首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flow against dispersion in two-dimensional regions   总被引:1,自引:0,他引:1  
In field applications, upstream spreading of contaminant plumes may be controlled by the flow of fresh water in a direction opposite to the dispersive expansion direction of the plume. In the current literature this type of control is identified as flow against dispersion or contrary flow. In this study analytic methods are used to investigate contrary flow conditions for two-dimensional applications. In particular, special attention is given to the dispersive spread of the contaminant plume in the transverse direction under equilibrium flow against dispersion. Typical problems analyzed emphasize the effect of adsorption and transverse dispersion on the overall control process. Problems analyzed indicate that equilibrium flow velocities deduced from one-dimensional analysis, which may balance the dispersive spread of the plume in the longitudinal direction, represent an over design condition when these equilibrium velocities are compared with the conditions generated from a two-dimensional model for a downstream source which is finite in the transverse direction.  相似文献   

2.
The formation and development of a salt plume (salinity up to 800 mg Cl 1−1) in the inner part of the Coastal Plain aquifer of Israel is analyzed. Massive groundwater exploitation during the 1950s caused a large drop in the water level and formation of a hydrologic depression in the Be'er Toviyya-Kefar Warburg area. The depression reached a maximal depth during the late 1960s; thereafter a reduction in the rate of pumpage led to restoration of water levels and shallowing of the depression, until its complete disappearance towards the end of the 1980s. A spot of high salinity first appeared in 1956, following a deep drawdown in the water levels. This saline plume has been continuously expanding with increasing salinity concentrations (200–800 mg Cl 1−1) in its center. The average rate of radial expansion was about 50 m year−1. The expansion and salinization did not cease as the depression disappeared. Rather, equalization of water levels in wells situated within the plume area with those of situated along its margins resulted in the salinization of the latter within a period of 1 year.

Mass balances for water and chloride contents were made for the period 1967–1990. Taking into consideration the storage change, pumpage, natural replenishment and artificial recharge, the lateral inflow to the depression is estimated as 60 × 106 m3. Upon addition of the chloride balance, and taking into consideration the chloride concentrations of the surrounding fresh water and the apparent possible end-member of the saline source (based on geochemical considerations), the saline inflow is estimated as (40–60) × 106 m3. These estimates indicate that a large amount of saline water penetrated into the aquifer, of about half of the natural replenishment of the study area, with an estimated salinity of 1900–2700 mg Cl 1−1.

It is suggested that the salt plume was formed as a result of a drop in water level combined with a flow of underlying saline water bodies from deeper strata. The chemical composition of the groundwater points to the existence of two saline water bodies of Ca-chloride composition and a marine Br/Cl ratio: (1) saline water with low Na/Cl (0.6), So4/Cl, and B/Cl ratio; (2) saline water with higher Na/Cl (> 0.6), So4/Cl, and B/Cl ratios. These chemical compositions resemble Ca-chloride saline waters found in other locations in the Coastal Plain aquifer and in underlying formations. The saline water bodies may occur in either pockets at the bottom of the aquifer or lumachelle and sandstone layers of high hydraulic conductivity in underlying sediments.  相似文献   


3.
The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate‐stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02‐0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2‐11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.  相似文献   

4.
Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this study, we aimed at quantifying the impact of higher salinities (up to 3.5% NaCl) on Ks of fen peat. Two experiments employing a constant‐head upward‐flow permeameter and differing in measurement and salinity change duration were conducted. Additionally, a third experiment to determine the impact of water salinity on the release of dissolved organic carbon (DOC) of the studied peat type was carried out. The results show a decrease of Ks with time, which does not depend on the water salinity but is differently shaped for different peat types. We assume pore clogging due to a conglomerate of physical, chemical, and biological processes, which rather depend on water movement rate and time than on water salinity. However, an increased water salinity did increase the DOC release. We conclude that salinity‐dependent behaviour of Ks is a function of peat chemistry and that for some peat types, salinity may only affect the DOC release without having a pronounced impact on water flow.  相似文献   

5.
Long-term monitoring solutions at contaminated sites are necessary to track plume migration and evaluate the performance of remediation efforts. Electrical resistivity imaging (ERI) can potentially provide information about plume dynamics; however, the feasibility and likelihood of success are seldom evaluated before conducting a field study. Coupling flow and transport models with geoelectrical models provide a powerful way to assess the potential effectiveness of an actual ERI field campaign. We present a coupled approach for evaluating the feasibility of monitoring nitrate migration and remediation using 4D time-lapse ERI at a legacy nuclear waste facility. This kilometer-scale study focuses on depths below the water table (∼70 m). A flow and transport model is developed to perform simulations of nitrate migration and removal via a hypothetical pump-and-treat system. A tracer injection is also simulated at the leading edge of the nitrate plume to enhance the conductivity contrast between the native subsurface and the groundwater fluids. Images of absolute bulk conductivity provide limited information concerning plume migration while time-lapse difference images, which remove the static effects of geology, provide more useful information concerning plume dynamics over time. A spatial moment analysis performed on flow and transport and ERI models matches well during the tracer injection; however, inversion regularization smoothing otherwise limits the value in terms of locating the center of mass. We find that the addition of a tracer enables ERI to characterize plume dynamics during pump-and-treat operations, and late-time ERI monitoring provides a conservative estimate of nitrate plume boundaries in this synthetic study.  相似文献   

6.
A freeze core sampler was used to characterize hyporheic zone storage during a stream tracer test. The pore water from the frozen core showed tracer lingered in the hyporheic zone after the tracer had returned to background concentration in collocated well samples. These results confirmed evidence of lingering subsurface tracer seen in time‐lapse electrical resistivity tomographs. The pore water exhibited brine exclusion (ion concentrations in ice lower than source water) in a sediment matrix, despite the fast freezing time. Although freeze core sampling provided qualitative evidence of lingering tracer, it proved difficult to quantify tracer concentration because the amount of brine exclusion during freezing could not be accurately determined. Nonetheless, the additional evidence for lingering tracer supports using time‐lapse resistivity to detect regions of low fluid mobility within the hyporheic zone that can act as chemically reactive zones of importance in stream health.  相似文献   

7.
Produced water is a high salinity by-product resulting from oil and gas production. Disposal methods include surface water discharge from a point source. The current field method used for fate and effect determinations in open water estuarine systems involves extending a compass oriented transect (COT) from the point source discharge--a method designed for a uniform offshore environment that might be inappropriate for the hydrologic and geomorphologic complexities found in estuarine systems. Research was conducted in a canal and a small, semi-enclosed bay to observe effluent behaviour and to determine if salinity could be used to track the effluent. A salinity/conductivity/temperature (SCT) probe measured water properties within 1 cm of the sediment surface and identified a thin, bottom salinity plume that would have gone undetected by conventional instruments. The plume flowed across the sediment surface and towards greater depths. Plume-affected sampling stations exhibited higher levels of sediment contaminant indicators (SCIs) and indicated that station location could affect impact conclusions.  相似文献   

8.
A number of experimental studies have tackled the issue of solute transport parameter assessments either in the laboratory or in the field. But yet, the behavior of a plume in the field under density driven forces, is not well known due to possible development of instabilities. Some field tracer tests on the fate of plumes denser than native groundwater such as those encountered under waste disposal facilities, have pointed out the processes of sinking and splitting at the early stage of migration. The process of dispersion was widely investigated, but the range of dispersivity values obtained from either experimental tests, or numerical and theoretical calculations is still very large, even for the same type of aquifers. These discrepancies were considered to be essentially caused by soil heterogeneities and scale effects. In the meantime, studies on the influence of sinking and fingering have remained more scarce. The objective of the work is to analyze how transport parameters such as dispersivities can be affected by unstable conditions, which lead to plume sinking and fingering. A series of tracer tests were carried out to study under natural conditions, the transport of a dense chloride solution injected in a shallow two-layered aquifer. Two types of experiments were performed: in the first type, source injection was such that the plume could travel downward from one layer to the other of higher pore velocity, and in the second one, the migration took place only in the faster layer. The results suggest some new insights in the processes occurring at the early stages of a dense plume migration moving in a stratified aquifer under groundwater fluctuations, which can be summarized through the following points: (i) Above a stability criterion threshold, a fingering process and a multi modal plume transport take place, but local dispersivities can be cautiously derived, using breakthrough curves matching. (ii) When water table is subject to some cycling or rising, the plume can be significantly distorted in the transverse direction, leading to unusual values of the ratio between longitudinal and transverse dispersivities. (iii) Under stable conditions, for example in the case of straightforward injection in the faster aquifer layer, longitudinal dispersivity is greater than the transverse component as usually encountered, and the obtained transport parameters are closed to macro dispersivity values, which reach their asymptotic limit at very short distances. (iv) The classical scale effect about the varying dispersivity at short distances could be a process mainly due to the distance required for a plume stabilization.  相似文献   

9.
Alight nonaqueous phase liquid (LNAPL) ground water contaminant plume has been discovered by purely geophysical means at the former Wurtsmith Air Force Base (AFB) near Oscoda, Michigan. It is located near another plume called FT-02, which is a well-studied area undergoing natural bioremediation. The plume was discovered by ground penetrating radar (GPR) profiling while extending a long line from FT-02 to establish background variability around that plume. The new plume was apparent because of a high-conductivity "shadow' or GPR reflection attenuation observed below the conductive zone at the top of the aquifer, identical to the pattern observed at the FT-02 plume. Further GPR surveys were conducted by students of a Western Michigan University geophysics field course to outline the proximal part of the plume. The GPR survey was supplemented by an electromagnetic induction (EM) survey which showed a group of four cables crossing the area. Finally, a magnetometer survey was conducted to search for any buried steel objects which might have been missed by the EM survey. The results of the three geophysical surveys were then used by students of a University of Michigan field course to guide subsurface soil and fluid sampling, which verified the presence of residual LNAPL product and ground water with conductivities 2.5 to 3.3 times above background. The plume source is in the vicinity of a vaulted underground storage tank (UST) formerly used for the collection of waste solvents and fuels for subsequent use in the fire training exercises at FT-02. This newly discovered LNAPL plume, along with other "mature' plumes, fits the electrical model which predicts conductive ground water below the decomposing but electrically resistive LNAPLs. Finally, this is a fine example of the cooperative use of a dedicated research site for training by students of two different universities.  相似文献   

10.
Chui TF  Terry JP 《Ground water》2012,50(3):412-420
The principal natural source of fresh water on scattered coral atolls throughout the tropical Pacific Ocean is thin unconfined groundwater lenses within islet substrates. Although there are many threats to the viability of atoll fresh water lenses, salinization caused by large storm waves washing over individual atoll islets is poorly understood. In this study, a mathematical modeling approach is used to examine the immediate responses, longer-term behavior, and subsequent (partial) recovery of a Pacific atoll fresh water lens after saline damage caused by cyclone-generated wave washover under different scenarios. Important findings include: (1) the saline plume formed by a washover event mostly migrates downward first through the top coral sand and gravel substrate, but then exits the aquifer to the ocean laterally through the more permeable basement limestone; (2) a lower water table position before the washover event, rather than a longer duration of storm washover, causes more severe damage to the fresh water lens; (3) relatively fresher water can possibly be found as a preserved horizon in the deeper part of an aquifer after disturbance, especially if the fresh water lens extends into the limestone under normal conditions; (4) post-cyclone accumulation of sea water in the central depression (swamp) of an atoll islet prolongs the later stage of fresh water lens recovery.  相似文献   

11.
The change of the salinity distribution in coastal aquifers due to pumpage is often described as an upconing of the interface between saline and fresh water. Sea and fresh water are miscible fluids, however. Therefore, dispersion of salinity in the aquifer affects the upconing process. An estimate of the effect of salinity dispersion on the dynamics of the flow as well as on the salinity distribution in the aquifer is presented in this study. The phenomenon is described as a migration of a sharp interface perturbed by small disturbances due to salinity dispersion. The creation of the mixing zone between fresh and saline water is described as a formation of a boundary layer in the vicinity of the sharp interface. This method is primarily recommended for flow fields in which simple representation of the sharp interface migration is obtainable.  相似文献   

12.
We developed, and applied in two sites, novel methods to measure ground water-borne nitrogen loads to receiving estuaries from plumes resulting from land disposal of waste water treatment plant (WWTP) effluent. In addition, we quantified nitrogen losses from WWTP effluent during transport through watersheds. WWTP load to receiving water was estimated as the difference between total measured ground water-transported nitrogen load and modeled load from major nitrogen sources other than the WWTP. To test estimated WWTP loads, we applied two additional methods. First, we quantified total annual waste water nitrogen load from watersheds based on nitrogen stable isotopic signatures of primary producers in receiving water. Second, we used published data on ground water nitrogen concentrations in an array of wells to estimate dimensions of the plume and quantify the annual mass of nitrogen transported within the plume. Loss of nitrogen during transport through the watershed was estimated as the difference between the annual mass of nitrogen applied to watersheds as treatment plant effluent and the estimated nitrogen load reaching receiving water. In one plume, we corroborated our estimated nitrogen loss in watersheds using data from multiple-level sampling wells to calculate the loss of nitrogen relative to a conservative tracer. The results suggest that nitrogen from the plumes is discharging to the estuaries but that substantial nitrogen loss occurs during transport through the watersheds. The measured vs. modeled and stable isotopic approaches, in comparison to the plume mapping approach, may more reliably quantify ground water-transported WWTP loads to estuaries.  相似文献   

13.
This study explores the pathways of salt and water movement from the landscape to the stream across major landforms, in dryland areas of south eastern Australia. It was conducted at the Livingstone Creek catchment (43 km2) a sub catchment of the Kyeamba catchment, NSW, Australia. An extensive stream salinity field monitoring network between major landforms was developed and data capture occurred from 2002 to 2004. Additional measurements of surface water isotopes were also taken to independently assess responses observed from the detailed monitoring network and assist in determining the sources of water. Flow and salt mass balances were calculated across four gauging stations for each event. The stream monitoring found patterns of salt delivery to streams were consistent during four monitored stream events. In the hill slope and colluvial fill, lower sloped, meta-sediment landforms, stream salinity responses showed the classical salinity response to an event: an initial increase of salinity at the beginning of an event (due to first flush) which then diminished as a consequence of dilution. The main difference between these landforms was that the colluvial fill lower sloped meta-sediments had sodic, low permeability soils near the stream edge. This lead to (1) less variation in stream salinities during event conditions and (2) during low base flow increases in stream salinity occurred as concentrated salts from the stream banks dissolved. For the flatter, alluvial landforms, the salinity response showed quite a different and contrasting temporal pattern: salinity continued to increase and vary directly with flow during events. For all the landforms, base flow salinity increases as flow diminished after a event although salinity responses were more lagged in the alluvial landform. This different salinity pattern in the alluvial landform is attributed to (1) for event flow, the increased contributions of more saline subsurface lateral flow of soil water from the alluvial landform compared to very fresh direct surface runoff sourced from hillslope landforms upstream and (2) for base flow, seepage of near stream alluvial groundwater through the stream banks that was less saline then the base flow water sourced upstream from the hillslope landforms. The stream water isotope values confirm the above findings by showing that, in the alluvial landforms soil water contributions are important during events and that direct surface runoff with little interaction of soil water occurs from the hill slope landforms during events. Conceptual models describing salt and water movement through the different landforms and under different antecedent catchment wetness conditions are presented. These conceptual models develop our understanding of water and solute (salt) pathways through the landscape to the stream. To date, this is one of the few experimental studies in Australia connecting landscape and stream salinisation.  相似文献   

14.
A natural gradient tracer test using perdeuterated MTBE was conducted in an anaerobic aquifer to determine the relative importance of dispersion and degradation in reducing MTBE concentrations in ground water. Preliminary ground water chemistry and hydraulic conductivity data were used to place the tracer within an existing dissolved MTBE plume at Port Hueneme, California. Following one year of transport, the tracer plume was characterized in detail.
Longitudinal dispersion was identified as the dominant mechanism for lowering the perdeuterated MTBE concentrations. The method of moments was used to determine the longitudinal and lateral dispersion coefficients (0.85 m2/day and 0.08 m2/day, respectively). A mass-balance analysis, carried out after one year of transport, accounted for 110% of the injected mass and indicated that no significant mass loss occurred. The plume structure created by zones of higher and lower hydraulic conductivity at the site was complex, consisting of several localized areas of high tracer concentration in a lower concentration plume. This is important because the aquifer has generally been characterized as exhibiting fairly minor heterogeneity. In addition, the tracer plume followed a curved flowpath that deviated from the more macroscopic direction of ground water flow inferred from local ground water elevation measurements and the behavior of the existing plume. Understanding the mass balance, plume structure, curvature of the tracer plume, and consequently natural attenuation behavior required the detailed sampling approach employed in this study. These data imply that a detailed understanding of site hydrogeology and an extensive sampling network may be critical for the correct interpretation of monitored natural attenuation of MTBE.  相似文献   

15.
Permeability changes in layered sediments: impact of particle release   总被引:8,自引:0,他引:8  
One of the mechanisms of sudden particle release from grain surfaces in natural porous media is a decrease in salt concentration of the permeating fluid to below the critical salt concentration. Particle release can cause a change in hydraulic conductivity of the matrix, either by washing out the fines and thus increasing the pore sizes or by the plugging of pore constrictions. The phenomenon of permeability changes as a result of particle detachment was investigated in a series of column experiments. Coarse and fine sediments from the Hanford Formation in southeast Washington were tested. Columns were subject to a pulse of highly saline solution (NaNO3) followed by a fresh water shock causing particle release. Outflow rates and changes in hydraulic head as well as electric conductivity and pH were monitored over time. No permeability decrease occurred within the coarse matrix alone. However, when a thin layer of fine sediment was embedded within the coarse material (mimicking field conditions at the Hanford site), permeability irreversibly decreased to 10% to 20% of the initial value. Evidence suggests that most of this permeability decrease was a result of particles detached within the fine layer and its subsequent clogging. An additional observation was a sudden increase in pH in the outflow solution, generated in situ during the fresh water shock. Because layered systems are common in natural settings, our results suggest that alteration between sodium solution and fresh water can lead to particle release and subsequently reduce the overall permeability of the matrix.  相似文献   

16.
Groundwater flow and chemical transport in subterranean estuaries are poorly understood despite their potentially important implications for chemical fluxes from aquifers to coastal waters. Here, a numerical study of the dynamics in a subterranean estuary subject to tidal forcing is presented. Simulations show that salt transport associated with tidally driven seawater recirculation leads to the formation of an upper saline plume in the intertidal region. Computed transit times and flow velocities indicate that this plume represents a more active zone for mixing and reaction than the dispersion zone of the lower, classical salt wedge. Proper conceptualisation of this surficial mixing zone extends our understanding of processes within the subterranean estuary. Numerical tracer simulations reveal that tidal forcing may reduce the threat of a land-derived contaminant discharging to the marine environment by modifying the subsurface transport pathway and local geochemical conditions. Mixing and stratification in the subterranean estuary are strongly affected by both inland and tidal forcing. Based on the estuarine analogy we present a systematic classification of subterranean estuaries.  相似文献   

17.
Resource extraction and transportation activities in subarctic Canada can result in the unintentional release of contaminants into the surrounding peatlands. In the event of a release, a thorough understanding of solute transport within the saturated zone is necessary to predict plume fate and the potential impacts on peatland ecosystems. To better characterize contaminant transport in these systems, approximately 13,000 L/day of sodium chloride tracer (200 mg/L) was released into a bog in the James Bay Lowland. The tracer was pumped into a fully penetrating well (1.5 m) between July 5 and August 18, 2015. Horizontal and vertical plume development was measured via in situ specific conductance and water table depth from an adaptive monitoring network. Over the spill period, the bulk of the plume travelled a lateral distance of 100 m in the direction of the slight regional groundwater and topographical slope. The plume shape was irregular and followed the hollows, indicating preferential flow paths due to the site microtopography. Saturated transport of the tracer occurred primarily at ~25 cm below ground surface (bgs), and at a discontinuous high hydraulic conductivity layer ~125 cm bgs due to a complex and heterogeneous vertical hydraulic conductivity profile. Plume measurement was confounded by a large amount of precipitation (233 mm over the study period) that temporarily diluted the tracer in the highly conductive upper peat layer. Longitudinal solute advection can be approximated using local water table information (i.e., depth and gradient); microtopography; and meteorological conditions. Vertical distribution of solute within the peat profile is far more complex due to the heterogeneous subsurface; characterization would be aided by a detailed understanding of the site‐specific peat profile; the degree of decomposition; and the type of contaminant (e.g., reactive/nonreactive). The results of this research highlight the difficulty of tracking a contaminant spill in bogs and provide a benchmark for the characterization of the short‐term fate of a plume in these complex systems.  相似文献   

18.
Critical for the management of artificial recharge operations is detailed knowledge of ground water dynamics near spreading areas. Geochemical tracer techniques including stable isotopes of water, tritium/helium-3 (T/3He) dating, and deliberate gas tracer experiments are ideally suited for these investigations. These tracers were used to evaluate flow near an artificial recharge site in northern Orange County, California, where approximately 2.5 x 10(8) m3 (200,000 acre-feet) of water are recharged annually. T/3He ages show that most of the relatively shallow ground water within 3 km of the recharge facilities have apparent ages < 2 years; further downgradient apparent ages increase, reaching > 20 years at approximately 6 km. Gas tracer experiments using sulfur hexafluoride and xenon isotopes were conducted from the Santa Ana River and two spreading basins. These tracers were followed in the ground water for more than two years, allowing subsurface flow patterns and flow times to be quantified. Results demonstrate that mean horizontal ground water velocities range from < 1 to > 4 km/year. The leading edges of the tracer patch moved at velocities about twice as fast as the center of mass. Leading edge velocities are important when considering the potential transport of microbes and other "time sensitive" contaminants and cannot be determined easily with other methods. T/3He apparent ages and tracer travel times agreed within the analytical uncertainty at 16 of 19 narrow screened monitoring wells. By combining these techniques, ground water flow was imaged with time scales on the order of weeks to decades.  相似文献   

19.
With global warming and sea level rise, many coastal systems will experience increased levels of inundation and storm flooding, especially along sandy lowland coastal areas, such as the Northern Adriatic coast (Italy). Understanding how extreme events may directly affect groundwater hydrology in shallow unconfined coastal aquifers is important to assess coastal vulnerability and quantify freshwater resources. This study investigates shallow coastal aquifer response to storm events. The transitory and permanent effects of storm waves are evaluated through the real time monitoring of groundwater and soil parameters, in order to characterize both the saturated and unsaturated portions of the coastal aquifer of Ravenna and Ferrara (southern Po Delta, Italy). Results highlight a general increase in hydraulic head and soil moisture, along with a decrease in groundwater salinity and pore water salinity due to rainfall infiltration during the 2 days storm event. The only exceptions are represented by the observation wells in proximity to the coastline (within 100 m), which recorded a temporary increase in soil and water salinity caused by the exceptional high waves, which persist on top of the dune crest during the storm event. This generates a saline plume that infiltrates through the vadose zone down to the saturated portion of the aquifer causing a temporary disappearance of the freshwater lens generally present, although limited in size, below the coastal dunes. Despite the high hydraulic conductivity, the aquifer system does not quickly recover the pre‐storm equilibrium and the storm effects are evident in groundwater and soil parameters after 10 days past the storm overwash recess.  相似文献   

20.
Large amounts of gas can result from anaerobic corrosion of metals and from chemical and biological degradation of organic substances in underground repositories for radioactive waste. Gas generation may lead to the formation of a gas phase bubble and to the migration of radioactive gaseous species. Transport occurs in, at least, in two forms: (1) gas bubble, migration is controlled by advection, dispersion and diffusion in the gas phase, and (2) within water pockets, the dissolved species migrate mainly by diffusion. We consider a two-dimensional system representing an isolated heterogeneous fractured zone. A dipole gas flow field is generated and gas tracers are injected. The delay in the breakthrough curves is studied. A simple method is used to solve the gas species transport equations in multiphase conditions. This method is based on a formal analogy between the equations of gas transport in a two phase system and the equations of solute tracer transport in water saturated systems. We perform a sensitivity analysis to quantify the relevance of the various transport mechanisms. We find that gas tracer migration is very sensitive to gas tracer solubility, which affects gas tracer transport of both mobile and immobile zones, and shows high sensitivity to diffusion in the gas phase, to heterogeneity and to gas pressure, but the largest sensitivity was observed with respect to injection borehole properties, i.e. borehole volume and water filled fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号