首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
We identify 565 coronal mass ejections (CMEs) between January 2007 and December 2010 in observations from the twin STEREO/SECCHI/COR2 coronagraphs aboard the STEREO mission. Our list is in full agreement with the corresponding SOHO/LASCO CME Catalog ( http://cdaw.gsfc.nasa.gov/CME_list/ ) for events with angular widths of 45° and up. The monthly event rates behave similarly to sunspot rates showing a three- to fourfold rise between September 2009 and March 2010. We select 51 events with well-defined white-light structure and model them as three-dimensional (3D) flux ropes using a forward-modeling technique developed by Thernisien, Howard and Vourlidas (Astrophys. J. 652, 763??C?773, 2006). We derive their 3D properties and identify their source regions. We find that the majority of the CME flux ropes (82?%) lie within 30° of the solar equator. Also, 82?% of the events are displaced from their source region, to a lower latitude, by 25° or less. These findings provide strong support for the deflection of CMEs towards the solar equator reported in earlier observations, e.g. by Cremades and Bothmer (Astron. Astrophys. 422, 307??C?322, 2004).  相似文献   

2.
Plunkett  S.P.  Vourlidas  A.  Šimberová  S.  Karlický  M.  Kotrč  P.  Heinzel  P.  Kupryakov  Yu.A.  Guo  W.P.  Wu  S.T. 《Solar physics》2000,194(2):371-391
Coronal mass ejections (CMEs) are frequently associated with erupting prominences near the solar surface. A spectacular eruption of the southern polar crown prominence was observed on 2 June 1998, accompanied by a CME that was well-observed by the LASCO coronagraphs on SOHO. The prominence was observed in its quiescent state and was followed throughout its eruption by the SOHO EIT and later by LASCO as the bright, twisted core of the CME. Ground-based H observations of the prominence were obtained at the Ondejov Observatory in the Czech Republic. A great deal of fine structure was observed within the prominence as it erupted. The prominence motion was found to rotate about its axis as it moved outward. The CME contained a helical structure that is consistent with the ejection of a magnetic flux rope from the Sun. Similar structures have been observed by LASCO in many other CMEs. The relationship of the flux rope to other structures in the CME is often not clear. In this event, the prominence clearly lies near the trailing edge of the structure identified as a flux rope. This structure can be observed from the onset of the CME in the low corona all the way out to the edge of the LASCO field of view. The initiation and evolution of the CME are modeled using a fully self-consistent, 3D axisymmetric, MHD code.  相似文献   

3.
The bootstrap method is used to determine errors of basic attributes of coronal mass ejections (CMEs) visually identified in images obtained by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) instruments. The basic parameters of CMEs are stored, among others, in a database known as the SOHO/LASCO CME catalog and are widely employed for many research studies. The basic attributes of CMEs (e.g. velocity and acceleration) are obtained from manually generated height-time plots. The subjective nature of manual measurements introduces random errors that are difficult to quantify. In many studies the impact of such measurement errors is overlooked. In this study we present a new possibility to estimate measurements errors in the basic attributes of CMEs. This approach is a computer-intensive method because it requires repeating the original data analysis procedure several times using replicate datasets. This is also commonly called the bootstrap method in the literature. We show that the bootstrap approach can be used to estimate the errors of the basic attributes of CMEs having moderately large numbers of height-time measurements. The velocity errors are in the vast majority small and depend mostly on the number of height-time points measured for a particular event. In the case of acceleration, the errors are significant, and for more than half of all CMEs, they are larger than the acceleration itself.  相似文献   

4.
Coronal mass ejections (CMEs) are the main drivers of geomagnetic disturbances, but the effects of their interaction with Earth’s magnetic field depend on their magnetic configuration and orientation. Fitting and reconstruction techniques have been developed to determine important geometrical and physical CME properties, such as the orientation of the CME axis, the CME size, and its magnetic flux. In many instances, there is disagreement between different methods but also between fitting from in situ measurements and reconstruction based on remote imaging. This could be due to the geometrical or physical assumptions of the models, but also to the fact that the magnetic field inside CMEs is only measured at one point in space as the CME passes over a spacecraft. In this article we compare three methods that are based on different assumptions for measurements by the Wind spacecraft for 13 CMEs from 1997 to 2015. These CMEs are selected from the interplanetary coronal mass ejections catalog on https://wind.nasa.gov/ICMEindex.php because of their simplicity in terms of: 1) slow expansion speed throughout the CME and 2) weak asymmetry in the magnetic field profile. This makes these 13 events ideal candidates for comparing codes that do not include expansion or distortion. We find that for these simple events, the codes are in relatively good agreement in terms of the CME axis orientation for six of the 13 events. Using the Grad–Shafranov technique, we can determine the shape of the cross-section, which is assumed to be circular for the other two models, a force-free fitting and a circular–cylindrical non force-free fitting. Five of the events are found to have a clear circular cross-section, even when this is not a precondition of the reconstruction. We make an initial attempt at evaluating the adequacy of the different assumptions for these simple CMEs. The conclusion of this work strongly suggests that attempts at reconciling in situ and remote-sensing views of CMEs must take into consideration the compatibility of the different models with specific CME structures to better reproduce flux ropes.  相似文献   

5.
We have investigated properties such as speed, angular width, location, acceleration and occurrence rate of narrow CMEs (defined as having angular width ≤20°) observed during 1996–2007 by SOHO/LASCO. The results obtained are compared with those of normal CMEs (angular width >20°) from the same time interval to find whether there are any real differences between the two populations. Our study of 3464 narrow CMEs from the online SOHO/LASCO, CME catalogue leads us to conclude that (1) the fraction of narrow CMEs during solar minimum is 38% and during solar maximum 19%, (2) during solar maximum narrow CMEs are generally faster than normal CMEs, (3) the maximum speed of narrow CMEs is much smaller than that of the normal CMEs, (4) during solar maximum narrow CMEs appear at all latitudes similar to normal CMEs, (5) narrow and normal CMEs have unequal deceleration and (6) the occurrence rate of narrow CMEs remain constant after 1998 until the beginning of 2006 while the normal CMEs occurrence rate seems to follow solar cycle variation until 2004. Thus narrow CMEs and normal CMEs have some differences, in disagreement with previous studies.  相似文献   

6.
With the use of interplanetary coronal mass ejections (ICMEs) compiled by Richardson and Cane from 1996 to 2007 and the associated coronal mass ejections (CMEs) observed by the Large Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO), we investigate the solar cycle variation of real ICME-associated CME latitudes during solar cycle 23 using Song et al.’s method. The results show the following:
•  Although most of ICME-associated CMEs are distributed at low latitudes, there is a significant fraction of ICME-associated CMEs occurring at high latitudes.  相似文献   

7.
We have analyzed the data for more than 12900 coronal mass ejections (CMEs) which were obtained by SOHO/LASCO during the period of 1996-2007. The online CME catalogue contains all major CMEs detected by LASCO C2 and C3 coronagraphs. Basically we determine the CME speeds from the linear and quadratic fits to the height-time measurements. It is found that linear (constant speed) fit is preferable for 90% of the CMEs. The distribution of speeds of CMEs in solar cycle 23 is presented along with those obtained by others. As expected, the speeds decrease in the decay phase of the cycle 23. There is an unusual drop in speed in the year 2001 and an abnormal increase in speed in the year 2003 due to the high concentration of CMEs, X-class soft X-ray flares, solar energetic particle (SEP) events and interplanetary shocks observed during October-November period called Halloween events.  相似文献   

8.
We applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.  相似文献   

9.
In this study, we investigate the interplanetary consequences and travel time details of 58 coronal mass ejections (CMEs) in the Sun–Earth distance. The CMEs considered are halo and partial halo events of width \({>}\,120\)°. These CMEs occurred during 2009?–?2013, in the ascending phase of the Solar Cycle 24. Moreover, they are Earth-directed events that originated close to the centre of the solar disk (within about \(\pm30\)° from the Sun’s centre) and propagated approximately along the Sun–Earth line. For each CME, the onset time and the initial speed have been estimated from the white-light images observed by the LASCO coronagraphs onboard the SOHO space mission. These CMEs cover an initial speed range of \({\sim}\,260\,\mbox{--}\,2700~\mbox{km}\,\mbox{s}^{-1}\). For these CMEs, the associated interplanetary shocks (IP shocks) and interplanetary CMEs (ICMEs) at the near-Earth environment have been identified from in-situ solar wind measurements available at the OMNI data base. Most of these events have been associated with moderate to intense IP shocks. However, these events have caused only weak to moderate geomagnetic storms in the Earth’s magnetosphere. The relationship of the travel time with the initial speed of the CME has been compared with the observations made in the previous Cycle 23, during 1996?–?2004. In the present study, for a given initial speed of the CME, the travel time and the speed at 1 AU suggest that the CME was most likely not much affected by the drag caused by the slow-speed dominated heliosphere. Additionally, the weak geomagnetic storms and moderate IP shocks associated with the current set of Earth-directed CMEs indicate magnetically weak CME events of Cycle 24. The magnetic energy that is available to propagate CME and cause geomagnetic storm could be significantly low.  相似文献   

10.
The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI’s science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes, such as accretion, in the Universe. The ultra-sharp images of SI will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI is a “Flagship and Landmark Discovery Mission” in the 2005 Heliophysics Roadmap and a potential implementation of the UVOI in the 2006 Science Program for NASA’s Astronomy and Physics Division. We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.  相似文献   

11.
Inspired by the finding that the large waiting time of solar flares presents a power-law distribution, we investigate the waiting time distribution (WTD) of coronal mass ejections (CMEs). SOHO/LASCO CME observations from 1996 to 2003 are used in this study. It is shown that the observed CMEs have a similar power-law behavior to the flares, with an almost identical power-law index. This strongly supports the viewpoint that solar flares and CMEs are different manifestations of the same physical process. We have also investigated separately the WTDs of fast-type and slow-type CMEs and found that their indices are identical, which imply that both types of CME may originate from the same physical mechanism.  相似文献   

12.
Automatic Detection and Classification of Coronal Mass Ejections   总被引:1,自引:0,他引:1  
We present an automatic algorithm to detect, characterize, and classify coronal mass ejections (CMEs) in Large Angle Spectrometric Coronagraph (LASCO) C2 and C3 images. The algorithm includes three steps: (1) production running difference images of LASCO C2 and C3; (2) characterization of properties of CMEs such as intensity, height, angular width of span, and speed, and (3) classification of strong, median, and weak CMEs on the basis of CME characterization. In this work, image enhancement, segmentation, and morphological methods are used to detect and characterize CME regions. In addition, Support Vector Machine (SVM) classifiers are incorporated with the CME properties to distinguish strong CMEs from other weak CMEs. The real-time CME detection and classification results are recorded in a database to be available to the public. Comparing the two available CME catalogs, SOHO/LASCO and CACTus CME catalogs, we have achieved accurate and fast detection of strong CMEs and most of weak CMEs.  相似文献   

13.
In this study, the possibility that coronal mass ejections (CMEs) may be observed in neutral Lyman-α emission was investigated. An observing campaign was initiated for SWAN (Solar Wind ANisotropies), a Lyman-α scanning photometer on board the Solar and Heliospheric Observatory (SOHO) dedicated to monitoring the latitude distribution of the solar wind from its imprints on the interstellar sky background. This was part of SOHO Joint Observing Program (JOP) 159 and was an exploratory investigation as it was not known how, or even if, CMEs interact with the solar wind and interstellar neutral hydrogen at this distance (≈60 and 120 R S). The study addresses the lack of methods for tracking CMEs beyond the field-of-view of current coronagraphs (30 R S). In our first method we used LASCO, white-light coronagraphs on SOHO, and EIT, an extreme ultraviolet imaging telescope also on SOHO, to identify CME candidates which, subject to certain criteria, should have been observable in SWAN. The criteria included SWAN observation time and location, CME position angle, and extrapolated speed. None of the CME candidates that we discuss were identified in the SWAN data. For our second method we analyzed all of the SWAN data for 184 runs of the observing campaign, and this has yielded one candidate CME detection. The candidate CME appears as a dimming of the background Lyman-α intensity representing ≈10% of the original intensity, moving radially away from the Sun. Multiple candidate CMEs observed by LASCO and EIT were found which may have caused this dimming. Here we discuss the campaign, data analysis technique and statistics, and the results.  相似文献   

14.
The aim of this paper is studying the relation between the coronal mass ejections (CMEs), and their associated solar flares. I used the CMEs data (obtained from CME catalogue) which observed by SOHO/LASCO, during the Solar Cycle 23rd (1996–2006), during this period I selected 12,433 CME records. Also I used the X-ray flares data which provided geostationary operational environmental satellite (GOES), during the same interval in the 1–8 Å GOES channel, the recorded flare events are 22,688. I filtered these CMEs and solar flare events to select 529 CME-Flare events. I found that there is a moderate relation between the solar flare fluxes and their associated CME energies, where R = 58 %. In addition I found that 61 % of the CME-Flare associated events ejected from the solar surface after the occurrence of the associated flare. Furthermore I found that the CME-Flare relation improved during the period of high solar activity. Finally, I examined the CME association rate as a function of flare longitude and I found that the CME association rate of the total 529 selected CME-Flare events are mostly disk-Flare events.  相似文献   

15.
A large set of coronal mass ejections (CMEs, 3463) has been selected to study their periodic oscillations in speed in the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) field of view. These events, reported in the SOHO/LASCO catalog in the period of time 1996?–?2004, were selected based on having at least 11 height–time measurements. This selection criterion allows us to construct at least ten-point speed–distance profiles and evaluate kinematic properties of CMEs with a reasonable accuracy. To identify quasi-periodic oscillations in the speed of the CMEs a sinusoidal function was fitted to speed–distance profiles and the speed–time profiles. Of the considered events 22 % revealed periodic velocity fluctuations. These speed oscillations have on average amplitude equal to \(87~\mbox{km}\,\mbox{s}^{-1}\) and period \(7.8 R _{\odot}/241~\mbox{min}\) (in distance/time). The study shows that speed oscillations are a common phenomenon associated with CME propagation implying that all the CMEs have a similar magnetic flux-rope structure. The nature of oscillations can be explained in terms of magnetohydrodynamic (MHD) waves excited during the eruption process. More accurate detection of these modes could, in the future, enable us to characterize magnetic structures in space (space seismology).  相似文献   

16.
The subject of interaction between the Corona Mass Ejections (CMEs) is important in the concept of space-weather studies. In this paper, we analyzed a set of 15 interacting events taken from the list compiled by Manoharan et al. (in J. Geophys. Res. 109:A06109, 2004) and their associated DH type II radio bursts. The pre and primary CMEs, and their associated DH type II bursts are identified using the SOHO/LASCO catalog and Wind/WAVES catalog, respectively. All the primary CMEs are associated with shocks and interplanetary CMEs. These CMEs are found to be preceded by secondary slow CMEs. Most of primary CMEs are halo type CME and much faster (Mean speed = 1205 km?s?1) than the pre CME (Mean speed = 450 km?s?1). The average delay between the pre and primary CMEs, drift rate of DH type IIs and interaction height are found to be 211 min, 0.878 kHz/s and 17.87 Ro, respectively. The final observed distance (FOD) of all pre CMEs are found to be less than 15 Ro and it is seen that many of the pre CMEs got merged with the primary CMEs, and, they were not traced as separate CMEs in the LASCO field of view. Some radio signatures are identified for these events in the DH spectrum around the time of interaction. The interaction height obtained from the height-time plots of pre and primary CMEs is found to have correlations with (i) the time delay between the two CMEs and (ii) the central frequency of emission in the radio signatures in the DH spectrum around the time of interaction. The centre frequency of emission in the DH spectrum around the time of interaction seems to decrease when the interaction height increases. This result is compared with an interplanetary density model of Saito et al. (in Solar Phys. 55:121, 1977).  相似文献   

17.
Kocharov  L.  Torsti  J. 《Solar physics》2002,207(1):149-157
We summarize ERNE/SOHO observations of solar energetic particle events associated with impulsive soft X-ray flares and LASCO coronal mass ejections (CMEs). The new observational data support an idea that the >10 MeV proton acceleration may be initiated at different coronal sources, operating in the flaring active region and on the global coronal scale, in concert with CME development. However, the particle acceleration continues beyond the coronal scales and may culminate at the interplanetary CME well after the flare. We emphasize the importance of CME liftoff/aftermath processes in the solar corona and the possible role of seed particle re-acceleration, which may explain the existence of hybrid solar energetic particle events.  相似文献   

18.
To investigate the relations between coronal mass ejection (CME) speed and magnetic field properties measured in the photospheric surface of CME source regions, we selected 22 disk CMEs in the rising and early maximum phases of the current Solar Cycle 24. For the CME speed, we used two-dimensional (2D) projected speed observed by the Large Angle and Spectroscopic Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO), as well as a 3D speed calculated from the triangulation method using multi-point observations. Two magnetic parameters of CME source regions were considered: the average of magnetic helicity injection rate and the total unsigned magnetic flux. We then classified the selected CMEs into two groups, showing: i) a monotonically increasing pattern with one sign of helicity (group A: 16 CMEs) and ii) a pattern of significant helicity injection followed by its sign reversal (group B: 6 CMEs). We found that: 1) 3D speed generally shows better correlations with the magnetic parameters than the 2D speed for 22 CME events in Solar Cycle 24; 2) 2D speed and the magnetic parameters of 22 CME events in this solar cycle have lower values than those of 47 CME events in Solar Cycle 23; 3) all events of group B in Solar Cycle 24 occur only after the beginning of the maximum phase, a trend well consistent with that shown in Solar Cycle 23; 4) the 2D speed and the helicity parameter of group B events continue to increase in the declining phase of Solar Cycle 23, while those of group A events abruptly decrease in the same period. Our results indicate that the two CME groups have a different tendency in the solar cycle variations of CME speed and the helicity parameters. Active regions that show a complex helicity evolution pattern tend to appear in the maximum and declining phases, while active regions with a relatively simple helicity evolution pattern appear throughout the whole solar cycle.  相似文献   

19.
We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120°. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤?20°) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.  相似文献   

20.
We present an analysis of all the events (around 400) of coronal shocks for which the shock-associated metric type IIs were observed by many spectrographs during the period April 1997– December 2000. The main objective of this analysis is to give evidence for the type IIs related to only flare-blast waves, and thus to find out whether there are any type II-associated coronal shocks without mass ejections. By carefully analyzing the data from multi-wavelength observations (Radio, GOES X-ray, Hα, SOHO/LASCO and SOHO/EIT-EUV data), we have identified only 30 events for which there were actually no reports of CMEs. Then from the analysis of the LASCO and EIT running difference images, we found that there are some shocks (nearly 40%, 12/30) which might be associated with weak and narrow mass ejections. These weak and narrow ejections were not reported earlier. For the remaining 60% events (18/30), there are no mass ejections seen in SOHO/LASCO. But all of them are associated with flares and EIT brightenings. Pre-assuming that these type IIs are related to the flares, and from those flare locations of these 18 cases, 16 events are found to occur within the central region of the solar disk (longitude ≤45^∘). In this case, the weak CMEs originating from this region are unlikely to be detected by SOHO/LASCO due to low scattering. The remaining two events occurred beyond this longitudinal limit for which any mass ejections would have been detected if they were present. For both these events, though there are weak eruption features (EIT dimming and loop displacement) in the EIT images, no mass ejection was seen in LASCO for one event, and a CME appeared very late for the other event. While these two cases may imply that the coronal shocks can be produced without any mass ejections, we cannot deny the strong relationship between type IIs and CMEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号