origin. Details of a more complete cooling model near the ridge crest, including a crust of different thermal parameters than those of the mantle, predict a crestal height about 0.2 km below that of the simplified model. Individual profiles from the southeast Pacific show no such crestal deviation, and it is concluded that by quickly cooling the new crust, hydrothermal circulation may remove any effects of the crust which would be seen in the topography of a lithosphere cooled totally by conduction. The straightness of depth versust for older ocean data (to 80 m.y.) precludes any basal isothermal boundary shallower than 100 km.  相似文献   

20.
The coexistence of stationary mantle plumes with plate-scale flow is problematic in geodynamics. We present results from laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high Rayleigh number (106≤Ra≤109) in a fluid with a temperature-dependent viscosity. In a large tank, a layer of corn syrup is heated from below while being stirred by large-scale flow due to the opposing motions of a pair of conveyor belts immersed in the syrup at the top of the tank. Three regimes are observed, depending on the ratio V of the imposed horizontal flow velocity to the rise velocity of plumes ascending from the hot boundary, and on the ratio λ of the viscosity of the interior fluid to the viscosity of the hottest fluid in contact with the bottom boundary. When V≪1 and λ≥1, large-scale circulation has a negligible effect on convection and the heat flux is due to the formation and rise of randomly spaced plumes. When V>10 and λ>100, plume formation is suppressed entirely, and the heat flux is carried by a sheet-like upwelling located in the center of the tank. At intermediate V, and depending on λ, established plume conduits are advected along the bottom boundary and ascending plumes are focused towards the central upwelling. Heat transfer across the layer occurs through a combination of ascending plumes and large-scale flow. Scaling analyses show that the bottom boundary layer thickness and, in turn, the basal heat flux q depend on the Peclet number, Pe, and λ. When λ>10, q∝Pe1/2 and when λ→1, q∝(Peλ)1/3, consistent with classical scalings. When applied to the Earth, our results suggest that plate-driven mantle flow focuses ascending plumes towards upwellings in the central Pacific and Africa as well as into mid-ocean ridges. Furthermore, plumes may be captured by strong upwelling flow beneath fast-spreading ridges. This behavior may explain why hotspots are more abundant near slow-spreading ridges than fast-spreading ridges and may also explain some observed variations of mid-ocean ridge basalt (MORB) geochemistry with spreading rate. Moreover, our results suggest that a potentially significant fraction of the core heat flux is due to plumes that are drawn into upwelling flows beneath ridges and not observed as hotspots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号