首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 30?–?80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called “stria” bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of \((0.1\,\mbox{--}\,0.6)c\). Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency. The striae bandwidths are in the range of \({\approx}\,(20\,\mbox{--}\,100)\) kHz and the striae drift rates vary from zero to \({\approx}\,0.3~\mbox{MHz}\,\mbox{s}^{-1}\). The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of \(\Delta n/n\sim10^{-3}\), their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of \(400\,\mbox{--}\,800~\mbox{km}\,\mbox{s}^{-1}\). These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves.  相似文献   

2.
A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15?–?85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of \({\approx}\,15\,\mbox{--}\,85~\mbox{MHz}\) during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that
  1. i)
    Type I storm bursts have a spectral index of \({\approx}\,{+}3.5\),
     
  2. ii)
    the spectral index of the background continuum is \({\approx}\,{+}2.9\),
     
  3. iii)
    the transition frequency between Type I and Type III storms occurs at \({\approx}\,55~\mbox{MHz}\),
     
  4. iv)
    Type III bursts have an average spectral index of \({\approx}\,{-}2.7\),
     
  5. v)
    the spectral index of the Type III continuum is \({\approx}\,{-}1.6\), and
     
  6. vi)
    the degree of circular polarization of all Type I (Type III) bursts is \({\approx}\,90\%\) (\(30\%\)).
     
The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.
  相似文献   

3.
It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength \(B\) and electron power-law index \(\delta\) versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), \(B\) and \(\delta\) are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of \(B\) and \(\delta\) increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.  相似文献   

4.
We recently investigated some of the hitherto unreported observational characteristics of the low frequency (85–35 MHz) type III–V bursts from the Sun using radio spectropolarimeter observations. The quantitative estimates of the velocities of the electron streams associated with the above two types of bursts indicate that they are in the range \({\gtrsim }0.13c\)–0.02c for the type V bursts, and nearly constant (\({\approx }0.4c\)) for the type III bursts. We also find that the degree of circular polarization of the type V bursts vary gradually with frequency/heliocentric distance as compared to the relatively steeper variation exhibited by the preceding type III bursts. These imply that the longer duration of the type V bursts at any given frequency (as compared to the preceding type III bursts) which is its defining feature, is due to the combined effect of the lower velocities of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel.  相似文献   

5.
The gyro-synchrotron emission from a model source with a non-uniform magnetic field is computed taking into account the self absorption. This model seems adequate not only to interpret the radio spectrum and its time variation of microwave impulsive bursts but also to solve the discrepancy between the numbers of non-thermal electrons emitting radio burst and those emitting hard X-ray burst.The decrease of flux of radio burst with decreasing frequency at low microwave frequencies is due to the self absorption and/or the thermal gyro-absorption. In this frequency range, the radio source is optically thick even at weak microwave bursts. The weakness of the bursts may be rather due to the small size of the radio source and/or the weakness of the magnetic field than the small number density of the non-thermal electrons.The time variation of the flux of radio burst may be mainly attributed to the variation of source size in a horizontal direction ( direction) instead of the variation of the number density of non-thermal electrons itself, implying that the acceleration region progressively moves in the horizontal direction leaving the non-thermal electrons behind during the increasing phase of the radio burst.  相似文献   

6.
Asymmetric magnetic field configurations in solar active regions hinder mildly relativistic electrons with magnetic moments suitable to produce microwave radiation from being trapped. Therefore the duration of stay of electrons in the microwave source region is much shorter (<0.2 s) than in the usually assumed trapping models. On this basis we construct a consistent model of hard X-ray correlated microwave bursts due to continuous injection of electrons into a pole field of an asymmetric magnetic loop (Figures 1 and 2). This resolves the discrepancy of the numbers of electrons needed to produce X-ray and radio emission.We compute gyrosynchrotron spectra with the assumption of conservation of the magnetic moment M in the microwave source. The consequence is an anticorrelation between the low frequency power index a of the microwave spectrum and the power index of the hard X-ray spectrum. In fact during the flare of May 18, 1972 increases with time while a is decreasing, so that +a= constant. Furthermore, it is shown that electrons with energies below 100 keV contribute significantly to the microwave radiation; they determine the low frequency spectrum completely.The model is able to explain the most often observed type C-spectra (Guidice and Castelli, 1975), but also flat spectra over one frequency decade.On leave from University of Berne, Institute of Applied Physics.  相似文献   

7.
Radio and X-ray observations are presented for three flares which show significant activity for several minutes prior to the main impulsive increase in the hard X-ray flux. The activity in this ‘pre-flash’ phase is investigated using 3.5 to 461 keV X-ray data from the Solar Maximum Mission, 100 to 1000 MHz radio data from Zürich, and 169 MHz radio-heliograph data from Nançay. The major results of this study are as follows:
  1. Decimetric pulsations, interpreted as plasma emission at densities of 109–1010 cm?3, and soft X-rays are observed before any Hα or hard X-ray increase.
  2. Some of the metric type III radio bursts appear close in time to hard X-ray peaks but delayed between 0.5 and 1.5 s, with the shorter delays for the bursts with the higher starting frequencies.
  3. The starting frequencies of these type III bursts appear to correlate with the electron temperatures derived from isothermal fits to the hard X-ray spectra. Such a correlation is expected if the particles are released at a constant altitude with an evolving electron distribution. In addition to this effect we find evidence for a downward motion of the acceleration site at the onset of the flash phase.
  4. In some cases the earlier type III bursts occurred at a different location, far from the main position during the flash phase.
  5. The flash phase is characterized by higher hard X-ray temperatures, more rapid increase in X-ray flux, and higher starting frequency of the coincident type III bursts.
  相似文献   

8.
The measurements of peak intensities of hard X-ray bursts from hot flare plasma electrons as a function of peak frequency of associated microwave radio bursts are discussed. The latter is proportional to the magnetic field strength. The results suggest that the flare hard X-rays are emitted when the electron plasma frequency is comparable to the electron gyrofrequency. Thus, the hard X-ray peak intensity varies as B 4.2, where B is the magnetic field strength.On leave from the Geophysical Institute, Slovak Academy of Sciences, 947 01 Hurbanovo, Czechoslovakia.Deceased 22 July, 1986.  相似文献   

9.
We analyzed three noise storms recorded on 200?–?400 MHz Trieste Callisto radio spectra on 2 July 2012, 8 July 2012, and 16 July 2012 by the Fourier method. We divided intervals of the noise storms into five-minute intervals, and in these intervals we computed the mean Fourier spectra as a function of the wave numbers in the frequency and height-scale spaces. We found that these Fourier spectra, where the spectrum from the quiet-activity interval was subtracted, are power-law spectra. The mean power-law index of these spectra in the range \(\ln(k_{z}) = [1.8, 2.9]\) (where \(k_{z}\) is the wave number in the height-scale space) is \(-1.7\pm0.14\), \(-1.6\pm0.14\), and \(-1.5 \pm0.12\) for the 2 July 2012, the 8 July 2012, and the 16 July 2012 noise storms, respectively. It appears that as the number of Type-I bursts in the studied interval increases, the power-law index becomes closer to \(-5/3\); this is known as the Kolmogorov spectral index. The power-law index of the noise storms is very similar to that of the narrowband dm-spikes found in our previous studies. Furthermore, we found a break in the power spectra at \(\ln(k_{z}) \approx2.9\), and the mean power-law index values above this break are \(-2.9\pm0.46\), \(-3.1\pm0.65\), and \(-3.4\pm0.98\), respectively.  相似文献   

10.
Using a new type of oscillation map, made from the radio spectra by the wavelet technique, we study the 18 April 2014 M7.3 flare (SOL2014-04-18T13:03:00L245C017). We find a quasi-periodic character of this flare with periods in the range 65?–?115 seconds. At the very beginning of this flare, in connection with the drifting pulsation structure (plasmoid ejection), we find that the 65?–?115 s oscillation phase slowly drifts towards lower frequencies, which indicates an upward propagating wave initiated at the start of the magnetic reconnection. Many periods (1?–?200 seconds) are found in the drifting pulsation structure, which documents multi-scale and multi-periodic processes. On this drifting structure, fiber bursts with a characteristic period of about one second are superimposed, whose frequency drift is similar to that of the drifting 65?–?115 s oscillation phase. We also checked periods found in this flare by the EUV Imaging Spectrometer (EIS)/Hinode and Interface Region Imaging Spectrograph (IRIS) observations. We recognize the type III bursts (electron beams) as proposed, but their time coincidence with the EIS and IRIS peaks is not very good. The reason probably is that the radio spectrum is a whole-disk record consisting of all bursts from any location, while the EIS and IRIS peaks are emitted only from locations of slits in the EIS and IRIS observations.  相似文献   

11.
A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of 4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).  相似文献   

12.
Previous sub-THz studies were derived from single-event observations. We here analyze for the first time spectral trends for a larger collection of sub-THz bursts. The collection consists of a set of 16 moderate to small impulsive solar radio bursts observed at 0.2 and 0.4 THz by the Solar Submillimeter-wave Telescope (SST) in 2012?–?2014 at El Leoncito, in the Argentinean Andes. The peak burst spectra included data from new solar patrol radio telescopes (45 and 90 GHz), and were completed with microwave data obtained by the Radio Solar Telescope Network, when available. We critically evaluate errors and uncertainties in sub-THz flux estimates caused by calibration techniques and the corrections for atmospheric transmission, and introduce a new method to obtain a uniform flux scale criterion for all events. The sub-THz bursts were searched during reported GOES soft X-ray events of class C or larger, for periods common to SST observations. Seven out of 16 events exhibit spectral maxima in the range 5?–?40 GHz with fluxes decaying at sub-THz frequencies (three of them associated to GOES class X, and four to class M). Nine out of 16 events exhibited the sub-THz spectral component. In five of these events, the sub-THz emission fluxes increased with a separate frequency from that of the microwave spectral component (two classified as X and three as M), and four events have only been detected at sub-THz frequencies (three classified as M and one as C). The results suggest that the THz component might be present throughout, with the minimum turnover frequency increasing as a function of the energy of the emitting electrons. The peculiar nature of many sub-THz burst events requires further investigations of bursts that are examined from SST observations alone to better understand these phenomena.  相似文献   

13.
EUV and Magnetic Activities Associated with Type-I Solar Radio Bursts   总被引:1,自引:0,他引:1  
Type-I bursts (i.e. noise storms) are the earliest-known type of solar radio emission at the meter wavelength. They are believed to be excited by non-thermal energetic electrons accelerated in the corona. The underlying dynamic process and exact emission mechanism still remain unresolved. Here, with a combined analysis of extreme ultraviolet (EUV), radio and photospheric magnetic field data of unprecedented quality recorded during a type-I storm on 30 July 2011, we identify a good correlation between the radio bursts and the co-spatial EUV and magnetic activities. The EUV activities manifest themselves as three major brightening stripes above a region adjacent to a compact sunspot, while the magnetic field there presents multiple moving magnetic features (MMFs) with persistent coalescence or cancelation and a morphologically similar three-part distribution. We find that the type-I intensities are correlated with those of the EUV emissions at various wavelengths with a correlation coefficient of 0.7?–?0.8. In addition, in the region between the brightening EUV stripes and the radio sources there appear consistent dynamic motions with a series of bi-directional flows, suggesting ongoing small-scale reconnection there. Mainly based on the induced connection between the magnetic motion at the photosphere and the EUV and radio activities in the corona, we suggest that the observed type-I noise storms and the EUV brightening activities are the consequence of small-scale magnetic reconnection driven by MMFs. This is in support of the original proposal made by Bentley et al. (Solar Phys. 193, 227, 2000).  相似文献   

14.
A stationary Type IV (IVs) radio burst was observed on September 24, 2011. Observations from the Nançay RadioHeliograph (NRH) show that the brightness temperature (\(T_{\mathrm{B}}\)) of this burst is extremely high, over \(10^{11}\) K at 150 MHz and over \(10^{8}\) K in general. The degree of circular polarization (\(q\)) is between \(-60\% \sim -100\%\), which means that it is highly left-handed circularly polarized. The flux–frequency spectrum follows a power-law distribution, and the spectral index is considered to be roughly \(-3 \sim -4\) throughout the IVs. Radio sources of this event are located in the wake of the coronal mass ejection and are spatially dispersed. They line up to present a formation in which lower-frequency sources are higher. Based on these observations, it is suggested that the IVs was generated through electron cyclotron maser emission.  相似文献   

15.
In previous attempts to show one-to-one correlation between type III bursts and X-ray spikes, there have been ambiguities as to which of several X-ray spikes are correlated with any given type III burst. Here, we present observations that show clear associations of X-ray bursts with RS type III bursts between 16:46 UT and 16:52 UT on July 9, 1985. The hard X-ray observations were made at energies above 25 keV with HXRBS on SMM and the radio observations were made at 1.63 GHz using the 13.7m Itapetinga antenna in R and L polarization with a time resolution of 3 ms. Detailed comparison between the hard X-ray and radio observations shows:
  1. In at least 13 cases we can identify the associated hard X-ray and decimetric RS bursts.
  2. On average, the X-ray peaks were delayed from the peak of the RS bursts at 1.6 GHz by ~ 400 ms although a delay as long as 1 s was observed in one case.
One possible explanation of the long delays between the RS bursts and the associated X-ray bursts is that the RS burst is produced at the leading edge of the electron beam, whereas the X-ray burst peaks at the time of arrival of the bulk of the electrons at the high density region at the lower corona and upper chromosphere. Thus, the time comparison must be made between the peak of the radio pulse and the start of the X-ray burst. In that case the delays are consistent with an electron travel time with velocity ~ 0.3 c from the 800 MHz plasma level to the lower corona assuming that the radio emission is at the second harmonic.  相似文献   

16.
In this article, we present a multi-wavelength and multi-instrument investigation of a halo coronal mass ejection (CME) from active region NOAA 12371 on 21 June 2015 that led to a major geomagnetic storm of minimum \(\mathrm{Dst} = -204\) nT. The observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory in the hot EUV channel of 94 Å confirm the CME to be associated with a coronal sigmoid that displayed an intense emission (\(T \sim6\) MK) from its core before the onset of the eruption. Multi-wavelength observations of the source active region suggest tether-cutting reconnection to be the primary triggering mechanism of the flux rope eruption. Interestingly, the flux rope eruption exhibited a two-phase evolution during which the “standard” large-scale flare reconnection process originated two composite M-class flares. The eruption of the flux rope is followed by the coronagraphic observation of a fast, halo CME with linear projected speed of 1366 km?s?1. The dynamic radio spectrum in the decameter-hectometer frequency range reveals multiple continuum-like enhancements in type II radio emission which imply the interaction of the CME with other preceding slow speed CMEs in the corona within \(\approx10\)?–?\(90~\mbox{R} _{\odot}\). The scenario of CME–CME interaction in the corona and interplanetary medium is further confirmed by the height–time plots of the CMEs occurring during 19?–?21 June. In situ measurements of solar wind magnetic field and plasma parameters at 1 AU exhibit two distinct magnetic clouds, separated by a magnetic hole. Synthesis of near-Sun observations, interplanetary radio emissions, and in situ measurements at 1 AU reveal complex processes of CME–CME interactions right from the source active region to the corona and interplanetary medium that have played a crucial role towards the large enhancement of the geoeffectiveness of the halo CME on 21 June 2015.  相似文献   

17.
We report on the results of observations of a type IV burst made by the Ukrainian Radio interferometer of the Academy of Sciences (URAN-2) in the frequency range 22?–?33 MHz. The burst is associated with a coronal mass ejection (CME) initiated by a behind-the-limb active region (N05E151) and was also observed by the Nançay Decameter Array (NDA) radio telescope in the frequency band 30?–?60 MHz. The purpose of the article is the determination of the source of this type IV burst. After analysis of the observational data obtained with the URAN-2, the NDA, the Solar-Terrestrial Relations Observatory (STEREO) A and B spacecraft, and the Solar and Heliospheric Observatory (SOHO) spacecraft, we come to the conclusion that the source of the burst is the core of a behind-the-limb CME. We conclude that the radio emission can escape the center of the CME core at a frequency of 60 MHz and originates from the periphery of the core at a frequency of 30 MHz that is due to occultation by the solar corona at the corresponding frequencies. We find plasma densities in these regions assuming the plasma mechanism of radio emission. We show that the frequency drift of the start of the type IV burst is governed by an expansion of the CME core. The type III bursts that were observed against this type IV burst are shown to be generated by fast electrons propagating through the CME core plasma. A type II burst was registered at frequencies of 44?–?64 MHz and 3?–?16 MHz and was radiated by a shock with velocities of about \(1000~\mbox{km}\,\mbox{s}^{-1}\) and \(800~\mbox{km}\,\mbox{s}^{-1}\), respectively.  相似文献   

18.
The source positions of solar radio bursts of spectral types I, III(U) and III(J) and V observed by the Culgoora radioheliograph are found to lie almost radially above soft X-ray loops on pictures taken by the S-056 telescope aboard Skylab. The radio source positions and the X-ray loops occur near magnetic loops on computed potential field maps. However, the magnetic induction required to explain the radio observations is much greater than the computed potential field value at that height. Dense current-carrying magnetic flux tubes emanating from active regions on the Sun and extending to 1.5R above the photosphere provide a satisfactory model for the radio bursts.  相似文献   

19.
Usually the gyrosynchrotron emission of microwave bursts from electron populations with a power-law (PL) energy distribution has been considered under the assumption that the spectral index of the distribution is constant over a wide range of energies. Meanwhile, there is strong evidence, in particular from hard X-ray and -ray, but also from cm/mm wavelength radio observations, that in many solar flare events the spectrum of the emitting electrons is characterized by a significant hardening at energies above 100–500 keV. We present some examples of calculated microwave burst spectra at cm/mm wavelengths taking into account the above evidence. It is shown that a break in the energy spectrum of the PL electrons can indeed result in a spectral hardening sometimes observed in microwave bursts at frequencies above 10–30 GHz.  相似文献   

20.
Timing analysis of PSR J1705–1906 using data from Nanshan 25-m and Parkes 64-m radio telescopes, which span over fourteen years, shows that the pulsar exhibits significant proper motion, and rotation instability. We updated the astrometry parameters and the spin parameters of the pulsar. In order to minimize the effect of timing irregularities on measuring its position, we employ the Cholesky method to analyse the timing noise. We obtain the proper motion of \(-77(3)\) mas?yr?1 in right ascension and \(-38(29)\) mas?yr?1 in declination. The power spectrum of timing noise is analyzed for the first time, which gives the spectral exponent \(\alpha =-5.2\) for the power-law model indicating that the fluctuations in spin frequency and spin-down rate dominate the red noise. We detect two small glitches from this pulsar with fractional jump in spin frequency of \(\Delta \nu /\nu \sim 2.9 \times 10^{-10}\) around MJD 55199 and \(\Delta \nu /\nu \sim 2.7\times 10^{-10}\) around MJD 55953. Investigations of pulse profile at different time segments suggest no significant changes in the pulse profiles around the two glitches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号