首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A characteristic domainal configuration is reported for both micro-structures and c-axis fabrics in the Cap de Creus pure quartz mylonites as displayed in 50 samples from the centres of different shear zones. Three types of domains are found a, b and c. Each domain has a distinct c-axis orientation pattern. These three fabric elements, also labelled a, b and c make up the total fabric. c-axis fabrics are symmetric or asymmetric with respect to the main mylonitic foliation depending on the presence or absence of the b domain and its fabric element. The boundaries of the domains are parallel to the main mylonitic foliation. Two domain types, a and b display an internal foliation defined by preferred grain boundary alignment parallel to the direction of optical orientation within the domain. The internal foliations are oblique to the main mylonitic foliation in two different senses giving the sample a herring-bone appearance. These internal foliations are shown to be related to extensional crenulations. Domains are not produced by host-controlled recrystallization. The fabric elements and corresponding domains are the expression of kinematic heterogeneities on the scale of the thin section.  相似文献   

2.
The lattice preferred orientation analysis of quartz c-axis has been used to study the fabric elements in deformed quartz. Application of X-ray texture goniometer attached with high resolution X-ray diffractometer is used to improve the quality of the studies related to texture analysis, which is difficult to observe under conventional optical microscopic method. A comparison is made in between the conventional optical microscope and XTG method using a quartz sample from Malanjkhand reef is used to demonstrate the difference obtained within fabric elements. In photomicrograph, only one fabric component is observed while pole figure analysis using XTG method depicts three components of deformation. This technique is also very useful in the study of polymineralic rocks as well as deformation induced in synthetic materials.  相似文献   

3.
Commonly, basal glide is the predominant deformation mechanism of quartz in tectonites. Therefore, local deformation is probably mostly progressive simple shear rotating the sheared domains as well as deforming them. If a tectonite body is constrained to be deformed irrotationally and approximately homogeneously throughout, it is necessarily traversed by closely spaced material surfaces that are approximately plane and orthogonal originally, and stay so through time. These surfaces act as internal boundaries and enforce cancellation of the rigid-body rotations of, in the general case, four distinct families of domains, with slip planes and directions mutually mirror-symmetric. The overall symmetry of the fabric is orthorhombic, with the mirror planes coinciding with the principal planes of strain. Certain grains with basal planes in favorable orientation for one of the four ideal simple shears could initiate the deformation, and because of the need for compatibility, entrain neighboring grains into a similar strain, making the surroundings of an initiating grain a shear zone. Compatibility also requires thec-axes of grains in a domain to be rotated progressively toward the direction of maximum shortening. If the original orientation of crystallographic axes was random, domains of one family thus acquire a fabric with a single maximum, and the four resulting fabrics with single maxima combine to form crossed-girdle patterns. Depending on the orientation of the average shear planes and slip directions in the four families, the crossed girdles can be of different types; most fabric types that have been observed in quartz tectonites can be obtained by superposition. Crossed-girdle fabrics with low symmetry result from non-coaxial strain histories.  相似文献   

4.
Piezoelectricity, a polarization of charge produced by an applied stress, occurs in many minerals. It is particularly strong in quartz. Aggregates of piezoelectric grains are themselves piezoelectric if the grains are suitably aligned. Such aggregates may be said to have a piezoelectric fabric. Thus quartz-rich rocks may possess a piezoelectric fabric and this paper discusses the various possible fabrics.To test whether a piezoelectric fabric might be detected in a quartz-rich rock, apparatus was built that hydraulically applied a sinusoidal stress to cubic specimens. The three resulting orthogonal polarizations of charge were measured via a charge amplifier. A specimen of pure quartz was used to verify the experimental method and to ensure that absolute piezoelectric moduli were being measured. Rocks with and without preferred orientation were tested. Of the latter types, those containing little or no free quartz (marble, basalt) did not exhibit measurable piezoelectric effects. However, all quartz-rich rocks (quartzites, granites, gneisses, mylonites) did show piezoelectric effects when stressed. These effects were in two categories
1. (1) effects due to piezoelectric fabrics, called true piezoelectric effects
2. (2) effects due to random distributions of the piezoelectric vectors, called statistical effects.
To distinguish between these two effects, three criteria were used. Firstly, the measured effects were compared with the expected statistical effect for a rock of that grain size and composition. Secondly, where possible, multiple specimens were cut from the one rock sample, all specimens with the same orientation. Specimens from a rock with a piezoelectric fabric should show similar results. Thirdly, the optically observed c-axis distribution and orientation was compared with the piezoelectrically predicted fabric and orientation.This paper shows that while most rocks gave results consistent with statistical effects from a non-polar or random distribution, some rocks exhibited a true piezoelectric effect due to fabric. This effect may be used, with some imprecision, to locate the a-axes and c-axes of quartz in the aggregate. The polarities of the a-axes are also obtained.  相似文献   

5.
The microfabrics of folded quartz veins in fine‐grained high pressure–low temperature metamorphic greywackes of the Franciscan Subduction Complex at Pacheco Pass, California, were investigated by optical microscopy, scanning electron microscopy including electron backscatter diffraction, and transmission electron microscopy. The foliated host metagreywacke is deformed by dissolution–precipitation creep, as indicated by the shape preferred orientation of mica and clastic quartz without any signs of crystal‐plastic deformation. The absence of crystal‐plastic deformation of clastic quartz suggests that the flow stress in the host metagreywacke remained below a few tens of MPa at temperatures of 250–300 °C. In contrast, the microfabric of the folded quartz veins indicates deformation by dislocation creep accompanied by subgrain rotation recrystallization. For the small recrystallized grain size of ~8 ± 6 μm, paleopiezometers indicate differential stresses of a few hundred MPa. The stress concentration in the single phase quartz vein is interpreted to be due to its higher effective viscosity compared to the fine‐grained host metagreywacke deforming by dissolution–precipitation creep. The fold shape suggests a viscosity contrast of one to two orders of magnitude. Deformation by dissolution–precipitation creep is expected to be a continuous process. The same must hold for folding of the vein and deformation of the vein quartz by dislocation creep. The microfabric suggests dynamic recrystallization predominantly by subgrain rotation and only minor strain‐induced grain boundary migration, which requires low contrasts in dislocation density across high‐angle grain boundaries to be maintained during climb‐controlled creep at high differential stress. The record of quartz in these continuously deformed veins is characteristic and different from the record in metamorphic rocks exhumed in seismically active regions, where high‐stress deformation at similar temperatures is episodic and related to the seismic cycle.  相似文献   

6.
Planar elements in quartz, produced by shock induced plastic deformation, have been investigated in four quartz-plagioclase veins contained in an amphibolite from the crystalline basement of the Ries Crater from the drill hole Nördlingen 1973.The crystallographic orientation of planar elements in quartz grains is similar in all four rocks ({10¯13} predominant, {0001} less frequent, {10¯12} and others still rarer), indicating an average shock pressure in the range between 150 and 200 kbar.The spatial density of planar elements as measured by the number of systems per shocked grain, the number of individual elements per shocked grain, or as ratio shocked: unshocked grains increases with increasing grain size. This grain size effect is supposed to be primarily a consequence of the heterogeneity of the stress field which produced a random distribution of local stress maxima and locally restricted areas of plastic quartz deformation in the rock. The probability that planar elements develop within one individual grain increases, therefore, with increasing grain size.In one leucosome in which the quartz grains were randomly oriented planar elements parallel to {10¯13} cluster in a stereographic projection within one belt. It is supposed that the pole of this belt indicates the direction in which the shock front passed through the rock.  相似文献   

7.
Application of new scanning electron microscope techniques to the study of deformed metamorphic pyrite reveals evidence for plastic deformation not readily recognised by more traditional methods. Specifically, use of forescatter solid-state detectors in conjunction with tilted polished specimens of pyritic ore produces high quality crystallographic orientation contrast images, which map the distribution of deformation domains within grains. Use of electron-backscatter diffraction allows quantification of the crystallographic misorientations shown by the orientation contrast images. Combination of these techniques shows that the pyrite studied deforms by slip on {100} and more rarely {110} systems. Slip is often associated with distributed rotation of up to 20° about <100> and more rarely <110> axes. Pyrites may have simple histories involving rotation about a single <100> axis, or more complex histories involving rotation about different <100> axes, and more rarely <110>, in different domains of the same pyrite grain, or sequential rotations about quite different systems, typically distributed rotation about <100> followed by discrete rotation about a non-crystallographic axis. Received: 25 June 1997 / Accepted: 14 May 1998  相似文献   

8.
Abstract

The Cadomian Dyje Batholith, in the foot–wall of the Variscan Moravian nappe pile, has been involved in Variscan ductile deformation. The Cadomian Brunovistulian rocks were obliquely underthrusted during Carboniferous dextral transpression.

Strain intensity is inversely proportional to the distance from the contact of the Variscan thrust front. The microstructures of deformed granodiorites and quartz–diorites show a characteristic zonality marked by relatively high temperature flow in the west (550–580 °C) characterized by dynamic recrystallization of feldspars and grain boundary migration recrystallization of quartz. The size of quartz grains decreases with decreasing strain towards the east. At the easternmost part of the autochthonous Dyje massif, fracturing of feldspar and subgrain rotation recrystallization of quartz predominate. Flow stress estimates calculated from recrystallized quartz grain size show a regional increase of stress intensity from the highly strained margin towards the less deformed core of the Dyje massif. This microstructural zonation is oblique with respect to the major thrust boundary and corresponds roughly to metamorphic isogrades. The microstructural zonation reflects underthrusting of the Brunovistulian domain below the Moldanubian nappe.

The main ductile tectonic event D1 is followed by a retrogressive brittle–ductile and brittle deformation D2. D2 results in the development of shear zones and faults superimposed on the D1 mylonite fabric. D2 is related to extension oblique to the D1 fabric, associated with detachment and the westward movement of the Moravian nappes. © Elsevier, Paris  相似文献   

9.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

10.
We present microstructural analyses demonstrating how the geometrical distribution and interconnectivity of mica influences quartz crystallographic preferred orientation (CPO) development in naturally deformed rocks. We use a polymineralic (Qtz + Pl + Kfs + Bt + Ms ± Grt ± Tur) mylonite from the Zanskar Shear Zone, a section of the South Tibetan Detachment (NW Himalaya), to demonstrate how quartz CPO intensity decreases from quartz-dominated domains to micaceous domains, independently of whether or not quartz grains are pinned by mica grains. We then use a bimineralic (Qtz + Ms) mylonite from the Main Central Thrust (NW Himalaya) to show how increasing mica grain connectivity is concomitant with a systematic weakening of quartz CPO. Our results draw distinctions between CPO weakening due to: (i) second phase drag, leading to ineffective recovery in quartz; and (ii) increased transmission and localisation of strain between interconnected mica grains. In the latter case, well-connected micaceous layers take up most of the strain, weakening the rock and preventing straining of the stronger quartz matrix. Our findings suggest that rock weakening in quartz-rich crustal rocks is influenced not only by the presence of mica-rich layers but also the degree of mica grain connectivity, which allows for more effective strain localization through the entire rock mass.  相似文献   

11.
Quartz c-axis fabrics have been investigated within a suite of quartz veins and monomineralic layers around a major post-nappe fold hinge (the Wandfluhhorn Fold) in the Bosco area (Swiss-Italian border) within the lower Penninic nappes.Two kinematic domains which are separated by the axial plane trace of the Wandfluhhorn Fold are recognized; on the lower limb the measured quartz c-axis fabric asymmetry indicates a sense of shear in which the overlying layers move to the southwest (i.e. top-to-SW) whereas on the upper limb the shear sense is reversed with the top moving to northeast. The shear direction (N60°E–N80°E), however, is constant in both areas and oblique to an older stretching lineation as well as to the D3 fold hinge. Such a distribution of asymmetric quartz c-axis fabrics and the constant orientation of their interpreted shear direction, which is apparent only from the fabric data and not from field evidence, indicates fabric development pre- or early syn-Wandfluhhorn folding, with subsequent folding and modification of the existing textures and possibly rotation of the initial fold axis.An overall westward-directed shear has been suggested for the whole of the Lepontine Alps. However, this study demonstrates that this simple general pattern has been modified locally by later folding. It also demonstrates that the dominant lineation may be a finite stretching lineation due to more than one phase of deformation and is not necessarily related to any particular transport direction.  相似文献   

12.
A 200 m thick mudstone unit in the Carboniferous of the Cantabrian Mountains, northern Spain, exhibits an increase in intensity of the slaty cleavage from top to bottom which appears to be correlated with a decrease in the mean grain size, average bed thickness and quartz: mica ratio. Anastomosing cleavage domains, formed by pressure solution and by kinking and rotation of the detrital micas, become closer spaced, wider and more continuous towards the finer-grained base of the unit. Growth of strongly oriented new micas within the cleavage domains also appears to be correlated with the intensity of the domain development and hence with the initial lithology. Clay minerals have been completely replaced throughout the mudstone by muscovite, paragonite and pyrophyllite during low-grade metamorphism. The growth of an oriented mica fabric, however, is restricted to samples with well-developed cleavage domains.  相似文献   

13.
The grain‐scale spatial arrangement of melt in layer‐parallel leucosomes in two anatectic rocks from two different contact aureoles located in central Maine, USA, is documented and used to constrain the controls on grain‐scale melt localization. The spatial distribution of grain‐scale melt is inferred from microstructural criteria for recognition of mineral pseudomorphs after melt and mineral grains of the solid matrix that hosted the melt. In both rocks, feldspar mimics the grain‐scale distribution of melt, and quartz is the major constituent of the solid matrix. The feldspar pockets consist of individual feldspar grains or aggregates of feldspar grains that show cuspate outlines. They have low average width/length ratios (0.54 and 0.55, respectively), and are interstitial between more rounded and equant (width/length ratios 0.65 for both samples) quartz grains. In two dimensions, the feldspar pockets extend over distances equivalent to multiple quartz grain diameters, possibly forming a connected three‐dimensional intergranular network. Both samples show similar mesoscopic structural elements and in both samples the feldspar pockets have a shape‐preferred orientation. In one sample, feldspar inferred to replace melt is aligned subparallel to the shape‐preferred orientation of quartz, indicating that pre‐ or syn‐anatectic strain controlled the grain‐scale distribution of melt. In the other sample, the preferred orientation of feldspar inferred to replace melt is different from the orientations of all other mesoscopic or microscopic structures in the rock, indicating that differential stress controlled grain‐scale melt localization. This is probably facilitated by conditions of higher differential stress, which may have promoted microfracturing. Grain‐scale melt distribution and inferred melt localization controls give insight into possible grain‐scale deformation mechanisms in melt‐bearing rocks. Application of these results to the interpretation of deep crustal anatectic rocks suggests that grain‐scale melt distribution should be controlled primarily by pre‐ or syn‐anatectic deformation. Feedback relations between melt localization and deformation are to be expected, with important implications for deformation and tectonic evolution of melt‐bearing rocks.  相似文献   

14.
The Moine nappe mylonites of the area of Loch Eriboll are inferred to have deformed predominantly by simple shear. Samples were taken from each limb of a late recumbent fold and the quartz crystallographic preferred orientation and optical microstructure were investigated. The pattern of preferred orientation was found to be related to the local folded orientation of the foliation and stretching lineation for the overturned limb and to the inferred imposed deformation for the normal limb. The mechanical development of the fold was modelled as a similar fold forming in a homogeneous mechanically anisotropic material with linear viscous rheology. A very high mechanical anisotropy was required for active amplification of small initial perturbations under simple shear applied at 10 ° to the initial enveloping surface. The high anisotropy also constrained the local kinematics to approximate simple shear parallel to the plane of easy shear, which contributes to the maintenance of the preferred orientation patterns relative to the local macroscopic fabric elements. The degree of mechanical anisotropy calculated from the preferred orientation assuming the operation of the common quartz slip systems is lower than that required for mechanical amplification of the folds. Consequently, it is suggested that the mechanical anisotropy derives from sliding on preferentially aligned grain boundaries.  相似文献   

15.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

16.
We use new (micro-)structural, petrofabric, strain and vorticity data to analyze the deformation path in a mesoscopic quartz mylonite zone. The mylonite zone resulted from the complete transposition of a stretching lineation-parallel isoclinal fold. Symmetric cleft-girdle quartz c-axis fabrics were recorded in the middle domain, which occupies the inner limbs of the precursor isoclinal fold, while asymmetric cleft- and crossed-girdle fabrics were observed in the upper and lower domains that represent the outer limbs. Constrictional strain, with increasing k values towards the middle domain, is inferred from petrofabric and 3D strain data. Oblique grain shape fabrics yield vorticity estimates of 0.72–0.90 in the zone. However, in the middle domain, pure shear dominated deformation is suggested by orthorhombic crystallographic fabrics. Strain rate is constant throughout the zone; a strain decrease towards the zone center implies that deformation ceased earlier in the middle domain. The data indicates that fold transposition and subsequent mylonitization started as pure-shear-dominated constrictional deformation and progressively changed to simple-shear-dominated, plane strain. During this flow path the asymmetric quartz c-axis fabrics likely developed by depopulation of cleft-girdle maxima rather than from the synthetic rotation of fabric maxima itself.  相似文献   

17.
Tectonic pseudotachylytes, i.e. quenched friction-induced silicate melts, record coseismic slip along faults and are mainly reported from the brittle crust in association with cataclasites. In this study, we document the occurrence of recrystallization of quartz to ultrafine-grained (grain size 1–2 μm) aggregates along microshear zones (50–150 μm thick) in the host rock adjacent to pseudotachylytes from two different faults within quartzite (Schneeberg Normal Fault Zone, Eastern Alps), and tonalite (Adamello fault, Southern Alps) in the brittle crust. The transition from the host quartz to microshear zone interior includes: (i) formation of high dislocation densities; (ii) fine (0.3–0.5 μm) polygonization to subgrains defined by disordered to well-ordered dislocation walls; (iii) development of a mosaic aggregate of dislocation-free new grains. The crystallographic preferred orientation (CPO) of quartz towards the microshear zone shows a progressive misorientation from the host grain, by subgrain rotation recrystallization, to a nearly random CPO possibly related to grain boundary sliding. These ultrafine aggregates appear to be typically associated with pseudotachylytes in nature. We refer the crystal plastic deformation of quartz accompanied by dramatic grain size refinement to the coseismic stages of fault slip due to high differential stress and temperature transients induced by frictional heating. Microshear zones localized on precursory fractures developed during the stages of earthquake rupture propagation and the very initial stages of fault slip. Thermal models indicate that the process of recrystallization, including recovery processes, occurred in a time lapse of a few tens of seconds.  相似文献   

18.
Garnet (10 vol.%; pyrope contents 34–44 mol.%) hosted in quartzofeldspathic rocks within a large vertical shear zone of south Madagascar shows a strong grain‐size reduction (from a few cm to ~300 μm). Electron back‐scattered diffraction, transmission electron microscopy and scanning electron microscope imaging coupled with quantitative analysis of digitized images (PolyLX software) have been used in order to understand the deformation mechanisms associated with this grain‐size evolution. The garnet grain‐size reduction trend has been summarized in a typological evolution (from Type I to Type IV). Type I, the original porphyroblasts, form cm‐sized elongated grains that crystallized upon multiple nucleation and coalescence following biotite breakdown: biotite + sillimanite + quartz = garnet + alkali feldspar + rutile + melt. These large garnet grains contain quartz ribbons and sillimanite inclusions. Type I garnet is sheared along preferential planes (sillimanite layers, quartz ribbons and/or suitably oriented garnet crystallographic planes) producing highly elongated Type II garnet grains marked by a single crystallographic orientation. Further deformation leads to the development of a crystallographic misorientation, subgrains and new grains resulting in Type III garnet. Associated grain‐size reduction occurs via subgrain rotation recrystallization accompanied by fast diffusion‐assisted dislocation glide. This plastic deformation of garnet is associated with efficient recovery as shown by the very low dislocation densities (1010 m?3 or lower). The rounded Type III garnet experiences rigid body rotation in fine‐grained matrix. In the highly deformed samples, the deformation mechanisms in garnet are grain‐size‐ and shape‐dependent: dislocation creep is dominant for the few large grains left (>1 mm; Type II garnet), rigid body rotation is typical for the smaller rounded grains (300 μm or less; Type III garnet) whereas diffusion creep may affect more elliptic garnet (Type IV garnet). The P–T conditions of garnet plasticity in the continental crust (≥950 °C; 11 kbar) have been identified using two‐feldspar thermometry and GASP conventional barometry. The garnet microstructural and deformation mechanisms evolution, coupled with grain‐size decrease in a fine‐grained steady‐state microstructure of quartz, alkali feldspar and plagioclase, suggests a separate mechanical evolution of garnet with respect to felsic minerals within the shear zone.  相似文献   

19.
MCT Zone of Alakhnanda valley is a major ductile shear zone in Garhwal Himalaya, which is characterised by different types of mylonite rocks. On the basis of grain size and the percentage of matrix in the rock, zones comprising protomylonite, augen mylonite, mylonite and ultramylonite have been identified. The study of microstructures, grain size and crystallographic preferred orientation of quartz c-axis fabric reveals that the rocks of the MCT zone were deformed by a combination of intracrystalline creep (power law creep) and grain boundary migration (sliding super plasticity).  相似文献   

20.
Clay-rich fault rocks have long been recognized to host distinctive fabric elements, and fault rock fabric is increasingly thought to play a fundamental role in fault mechanical behaviour in the brittle regime. Although the geometries of fabric elements in fault gouges have been described for almost a century, the genesis and evolution of these elements during shear, and their links to bulk mechanical properties, remain poorly understood. We characterize the development and evolution of fabric elements with increasing shear in a variety of clay-rich experimental gouges over shear strains of <1 to >20 and at normal stresses of 2–150 MPa in the double-direct shear configuration. In addition to SEM observations of experiment products at a variety of shear strains, we quantified clay fabric intensity and the degree of grain size reduction using X-ray Texture Goniometry (XTG) and particle size distribution (PSD) measurements. We also measured P- and S-wave velocities during shear to further probe the evolution of shear fabric and gouge properties. We find that clay fabric elements develop in a systematic manner regardless of the gouge material. Riedel shears in the R1 orientation and boundary-parallel shears are the dominant fabric elements. Riedel shears nucleate at layer margins and propagate into the layer shortly after reaching yield stress. Clay particles rotate into the P-orientation shortly after Riedels propagate through the layer. The Riedel shears are through-going, but are >10× thinner than similar zones observed in coarser granular materials. Our results suggest that the weakness of clay-rich fault gouge may be less a function of anisotropic crystal structure, as has been suggested previously, and more a consequence of very thin shear surfaces permitting deformation in clay-rich materials with minimal dilation or cataclasis. The very thin shear surfaces are a function of the fine grain size of the materials and possibly polymodal PSD's.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号