首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nowadays, Southwestern Romania faces a large-scale aridization of the climate, revealed by the rise of temperatures and the decline of the amount of precipitations, with negative effects visible, among others, in the desiccation of forest vegetation. The present study means to identify the changes that occurred, quality-wise, in the past two decades (1990-2011) in forest vegetation in Southwestern Romania, and to establish the link between those changes and extant thermal stress in the region, whose particular features are high average annual and seasonal temperatures. In order to capture the evolution in time of cli- mate aridization, a first step consisted in using climate data, the temperature and precipitation parameters from three weather stations; these parameters were analyzed both individually and as aridity indexes (De Martonne and UNEP). In order to quantify the changes in forest vegetation, NDVI indexes were used and analyzed, starting off from Landsat satellite images, acquired at three distinct moments in time, 1990, 2000 and 2011. In order to identify the link between the changes of NDVI index values and regional thermal stress, a yardstick of climate changes, statistical correlations were established between the peak values of average annual temperatures, represented in space, and negative changes in the NDVI index, as revealed by the change-detection analysis. The results obtained indicated there is an obvious (statistically significant) connection between thermal stress and the desiccation (degradation) of forest species in the analyzed area, with false acacia (Robinia Pseudoacacia) the main species to be impacted.  相似文献   

2.
青藏高原植被覆盖变化与降水关系   总被引:15,自引:6,他引:9  
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

3.
Though many studies have focused on the causes of shifts in trend of temperature, whether the response of vegetation growth to temperature has changed is still not very clear. In this study, we analyzed the spatial features of the trend changes of temperature during the growing season and the response of vegetation growth in China based on observed climatic data and the normalized difference vegetation index(NDVI) from 1984 to 2011. An obvious warming to cooling shift during growing season from the period 1984–1997 to the period 1998–2011 was identified in the northern and northeastern regions of China, whereas a totally converse shift was observed in the southern and western regions, suggesting large spatial heterogeneity of changes of the trend of growing season temperature throughout China. China as a whole, a significant positive relationship between vegetation growth and temperature during 1984 to 1997 has been greatly weakened during 1998–2011. This change of response of vegetation growth to temperature has also been confirmed by Granger causality test. On regional scales, obvious shifts in relationship between vegetation growth and temperature were identified in temperate desert region and rainforest region. Furthermore, by comprehensively analyzing of the relationship between NDVI and climate variables, an overall reduction of impacts of climate factors on vegetation growth was identified over China during recent years, indicating enhanced influences from human associated activities.  相似文献   

4.
In Northeast Thailand, the climate change has resulted in erratic rainfall and tem- perature patterns. The region has experienced both periods of drought and seasonal floods with the increasing severity. This study investigated the seasonal variation of vegetation greenness based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region. An assessment of the relationship between climate patterns and vegeta- tion conditions observed from NDVI was made. NDVI data were collected from year 2001 to 2009 using multi-temporal Terra MODIS Vegetation Indices Product (MOD13Q1). NDVI pro- files were developed to measure vegetation dynamics and variation according to land cover types. Meteorological information, i.e. rainfall and temperature, for a 30 year time span from 1980 to 2009 was analyzed for their patterns. Furthermore, the data taken from the period of 2001-2009, were digitally encoded into GIS database and the spatial patterns of monthly rainfall and temperature maps were generated based on kriging technique. The results showed a decreasing trend in NDVI values for both deciduous and evergreen forests. The highest productivity and biomass were observed in dry evergreen forests and the lowest in paddy fields. Temperature was found to be increasing slightly from 1980 to 2009 while no significant trends in rainfall amounts were observed. In dry evergreen forest, NDVI was not correlated with rainfall but was significant negatively correlated with temperature. These re- sults indicated that the overall productivity in dry evergreen forest was affected by increasing temperatures. A vegetation greenness model was developed from correlations between NDVI and meteorological data using linear regression. The model could be used to observe the change in vegetation greenness and dynamics affected by temperature and rainfall.  相似文献   

5.
30年来呼伦贝尔地区草地植被对气候变化的响应(英文)   总被引:8,自引:3,他引:5  
Global warming has led to significant vegetation changes especially in the past 20 years. Hulun Buir Grassland in Inner Mongolia, one of the world’s three prairies, is undergoing a process of prominent warming and drying. It is essential to investigate the effects of climatic change (temperature and precipitation) on vegetation dynamics for a better understanding of climatic change. NDVI (Normalized Difference Vegetation Index), reflecting characteristics of plant growth, vegetation coverage and biomass, is used as an indicator to monitor vegetation changes. GIMMS NDVI from 1981 to 2006 and MODIS NDVI from 2000 to 2009 were adopted and integrated in this study to extract the time series characteristics of vegetation changes in Hulun Buir Grassland. The responses of vegetation coverage to climatic change on the yearly, seasonal and monthly scales were analyzed combined with temperature and precipitation data of seven meteorological sites. In the past 30 years, vegetation coverage was more correlated with climatic factors, and the correlations were dependent on the time scales. On an inter-annual scale, vegetation change was better correlated with precipitation, suggesting that rainfall was the main factor for driving vegetation changes. On a seasonal-interannual scale, correlations between vegetation coverage change and climatic factors showed that the sensitivity of vegetation growth to the aqueous and thermal condition changes was different in different seasons. The sensitivity of vegetation growth to temperature in summers was higher than in the other seasons, while its sensitivity to rainfall in both summers and autumns was higher, especially in summers. On a monthly-interannual scale, correlations between vegetation coverage change and climatic factors during growth seasons showed that the response of vegetation changes to temperature in both April and May was stronger. This indicates that the temperature effect occurs in the early stage of vegetation growth. Correlations between vegetation growth and precipitation of the month before the current month, were better from May to August, showing a hysteresis response of vegetation growth to rainfall. Grasses get green and begin to grow in April, and the impacts of temperature on grass growth are obvious. The increase of NDVI in April may be due to climatic warming that leads to an advanced growth season. In summary, relationships between monthly-interannual variations of vegetation coverage and climatic factors represent the temporal rhythm controls of temperature and precipitation on grass growth largely.  相似文献   

6.
In order to discuss the characteristics of sea ice change of strong signal area on Antarctic and Arctic and the correlation between the thermal state on the land surface of Tibetan Plateau and the atmosphere circulation of North Hemisphere or the climate changes in China, and to study the feedback mechanism among “three-pole” factors, the earlier stage “three-pole” strong signal characteristics by using statistic methods such as teleconnection,which affect the regional climate changes in China and East Asia. The cross-correlation feature and coupling effect between ice caps of North and South pole and water-thermal state on Tibetan Plateau surface are discussed as well. The contribution of three-pole's earlier stage factors to China's summer climate change and the influence of its dynamic structure are compared here. The formation mechanisms of global climate change and regional climate change of China are investigated from the aspect of qualitative correlation mode of global sea-land-air-ice.  相似文献   

7.
The Three-River Headwaters Region(TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological security of China. Because of climate changes and human activities, ecological degradation occurred in this region. Therefore, "The nature reserve of Three-River Source Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following:(1) In the past 12 years(2000–2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend.(2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure.(3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south.(4) The reverse characteristics of vegetation coverage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin.(5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature.(6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project.  相似文献   

8.
The vegetation coverage dynamics and its relationship with climate factors on different spatial and temporal scales in Inner Mongolia during 2001-2010 were analyzed based on MODIS-NDVI data and climate data.The results indicated that vegetation coverage in Inner Mongolia showed obvious longitudinal zonality,increasing from west to east across the region with a change rate of 0.2/10°N.During 2001-2010,the mean vegetation coverage was 0.57,0.4 and 0.16 in forest,grassland and desert biome,respectively,exhibiting evident spatial heterogeneities.Totally,vegetation coverage had a slight increasing trend during the study period.Across Inner Mongolia,the area of which the vegetation coverage showed extremely significant and significant increase accounted for 11.25% and 29.13% of the area of whole region,respectively,while the area of which the vegetation coverage showed extremely significant and significant decrease accounted for 7.65% and 26.61%,respectively.On inter-annual time scale,precipitation was the dominant driving force of vegetation coverage for the whole region.On inter-monthly scale,the change of vegetation coverage was consistent with both the change of temperature and precipitation,implying that the vegetation growth within a year is more sensitive to the combined effects of water and heat rather than either single climate factor.The vegetation coverage in forest biome was mainly driven by temperature on both inter-annual and inter-monthly scales,while that in desert biome was mainly influenced by precipitation on both the two temporal scales.In grassland biome,the yearly vegetation coverage had a better correlation with precipitation,while the monthly vegetation coverage was influenced by both temperature and precipitation.In grassland biome,the impacts of precipitation on monthly vegetation coverage showed time-delay effects.  相似文献   

9.
To understand the variations in vegetation and their correlation with climate factors in the upper catchments of the Yellow River, China, Normalized Difference Vegetation Index(NDVI) time series data from 2000 to 2010 were collected based on the MOD13Q1 product. The coefficient of variation, Theil–Sen median trend analysis and the Mann–Kendall test were combined to investigate the volatility characteristic and trend characteristic of the vegetation. Climate data sets were then used to analyze the correlation between variations in vegetation and climate change. In terms of the temporal variations, the vegetation in this study area improved slightly from 2000 to 2010, although the volatility characteristic was larger in 2000–2005 than in 2006–2010. In terms of the spatial variation, vegetation which is relatively stable and has a significantly increasing trend accounts for the largest part of the study area. Its spatial distribution is highly correlated with altitude, which ranges from about 2000 to 3000 m in this area. Highly fluctuating vegetation and vegetation which showed a significantly decreasing trend were mostly distributed around the reservoirs and in the reaches of the river with hydropower developments. Vegetation with a relatively stable and significantly decreasing trend and vegetation with a highly fluctuating and significantly increasing trend are widely dispersed. With respect to the response of vegetation to climate change, about 20–30% of the vegetation has a significant correlation with climatic factors and the correlations in most areas are positive: regions with precipitation as the key influencing factor account for more than 10% of the area; regions with temperature as the key influencing factor account for less than 10% of the area; and regions with precipitation and temperature as the key influencing factors together account for about 5% of the total area. More than 70% of the vegetation has an insignificant correlation with climatic factors.  相似文献   

10.
Climate change is one of the most important factors that affect vegetation distribution in North China. Among all climatic factors, drought is considered to have the most significant effect on the environment. Based on previous studies, the climate drought index can be used to assess the evolutionary trend of the ecological environment under various arid climatic conditions. It is necessary for us to further explore the relationship between vegetation coverage(index) and climate drought conditions. Therefore, in this study, based on MODIS-NDVI products and meteorological observation data, the Palmer Drought Severity Index(PDSI) and vegetation coverage in North China were first calculated. Then, the interannual variations of PDSI and vegetation coverage during 2001–2013 were analyzed using a Theil-Sen slope estimator. Finally, an ecoregion perspective of the correlation between them was discussed. The experimental results demonstrated that the PDSI index and vegetation coverage value varied over different ecoregions. During the period 2001–2013, vegetation coverage increased in the southern and northern mountains of North China, while it showed a decreasing trend in the Beijing-Tianjin-Tangshan City Circle area and suburban agricultural zone located in Hebei Province and Henan Province). Over 13 years, the climate of the northeastern part of North China became more humid, while in the southern part of North China, it tended to be dry. According to the correlation analysis results, 73.37% of North China showed a positive correlation between the vegetation coverage and climate drought index. A negative correlation was observed mainly in urban and suburban areas of Beijing, Tianjin, Hebei Province, and Henan Province. In most parts of North China, drought conditions in summer and autumn had a strong influence on vegetation coverage.  相似文献   

11.
近20年来伊洛河流域典型地区森林景观格局动态   总被引:3,自引:0,他引:3  
Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999,six indices were used to analyze spatial patterns and dynamics of forest landscapes of the typical region in the middle of the Yihe-Luohe river basin.These indices include patch number,mean patch area,fragment index,patdch extension index,etc,The results showed that;(1) There was a rapid increase in the number of patch and total area from 1983 to 1999 in the study area,The fragment degree became very high.(2) The area of all the forest patch types had witnessed great changes,The fractal degree of each forest patch type became big from 1983 to 1999 ,The mean extension index of Robinia pseudoacacia forest ,non- forest shrub forest ,sparse forest ,and Quercus species forest in creased rapidly,but that of economic forest became zero ,The fractal dimension each showed that forest coverage has been promoted.(3)The changes of landscape patterns were different in different geomprhic regions.From 1983 to 1999 the vegetation cover area,the gross number and the density of patch,diversity and evenness of landscape were all reduced greatly in gullies and ravines,but the maximum area and the mean area of patch types were increased ,In hilly region,both the forest cover area and the number of patch increased from 1983 to 1999,but the mean area of patch was reduced greatly,In mountain region,even though the area under forest canopy reduced from 1983 to 1999 ,the patch number was increased greatly,the mean area of all patch types was reduced ,the extension index,diversity index and evenness index of landscape were all increased.Furthermore,because of different types of land use,human activtiy and terratin ,the vegetation changes on northern and southern mountain slopes were different.According to these analyses,the main driving forces,such as the policies of management,market economy,influence of human activities etc.are brought out.  相似文献   

12.
The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and human activities, ecological degradation oc- curred in this region. Therefore, "The nature reserve of Three-River Sou,'ce Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following: (1) In the past 12 years (2000-2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend. (2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure. (3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south. (4) The reverse characteristics of vegetation cov- erage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin. (5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature. (6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project.  相似文献   

13.
The role of remote sensing in phenological studies is increasingly regarded as a key to understand large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for forest phenological patterns. The forest phenological phase of Northeast China (NE China) and its spatial characteristics were inferred using 1-km 10-day MODIS normalized difference vegetation index (NDVI) datasets of 2002. The threshold-based method was used to estimate three key forest phenological variables, which are the start of growing season (SOS), the end of growing season (EOS) and growing season length (GSL).Then the spatial patterns of forest phenological variables of NE China were mapped and analyzed. The derived phenological variables were validated by the field observed data from published papers in the same study area. Results indicate that forest phenological phase from MODIS data is comparable with the observed data. As the derived forest phenological pattern is related to forest type distribution, it is helpful to discriminate between forest types.  相似文献   

14.
The wavelet analysis method is used to analyze the annual and winter temperature data of 98 observation stations in China in eight climate zones during the last 50 years (1961-2009). The periodicities of temperature changes are investigated, and the possible temperature change trends in China in the next 20 years (2012-2029) are also predicted. Our results show that in the inter-annual temperature variability there are pervasive quasi-3- to quasi-4-year cycles, and these cycle changes are relatively steady. The periodic characteristics of the annual temperature changes are clearly different between northern and southern China, and our period superimposition extrapolation shows that both annual and winter temperatures in China will continue to increase in the next 20 years, more so in northern China and in the Qinghai-Xizang Plateau (QXP) than in the southern region, except in the southwest. If temperatures follow historic increasing linear trends, the overall temper- ature is expected to increase by 1℃ between 2010 and 2029.  相似文献   

15.
In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely influenced the cold regions environment and engineering infrastructure built above permafrost. Permafrost is a product of the interaction between the atmosphere and the ground. The formation and change of permafrost are determined by the energy exchange between earth and atmosphere system. Fieldwork was performed in order to learn how land surface change influenced the thermal regime in permafrost regions. In this article, the field data observed in the Fenghuo Mountain regions was used to analyze the thermal conditions under different underlying surfaces on the Qinghai-Tibet Plateau. Results show that underlying surface change may alter the primary energy balance and the thermal conditions of permafrost. The thermal flux in the permafrost regions is also changed, resulting in rising upper soil temperature and thickening active layer. Vegetation could prevent solar radiation from entering the ground, cooling the ground in the warm season. Also, vegetation has heat insulation and heat preservation functions related to the ground surface and may keep the permafrost stable. Plots covered with black plastic film have higher temperatures compared with plots covered by natural vegetation. The reason is that black plastic film has a low albedo, which could increase the absorbed solar radiation, and also decrease evapotranspiration. The "greenhouse effect" of transparent plastic film might effectively reduce the emission of long-wave radiation from the surface, decreasing heat loss from the earth's surface, and prominently increasing ground surface temperature.  相似文献   

16.
The taiga vegetation in Western Siberia has been seriously threatened by climate warming in recent decades. However, how vegetation in different growing states and climate conditions responds to climate changes differently is still unclear. Here we explore the vegetation activity trends in Western Siberia taiga forests using the annual rate of change in leaf area index(LAI) during 1982–2018 so as to answer two questions:(1) how did climate warming affect taiga vegetation activity in the recent l...  相似文献   

17.
Using the Integrated Biosphere Simulator, a dynamic vegetation model, this study initially simulated the net primary productivity(NPP) dynamics of China's potential vegetation in the past 55 years(1961–2015) and in the future 35 years(2016–2050). Then, taking the NPP of the potential vegetation in average climate conditions during 1986–2005 as the basis for evaluation, this study examined whether the potential vegetation adapts to climate change or not. Meanwhile, the degree of inadaptability was evaluated. Finally, the NPP vulnerability of the potential vegetation was evaluated by synthesizing the frequency and degrees of inadaptability to climate change. In the past 55 years, the NPP of desert ecosystems in the south of the Tianshan Mountains and grassland ecosystems in the north of China and in western Tibetan Plateau was prone to the effect of climate change. The NPP of most forest ecosystems was not prone to the influence of climate change. The low NPP vulnerability to climate change of the evergreen broad-leaved and coniferous forests was observed. Furthermore, the NPP of the desert ecosystems in the north of the Tianshan Mountains and grassland ecosystems in the central and eastern Tibetan Plateau also had low vulnerability to climate change. In the next 35 years, the NPP vulnerability to climate change would reduce the forest–steppe in the Songliao Plain, the deciduous broad-leaved forests in the warm temperate zone, and the alpine steppe in the central and western Tibetan Plateau. The NPP vulnerability would significantly increase of the temperate desert in the Junggar Basin and the alpine desert in the Kunlun Mountains. The NPP vulnerability of the subtropical evergreen broad-leaved forests would also increase. The area of the regions with increased vulnerability would account for 27.5% of China.  相似文献   

18.
Yao  Yonghui  Hu  Yufan  Kou  Zhixiang  Zhang  Baiping 《地理学报(英文版)》2020,30(9):1523-1533
The Qinling Mountains is not only the geographical boundary between North and South China,but also the boundary between subtropical and warm temperate zones.It plays an important role in the geo-ecological pattern of China.However,there is controversy about the specific location of this geographical boundary in academic community due to the complexity,transition and heterogeneity of the transitional zone,as well as the differences in the delimitation indicators and research purposes.To further reveal the characteristics of the North-South transitional zone and clarify the specific location of the geo-ecological boundary between North and South China,combined with SRTM topographic data,temperature and precipitation data,Pinus massoniana forest and Pinus tabulaeformis forest,which represent subtropical coniferous forest in South China and temperate coniferous forest in North China respectively,were chosen to analyze their spatial distributions in the Qinling-Daba Mountains and the climatic conditions at their boundary with the climatic indexes of annual precipitation,the coldest month(January) average temperature,the warmest month(July) average temperature and the annual average temperature.The results show that:(1) Pinus massoniana and Pinus tabulaeformis forests and the climate indicators of their boundary can be used as one of the vegetation-climate indexes for the delimitation of subtropical and warm temperate zones.The boundary between the subtropical coniferous forest(Pinus massoniana forest) and temperate coniferous forest(Pinus tabulaeformis forest) is located along the south slope of Funiu Mountain to the north edge of Hanzhong Basin(the south slope of Qinling Mountains) at an altitude of 1000–1200 m,where the climatic indictors are stable:the annual precipitation is about 750–1000 mm,the annual average temperature is about 12–14℃,the coldest monthly average temperature is 0–4℃,and the warmest monthly average temperature is about 22–26℃.(2) It can be more scientifically to delimitate the boundary of subtropical and warm temperate zones in China by comprehensively considering the vegetation-climate indicators.Additionally,the boundary between subtropical and warm temperate zones in Qinling-Daba Mountains should be a transitional zone consisting of the boundaries of coniferous forests,broad-leaved forests and shrubs between subtropical and warm temperate zones.The results provide a scientific basis for the selection of delimitation index of subtropical and warm temperate zones.  相似文献   

19.
Trends of annual and monthly temperature, precipitation, potential evapotranspi- ration and aridity index were analyzed to understand climate change during the period 1971–2000 over the Tibetan Plateau which is one of the most special regions sensitive to global climate change. FAO56–Penmen–Monteith model was modified to calculate potential evapotranspiration which integrated many climatic elements including maximum and mini- mum temperatures, solar radiation, relative humidity and wind speed. Results indicate gen- erally warming trends of the annual averaged and monthly temperatures, increasing trends of precipitation except in April and September, decreasing trends of annual and monthly poten- tial evapotranspiration, and increasing aridity index except in September. It is not the isolated climatic elements that are important to moisture conditions, but their integrated and simulta- neous effect. Moreover, potential evapotranspiration often changes the effect of precipitation on moisture conditions. The climate trends suggest an important warm and humid tendency averaged over the southern plateau in annual period and in August. Moisture conditions would probably get drier at large area in the headwater region of the three rivers in annual average and months from April to November, and the northeast of the plateau from July to September. Complicated climatic trends over the Tibetan Plateau reveal that climatic factors have nonlinear relationships, and resulte in much uncertainty together with the scarcity of observation data. The results would enhance our understanding of the potential impact of climate change on environment in the Tibetan Plateau. Further research of the sensitivity and attribution of climate change to moisture conditions on the plateau is necessary.  相似文献   

20.
Studying the response to warming of hydrological systems in China’s temperate glacier region is essential in order to provide information required for sustainable development.The results indicated the warming climate has had an impact on the hydrological cycle.As the glacier area subject to melting has increased and the ablation season has become longer,the contribution of meltwater to annual river discharge has increased.The earlier onset of ablation at higher elevation glaciers has resulted in the period of minimum discharge occurring earlier in the year.Seasonal runoff variations are dominated by snow and glacier melt,and an increase of meltwater has resulted in changes of the annual water cycle in the Lijiang Basin and Hailuogou Basin.The increase amplitude of runoff in the downstream region of the glacial area is much stronger than that of precipitation,resulting from the prominent increase of meltwater from glacier region in two basins.Continued observations in the glacierized basins should be undertaken in order to monitor changes,to reveal the relationships between climate,glaciers,hydrology and water supplies,and to assist in maintaining sustainable regional development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号